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Optimal Pricing in a Duopoly: 
A Noncooperative Differential Games Solution 1 

G. F E I C H T I N G E R  2 A N D  E .  D O C K N E R  3 

Communicated by G. Leitmann 

Abstract. This paper deals with a differential games model of an 
oligopoly of n profit-maximizing firms competing for the same stock of 
customers. For the sale dynamics, it is assumed that the customers of 
each firm are driven away gradually by increasing product prices. Since 
the state variable is absent from the Hamiltonian maximizing conditions 
as well as from the adjoint equations, open-loop Nash solutions can 
be obtained. By using phase diagram analysis, for two players the 
behavior of the optimal pricing strategies can be characterized qualita- 
tively. The main importance of the paper lies in the solution technique, 
rather than in the economic significance of the proposed model. Under 
the proposed assumptions, the two-point boundary-value problem 
resulting from the maximum principle is reduced to a terminal-value 
problem. It turns out that, for special salvage values of the market shares 
and if the planning horizon is not too short, nonmonotonic Nash-optimal 
price trajectories occur. 

Key Words. Nash-optimal price policies, duopoly of profit-maximizing 
firms, two-person nonzero-sum differential games, phase portrait analy- 
sis of Nash solutions, state separability. 

1. Introduction 

In the past  decade,  nonzero-sum differential games theory was appl ied 
to  a series o f  competi t ive dynamic  economic  models  (see Refs. 1-3). In 
some of  these applications,  the players seek to determine opt imal  pricing 
strategies (see, e.g., Refs. 4-8).  
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Clemhout and Wan (Ref. 9) define a class of differential games (hereafter 
DG's, for short), the trilinear games (see also Refs. 1, 2, 10, 11), which 
allow for qualitative insights into the behavior of their Nash solutions. The 
simplicity of this game structure is due to the fact that the state variables 
are absent from the adjoint equations, and the choice of controls is indepen- 
dent of the state variables. 

The present paper has two purposes. First, we study the competitive 
behavior of n profit-maximizing firms. Assuming that the diffusion of 
customers is governed by the product prices charged by the firms, we are 
able to derive in the case of a duopoly a system of nonlinear differential 
equations for the Nash-optimal price policies which is used to obtain the 
qualitative traits of the optimal solutions. Second, we add a further example 
to the trilinear games, which is simple enough for the interactive mechanism 
between state and control variables of the players to be obvious. Admittedly, 
the model is perhaps not very realistic, since the situation has deliberately 
been simplified. Since the approach is explorative, the solutions of simple 
problems must be found before more realistic ones can be handled (see 
also Ref. 12). 

The crucial point of the paper is that, under the assumptions made, 
the two-point boundary-value problem, resulting from the Pontryagin 
necessary conditions, is reduced to a terminal-value problem which can be 
treated in a much simpler way. Rather than claiming economic significance 
of the proposed model, the importance of the solution technique is stressed. 

In Section 2, the dynamic pricing game is presented. In Section 3, the 
necessary and sufficient optimality conditions are derived from Pontryagin's 
maximum principle. Section 4 provides a basis for the stability analysis of 
the stationary value of the Nash pricing strategies. Since a more complete 
phase portrait analysis is not possible without specifying the price diffusion 
functions, in Section 5 constant elasticity functions are assumed. Finally, 
in Section 6, we summarize the results obtained and state some related 
problems for future research. 

2. Model 

Consider a differential games model of a oligopoly over a fixed period 
of time [0, T]. Assume that the rate of sale of a heterogeneous good is 
proportional to the number of customers buying the product (see Refs. 13 
and 14). The numbers of customers buying at firm i, i = 1 , . . . ,  n, are easily 
transformed into market shares by dividing them by the total market poten- 
tial. Let x~(t) denote the market share of firm i at time t. Let p~(t) be the 
product price charged by firm i, i =  1 , . . . ,  n, at time t. Assume that the 



JOTA: VOL 45, NO. 2, FEBRUARY t985 201 

gradual development of  the market share of  the firms is governed by the 
following diffusion process. For each' firm i, there is a price level/5~ so that, 
for Pi > fig, the customers leave firm i. The proportion for customers changing 
some firm i to firm j ¢ i increases more than proportionally with increasing 
difference pg-fii and linearly with the current market share of firm i. More 
specifically, we assume convex diffusion functions &(p~) with 

gg(p~) > 0 ,  g~(pi) > 0, gf (p~)>0,  p~ >/5~, ( la)  

gg(p~) =0,  pi --< ff~, ( lb)  

gg(p~) =o, g~(p,) =o, (tc) 

lim g~(p~)=oo, ( ld)  
pi  -->o0 

Note that (1 d) is supposed for technical reasons. Economically more reason- 
able would be the assumption that there exists a price high enough to drive 
away all the customers. 

The dynamics of the market share of firm i is the result of the loss of 
customers (due to its price policy) and of the increase of customers (due 
to the competitor's losses), 

2~ = - g ~ ( p ~ ) x ~  + [ 1 / ( n  - 1)] ~ gj(pj)x~, 

j ~ i  

i =  1 , . . . ,  n. (2) 

In the system dynamics (2), it is assumed that the proportion of customers 
driven away from firm i, g~(pg)xi, is allocated to its competitors with equal 
probabilities (n - 1) -~1. 

Note that, in this model, it is the price level of a firm which drives 
away its customers. It is not assumed that a low price policy of  a firm lures 
additional customers from its competitors, i.e., a pure push model is con- 
sidered. Moreover, we suppose that the customers are rational in the sense 
that the price level fig for which the customers' out-migration starts is not 
below the marginal production costs ci of  firm i, 

fii >- cg, i = 1 , . . . ,  n. (3) 

Note that this assumption is made for technical reasons; the case/Sg < c; is 
briefly mentioned in Section 6. 

Finally, let ri be the constant discount rate of firm 1, and let & be the 
salvage value of the market share of firm i at the end of the planning 
horizon, i = 1 , . . . ,  n. & measures the value of one customer for the firm at 
the terminal time T. 



202 JOTA: VOL. 45, NO. 2, FEBRUARY 1985 

The objective of each firm is to maximize the present value of its 
intertemporal profit 

fo Ji = e x p ( - r i t ) ( p i  - c~)xi d t +  e x p ( - r ~ T ) S ; x ~ ( r ) ,  i = l , . . . , n .  

(4) 

Using the market share of firm i as state variable xi and the prices p~ as 
control variables, we get a nonzero-sum differential game with the state 
equations (2), the initial conditions 

x~(0) = Xio, 0 <- Xio <- 1, i = t , . . . ,  n, (5) 

and the performance indices (4). Note that, for given initial market shares, 
the system dynamics (2) implies 

O<-x~(t) <- 1, t~[0, T]. 

Moreover, from 

x~(O) = 1 

and (2), it follows that the market shares add up to 1 for all t, 

x i ( t )  = 1. 
i=l 

3. Optimality Conditions for Nash Solutions 

Restricting our interest to open-loop Nash equilibrium solutions, we 
consider the current-value Hamiltonians 

H ~ = ( p i - c i ) x i +  ~ h ~ [ - - & ( p k ) X k + [ 1 / ( n - - 1 ) ]  ~ g j (p f l x j ] .  (6) 
k=l  j= l  

j ¢ k  

The necessary conditions in terms of the Hamiltonians are given, e.g., in 
Ref. 15-17. In Eq. (6), Ai is the current-value adjoint variable measuring 
the value of an increment of the market share of firm k assessed by firm i. 
The shadow prices )t~ satisfy the adjoint equations 

" ~ i ~ r i A k + g k ( p k ) {  ~,--[1/(n--1)] ~ A~.} ( p i - c , ) 6 , k ,  h k = rib ~ -- H~ k = A i 
j= t  
j ~ k  

(7) 
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where k =  1 , . . . ,  n, and 

1, i = k ,  
8ik = O, i ¢ k. 

The transversality conditions are given by 

(8) 

Because of assumption (lc),  the Hamiltonian maximizing condition is given 
by 

H ~  = 0. 

This yields 

l+gi(p~) - A i + [ 1 / ( n - 1 ) ]  ;t =0. (9) 
j = l  
j ¢ i  

Since the Hamiltonians H i are jointly concave in x and pi, the necessary 
conditions (2), (5), (7), (8), (9) are also sufficient for the optimality of  the 
solutions. 

Due to the structure of  the Hamiltonians, the game is s tate  separable,  
which means that neither the optimal price nor the adjoint equation depend 
on the state variable x. 

For two players, it sufficies to consider only one state variable, e.g., 
the market share of  the first firm, say x ( t ) .  The state equation can now be 
written as 

.,~ = --gl (  p l )X  + g2(p2)(l -- X). 

Defining new current-value adjoint variables Ai by 

the adjoint equations (7) can be written as 

i l  = A~Er, + g~(Pl) + gz(P2)] - (P, - cl), 

A2 = A2[r2 + g~(p~) + g2(P2)] + (P2 - e2), 

with the transversality conditions 

(7a) 

(7b) 

Al(T) = $1, A2(T) = -$2.  (8a) 

Note that Ai measures the current value of an increment of  the market  share 
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of firm 1 assessed by firm i, i = 1, 2. Furthermore, for n = 2 the maximum 
condition is given by 

Al = 1 /g] (p~) ,  A2 = - I / g ' 2 ( p 2 ) .  (9a) 

Note that for n-> 3, it is not possible to reduce the two-point boundary 
value problem to a two-dimensional terminal-value problem, since too many 
adjoint variables ~ occur in the necessary optimality conditions. Moreover, 
a phase portrait analysis can be illustrated in a two-dimensional control 
space. 

Since the Hamiltonians H i are jointly concave in x and Pi, the necessary 
conditions (2), (5), (7), (8), (9) are also suff icient for the optimality of the 
solutions. 

Differentiation of (9a) with respect to time yields 

)~l = - P , g ~ ' ( P l ) / g ' ~ ( P l )  2, "A2 =p2g~(p2) /g '2 (p2)  2. (10) 

Using (9a) and (10), the adjoint equations can be transformed into two 
differential equations in the control variables, 

Pi = [g~( Pi) / gl! ( Pi) ][gl( Pi )( Pi - ci) -g~(p~)  - gj( p~ ) - r~], (11) 

where here and in the following we assume that /, j = 1, 2, and j ~ i. The 
terminal conditions for the system (11) resulting from (8a) and (9a) are 
given by 

g l ( p i ( T ) )  = 1/S~, i=  1, 2. (12) 

From (ld) follows the unique solvability of (12) for each nonnegative 
salvage value S~, i =  1, 2. For 

Si=0,  

we have 

Pi(T) = ~ .  

Defining the elasticities of the marginal diffusion functions as 

e~ = [gT(P~)/g'i(P~)]P~, (13) 

the system (t 1) may also be written as 

lJ~ = ( p , /  e~)[gl( p~)( p~ - c~) - gi( P~) - g~( Pj) - ri]. (1 la) 

The following form of (1 t) is useful to determine the stability properties 
of the equilibrium of the system: 

p ~ = { [ g ~ ( p i ) ] 2 / g T ( p i ) } { p i - c ~ - [ 1 / g ~ ( p i ) ] [ g i ( p i ) + g j ( p j ) + r ~ ] } .  ( l lb )  
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4. Stability Analysis of Nash Equilibrium Solutions 

The system (11) has four isoclines, namely [according to (lc)], at the 
boundary, 

Pi = fii ,  (14) 

and in the interior, 

Gi(P~, P2) = g~(P,) - g'~(P~)(&- ci) + gj(pj) + r~ = 0. (15) 

In the sequel, let us denote the interior isoclines defined implicitly by (15) 
as 

/~ = 0. 

Because of (la) and (3), the p~ = 0 curves (15), i=  1, 2, have positive 
slopes: 

dp2/dpdp~ =o = g~(p~)(pl -  cO/g'2(p2) > 0, (16a) 

dpz/dP~[p2=o = g'I(PO/(g~(P2)(P2 - c2)) > 0. (166) 

For 

g"(pf) > 0, (17) 

it holds that 

g~(&)(pi - ci) > g'i(Pi). 

Thus, according to (16), the slope for/i~ =0  is steeper than that for ,62=0, 

dpz/ dPll~,,=o- dpz/ dpl[p~=o> O. (lg) 

Since our aim is to gain qualitative insights into the behavior of the 
Nash-optimal paths, we need information on the stationary points of the 
autonomous system (11) of nonlinear differential equations. We now state 
a sufficient condition for the uniqueness and the existence of an interior 
equilibrium of the system (11). 

Proposition 4.1. Let there be at least one r~>0. If (17) is satisfied, 
then at most one equilibrium (/31,/32) exists in the interior of the control 
domain, i.e., /3i>/~. If, additionally, (21) holds, the existence (/3i,/32) is 
guaranteed. Moreover, if the Jacobian determinant (24) evaluated at the 
stationary point (/31,/32) is positive, (/31,/32) is an unstable node. 

Proof. Define/31 as the solution of 

LI(P1) & G1(P1,/~2) = -g](Pl)(Pi  - cl) + g,(Pl) + ri = O. (19) 
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We have 

dL ~ / dPt -= -g~'(Pl)(Pl - c~) < O, 

L l ( f f l )  = r I ~ 0 .  

Because of  the convex shape (1) of  g~ (pl), there exists values of Pl such that 

L t (p l )<0 .  

Thus, we get a unique crossing point (/51,/52) of 

/ J l=0 and p~=.02. 

Note that 

/~1 > ill, iff rl > 0. 

Analogously, 

i02= 0 

c ros ses  

Pt ~---/~1 

at a point (/5,,/~2) with 

/?'2>/52 iff r~>0. 

To prove the unique existence of an interior stationary point, we 
substitute 

P~=P2(Pl), 
defined implicitly by 

Gl(p~, p2) = 0  

of (15), into 

G2( P l ,  P2) = 0. 

This yields the following equation for p~ = t31: 

F(p l )  = GZ(p,, P2(Pl)) 
, ) =g2(P2(P,))-g2(P2(Pl))[Pz(Pl  - c2]+g , (P , )+r2  =0. (20) 

By differentiation, we obtain 

F'(p l )  = -g~(p2(p l )  )( dp2/ dpt)[p2(pl) - e2]+ gl(P~) 

= - [ l /g~(pz (PO)][g ' [ (P l ) (P l -  cOg~(P2(Pl))(P2(P,) - c2) 

- g~ ( p~)g~.( p2( pl) ) ] < O, 
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where (16a) and (17) have been used. Substituting fil into (20), because of 

p2(/~1)=/52 and q + r 2 > 0 ,  

we get 

F(fil) = g2(fi2) - g;(/~2)(fi2- c2)+gl(fil) + r2 = gl (/~1) q- r2> O. 

If there would exist a pl such that 

F(pl)<--O 

the existence of a solution of (20), say/~,  would be guaranteed. Sufficient 
for this would be, according to (20), that 

g '2( P2( P~) )[ P2( Pt) - c2]- g2( P2( P~) ) 

goes faster to infinity than g~(Pl) or, because of (15), 

lim {g~_(P2(P,))[P2(P~) - c2] - g'~(p~)(pj - c,)}/> 0. (21) 
p2  ~ o o  

The existence of/~2 can be proven under an assumption analogous to (21). 
To derive the stability property of a possibly existing equilibrium point, 

we calculate the Jacobian determinant 

D =  Op,/Opl Op~/Op2 (22) 
c?p2 lop ,  0132/0P2 " 

From (1 lb), we obtain 

of, i/opilp,=,o = gi(p~) + &(pj) + r, > 0, (23a) 

°l)J°P.ilp,=o = -[g:(P~)/ gf  (P~)]N(PJ) < 0. (23b) 

This yields, for D evaluated in the equilibrium, 

D = [g,(p,)  + g2(P2) + q][gt(P,) + g2(t)2) q- t'2] 
t ¢ 2 l !  t !  

- [gl(Pl)ga(P2)] /g~ (P,)g2(P2). (24) 

If  D evaluated at (/3~,/32) is positive, the interior equilibrium is an unstable 
node, because the main diagonal elements (23a) of (22) are also positive. 

[] 

Since condition (21) is not very manageable and (22) cannot be evalu- 
ated for the general convex functions (1), we restrict our interest in the 
following section to diffusion functions with constant elasticity, i.e., to power 
functions. 
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5. Phase Portrait Analysis for Constant Elasticity Functions 

To obtain results on the existence and the stability property of the 
equilibrium (/35,/32), we specify the diffusion functions as power functions, 

[ y , ( p , - p , )  , P,->P,, 
g i ( P o )  = ~1 O, p,  < fi~, 

(25) 

with 

3t/>0, a i >  1. 

Note that the elasticity of (25) is constant and positive, 

e i = ot i --  1. 

(1 1 ) can be written as 

p, = [ ( p , - P , ) I ( ~ , -  I ) ]  

× [ a , 3 , , ( p i  - f f , ) ~ ' - ' ( p ,  - c , )  - y , ( P i  - iO,)" '  - ~ ( p y  - / ~ j ) " J  - r , ] .  

The terminal conditions are specified as 

p,(T) = p, + (S,~ir,) -'/(~,-'~. 

The following corollary follows from Proposition 4.1. 

Corollary 5.1. Let be at least one r~ > 0 and 

( a t -  l ) ( a2 -  1)~  1. 

Then, there exists a unique equilibrium (/~1,/32) 
admissible control demain, i.e., with/3i >/~i. If, additionally, 

( a l -  1)(a2-  1)~ > a ~ + a 2 +  1, 

then the stationary point (/3j,/32) is an unstable node. 

(26) 

(27) 

(28) 

in the interior of the 

(29) 

Proof. (17) is equivalent to 

ai > 2. (30) 

Under this assumption, (21) holds providing the existence of the interior 
equilibrium (/31,/32). However, this result can be proved also under the 
weaker condition (28) (see Fig. 1). Let 

di  ~- Pi  - ci. 

The isocline 
p i = 0  
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Fig. 1. 

d.2 
I o ¢ 2 = 2 ( ~ - ' D ( g W 2 )  -1 
I 
I 
I 

: I 

2t . . . .  ', . . . . . .  ; % :  - - T . . . . . . . . . . . . . . . . . .  

¢ _t ! 
0 1 2 2+~ ~ 

Pairs of  exponents a~, oi2, for which an interior equilibrium does exist [region t 
described by (28)] and for which this stationary point  is an unstable node [region II 
characterized by (29)). 

can be written as 

p2 =~2 +[ O(p,)/ ~d '/%, 

with 

G (  p , )  = ( a~ - 1)y,(p, - fi~)% + aq y ,  d~( p~ - ~1) %-~ - r, .  (31) 

F ( p ~ )  defined in (20) has now the form 

F ( p ~ )  = ( a 2 -  1 )G(&)+  o~272o~2[G(pO/3 ,2](%-1) /% - - / , (p~-p , ) " , -  r2. (32) 

It holds that 

:~(:,)<0. 

From (31) and (32), we obtain, together with (28), 

lim F ( p l )  = o0. 
p !  - ->co 

Moreover, by differentiation of (32), we see that, for (28), it holds that 

F ' ( p ~ ) > O .  

This provides the existence and the uniqueness of an interior stationary 
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point. For (29) and Pi >/5i, we obtain from (24) 

D >  T,'Y2(PI-ffl)'~'(P2--/52)'~212-oqcez/(oel- 1)(a2-  1)]--> 0. (33) 

Since, according to (23a), also the elements in the main diagonal are positive, 
the stationary point (t31, t32) is an exploding node. 

Figure 1 illustrates the pairs of exponents (~i, ~2) with (28) or (29), 
respectively. (29) means that the product of both elasticities el and e 2 J~s 
greater or equal to 1. Note that (29) implies (28). Notice further that, from 
(29) and oe~ > 1, (30) follows. The boundaries of (28) and (29), respectively, 
are the hyperbola branches 

ce2 = c~,(cel - 1) -1, c~ > 1, 

ol2 = 2(cei - 1)(~1-2) -1 , oq>2,  

respectively. Finally, it should be mentioned that the conditions (28) and 
(29) are sufficient but not necessary for the existence of a unique interior 
stable node. [] 

The equilibrium behavior at the boundary p~ =p~ of the admissible 
control region is summarized in the following proposition. 

Proposit ion 5.1. For r t > 0, r 2> 0, there exist three equilibria at the 
boundary, whereby (/51,/52) is a stable node and (/51,/~2), (/~1,/52) are saddle 
points. For rl > 0, but r2 = 0, there are two boundary" equilibria, (/51,/52) and 
(/31,/52), where (/~1,/52) is a saddle point. For rt = r2=0, there occurs only 
one equilibrium, namely (/51,/52), provided that (18) is satisfied. 

Proof. To derive the stability properties of the stationary points, we 
determine the Jacobian determinant of (22) and evaluate it at these points. 
From (22), we obtain 

o:~lop, = [1 t (o~ , -  1) ] [%~,~(p , - /5 , , )~ , - ' (p , -  c,) 

- y , ( p ,  - /5,)~,  - y j ( p ~  - /5: ) '~ ,  - r,], (34) 

op,/ O p: = -[ y:q / ( o~, - 1)](p,- p,)(p:-/5:)~,-'. (35) 

If we evaluate the Jacobian determinant at (/51,/52) we get 

D(/51,/52) = [-rl/(al- 1) 0 , 
i 

0 -r2/ (a~-  1) 

providing the stable node property of (/5i,/52) for rl and r2 both positive. 
Note that 

D(/5,,/52) = 0 

if at least one of the discount rates vanishes. Note that the isocline 

Pi = 0 
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goes through (Pl, 102) if 

r~=O. 

Let us now evaluate D at (t51,/32). It holds that 

O;0,/OplI(a,.~2) = - [ 1 / ( 0 ~ 1 -  l ) ] [ ' Y 2 ( f i 2 - i 0 2 )  a2-Jr Y1], ( 3 6 )  

0;02/0p21<~,.~) = [1/(c~z- 1)] 

x [Y2a ~(fi2- fi2)%-1(/~2 - e2) - Y2(P2 -/52)%- rz], (37) 

O;01/ Op2l(p,.~a> = [0;02/ 0p~](~,.~2~ = O. 

Since, for r l - 0  but r2>0 , (36) is positive and (37) is negative, (/sbfi2) is 
a saddle point. The remaining cases are shown analogously. Note that the 
functional determinant vanishes in a stationary point, if it is determined by 
three or more isoctines. Thus, in these cases, the stability property remains 
undetermined. 

To show that, for r 1 = r2 = 0, (/5~,/52) is the unique equilibrium, we prove 
that 

;0t =0  

has always a steeper slope than 

;02 = 0, 

i.e., that (18) holds. Note that, for a~->2, i =  1, 2, (17) is satisfied, which 
implies (18). Moreover, it is easy to show that (18) holds for 

O~ i O~'2 ~" O~ 1 -~- O32~ 

i.e., if in (28) strict inequality holds. [] 

Before we draw some conclusions from this phase portrait analysis, 
for the behavior of the optimal pricing strategies we consider the case 

p, = c~. (38) 

It turns out that, under this assumption, the analysis becomes simpler and 
that the coordinates of the interior stationary point can be determined 
explicitly as solution of a system of two linear equations. 

Proposition 5.2. Assume that (38) holds and that at least one r~ is 
positive. It is necessary and sufficient for the existence of a unique interior 
equilibrium (/3I,/32) that (28) holds as strict inequality. Moreover, (/31, t32) 
is given explicitly by (44). For r~ = 0 and 

~1c~2 = al + a2, (39) 
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the interior isoclines coincide, providing an infinite set of equilibria on the 
curve (45). 

Proof. For (38), the isoclines of the system (26) simplify to 

,y~( o<~ - l )(p~ - :~)~, - ~:~(p~-:~)"~ = r~, 
(40) 

- y ~ ( p ~  - :~ )=~  + yz(a2 - 1)(p2-/52) ~2 = r2. 

(40) is a system of two equations, linear in (p~-/~y, .  Its solution is provided 
by 

(p,-/~)'~' =A,A -I, (41) 

with 

A : el Y2[a, a 2 -  (al + a2)], (42) 

A~ = y:[ r,( aj  - 1)+5].  (43) 

Necessary and sufficient that, for the solution of (40), p~ >/~ holds is the 
condition 

OL 10/2 > a l + a  2 

(region I in Fig. 1). From (41), (42), (43), it follows that 

/3i =/~i + [[r~ ( a  s - 1 ) + rs]/ Y i ( a l  a2 - a ,  - a2)]. (44) 

For 
rl = r2=0,  

the system (40) is a homogeneous one, which is solvable if and only if 

A=0,  

i.e., if (39) holds. The solutions satisfy 

P2 =/~2 + [ (a l  - -  1 ) ~/1( Pl --/5, )%/")/2] '/=2. (45) 

For 

al  = OL2=2~ 

e.g., (39) is satisfied, and (45) is the straight line 

P2 = : 2  + ( Pl - : , ) 4  ( y , /  y2).  (45a) 

[] 

Note that the crossing points of/~i = 0 with p: =/~j, (Pz, ill) and (Pl, fi2), 
respectively, can now be determined explicitly. It holds that 

~6, = Pi + [r , /  y , ( a ,  - 1)]' /~' .  (46) 
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~2 

Fig. 2. 

P2T 

Phase portrait of Nash optimal pricing strategies for positive discount rates. 

By the results derived, we can gain qualitative insights into the structure of 
Nash-optimal solutions. The direction of the trajectories follows, e.g., from 
(34) and is depicted by arrowheads in Fig. 2. The behavior of the trajectories 
near p~ =/5i can be seen from (26); note that 

The phase diagram analysis is summarized in Fig. 2. 
To each terminal point (P~T, P2r), there exists a unique solution path 

emanating from the unstable equilibrium (/3~, fi2). The initial point can be 
determined by backward integration of (11) over the planning period of 
length T. 

The shape of the Nash solution path depends on the relation between 
the coordinates of the points (fi~,fi2) and (PIT, P2T). Let us consider the 
trajectories for various salvage values Si. According to (12), small values 
of $1 and $2 imply a terminal point in region I, i.e., monotonously increasing 
pricing strategies. If  both Si are large, then the prices of both firms decrease 
monotonously. For $1 small enough, but $2 large enough, we obtain a 
terminal point (P~T, P2r) with a relatively large abscissa, but small PZT. In 
such a case, it seems economically reasonable that firm 1 increases its price, 
whereas firm 2 lowers it gradually (see region III in Fig. 2). For S~ large, 
but $2 small, the behavior is just the opposite (region IV). However, there 
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exist also nonmonotonous Nash-optimal pricing strategies. Consider for 
instance a salvage vatue $I such that p~ T is not too far from/~m, $2 is small, 
and T is large enough. Then, P2(t) is upward sloping, whereas Pl (t) increases 
first, but decreases later. Since, due to its increasing price policy, firm 1 is 
increasingly left by its customers, firm 2 can also initially afford an increasing 
price to obtain a larger profit, in trade-off for a loss of customers. Only in 
the second part of the planning interval is a decreasing price pl(t) charged 
to reach PET corresponding to $1. If $1 is again of medium size but $2 is 
large, then p2(t) always decreases. If player 1 would increase its price, it 
would lose too many customers. On the contrary, it is optimal for firm 1 
to accommodate its behavior to the price policy of its competitor. The region 
where policies of this shape are possible is marked in Fig. 2. Note that the 
resulting shape of the pricing strategies is economically reasonable in the 
sense of a Nash equilibrium. Thus, it is Nash optimal to reduce first the 
price so as not to drive away too many customers, but in the sequel to 
increase the price to meet the terminal condition. For values of P2T near 
/~ and for S~ small or large, the situation is symmetric. 

Finally, let us take a look at the case 

f i i=Ci,  r l - -  r 2 = 0 .  

As we have shown before, the two interior isoclines coincide, generating 
an infinite set of equilibria lying all at the curve provided by (45). In this 
case, we see that regions I and II (Fig. 2) are both empty. Hence, it is 
impossible that the pricing paths of the firms are both increasing or decreas- 
ing. If  the terminal point (Pl T, P2r) is left of the curve (45), P1(t) decreases, 
whereas p2(t) increases. If (Plr, P2T) is right of (45), the situation is the 
opposite. For simplicity, let us assume that 

a ~ = a 2 = 2  and 71=')/2 . 

Then, (45) is given by 

Pz = Pl +/52 -/51- (45b) 

If 

St>S2, 

then 

Pl T < P2T, 

i.e., the Nash optimal price strategy of firm 1 is downward sloping, whereas 
P2(t) increases. Note that this behavior makes economic sense. The general 
case (45) has additionally taken into consideration 7i and ai. 
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6. Concluding Remarks 

The main feature of the system dynamics of the pricing game analyzed 
above is the change in the customers' stock of firm 1 as a net result of the 
losses due to its price policy and of the increase due to the competitors' 
pricing. It is assumed that the customers of firm i endure a maximal price 
level/5~, but that they begin to leave the firm i as soon as the price charged 
by this firm exceeds the critical level /5i. This diffusion process is set in 
motion gradually because of loyality of the customers to their firm, lower 
distances to the warehouses of the firms, etc. If the customers would be 
informed on the production costs ci, then it would be reasonable to set the 
critical price level at which diffusion takes place above a level not smaller 
than ci, i.e., to make assumption (3). For/5~ < c~, no results on the existence 
and uniqueness of  an interior equilibrium are available. However, if there 
is such a stationary point and (29) is satisfied, the equilibrium is an unstable 
node. 

Two reasons are responsible for the fact that we restrict ourselves to 
a dynamic duopoly. First, a phase diagram analysis can be illustrated 
generally only in two dimensions. Second and more important, the reduction 
of the optimal control problem to the solution of an initial-value problem 
for a system of differential equations for the control variables with given 
terminal conditions can be carried out only for n = 2 players. 

The Nash-optimal pricing strategies derived by phase portrait analysis 
have been discussed at the end of the preceding section. The most interesting 
cases are the nonmonotonous optimal price policies isolated for player i, 
if Si has medium values and the time horizon is appropriate. More precisely, 
there exist four regions in the (p~, pz)-phase plane, so that, for a planning 
horizon large enough, either pl(t) or pz(t) has initially the same behavior 
as the monotonous pricing strategy of the competitor, but changes this trend 
in the second part of the planning interval. Whereas the terminal pricing 
depends on $1 or $2, respectively, the initial parallel behavior is due to the 
Nash solution concept. 

From (12), we see that an increase in the intensity of  diffusion gi( . )  
implies, ceteris paribus, a decrease of  the terminal price P~r. This behavior 
makes economic sense: the higher the risk of a loss in market share, the 
more prudent the optimal pricing policy will be. 

For differential games with infinite time horizon, T = oo, the equilibrium 
solution 

p~(t)-=/~i, i =  1, 2, (47) 

is optimal, since the sufficient conditions are satisfied (see, e.g., Refs. 17 
and 18). 
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The main purpose of our investigation was to illustrate the solution 
technique, rather than to claim economic significance of the proposed model. 

The most unrealistic feature of the model analyzed is the assumption 
that the flow of customers from firm i to firm j depends only on the price 
level of firm i. This assumption has been made to guarantee state separability 
and qualitative solvability of the differential game. A more realistic model 
must take into consideration the push-and-pull character of the price level. 
Thus, it would be reasonable to suppose that the customers' flow depends 
on the difference of the prices charged by both competitors. Assume two 
convex diffusion functions hi(p2-p~), such that 

0 p2 >>- pl, 
hl(p2-pl) = monotonously decreasing and convex, P2 <P~, 

= L0,~ monotonously increasing" and convex, P2<-P~ .p2>pI' 
h2(P2-pl) 

The dynamics of the market share of firm 1 is governed by the differential 
equation 

= -h l (p2-pOx  + h2(p2-p~)(1 - x). (48) 

The first term on the right-hand side of (48) describes the diffusion of 
customers from firm 1 to firm 2 due to the price difference P2-Pv The 
second term refers to the diffusion from firm 2 to firm 1. Note that, for 
Pi > Pj, there is no flow from firm j to i. 

From (48), we see that 

x>O, p2>Pl, 

~ < 0 ,  pl > p2. 

Thus, in equilibrium it holds that 

The crucial assumption for the qualitative solvability of the model is 
the absence of the state variable from the Hamiltonian maximizing condi- 
tions as well as from the adjoint equations. It is this property of the 
differential game which makes it possible to reduce the boundary-value 
problem resulting from the necessary condition of Pontryagin's maximum 
principle to a terminal value problem which can be solved in a much simpler 
way. This trick has been used also in some other examples which are of 
interest in economics and management science (see Refs. 19 and 20). 
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