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Tractable Classes of Nonzero-Sum Open-Loop 
Nash Differential Games: Theory and Examples I 
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Abstract. This paper identifies some classes of N-person nonzero-sum 
differential games that are tractable, in the sense that open-loop Nash 
strategies can be determined, either explicitly or qualitatively in terms 
of a phase-diagram portrait. The classes are characterized by conditions 
imposed on the Hamiltonians. Also, the underlying game structures 
needed to satisfy these conditions are characterized. 
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1. Introduction 

This paper  deals with the following problem. Which are the structural 
assumptions that could be made to obtain solutions to an N-person,  non- 
zero-sum, open-loop Nash differential game? By solutions we mean, loosely 
speaking, that the controls, the state variables, and the adjoint variables 
can be explicitly specified as functions of  time. Also, we consider the 
possibilities of  obtaining insights into the qualitative behavior of the solution 
trajectories, for example in terms of phase diagrams. We assume that the 
Hamiltonians are nonlinear in the control variables. 

Ctemhout  and Wan write (Ref. 1, p. 419): 
"Much  has been established both for the necessary conditions and the 

sulfcient  conditions pertaining to the optimal play in N-person,  general 
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sum differential games. The major difficulty blocking the application of 
such game models is that equilibrium strategies are extremely hard to 
determine or characterize. Specifically, the adjoint system arising from such 
games usually involves partial derivatives of unknown optimal strategies. 
Beside the linear-quadratic games and some special examples, the literature 
contained no other known class of solvable N-person general sum games 
until recently." 

Clemhout and Wan (Ref. 1) define a class of differential games 
(hereafter DG's,  for short), the trilinear games, which allows for qualitative 
insights. They write (Ref. 2, p. 19): 

"Unlike linear-quadratic games, trilinear differential games can be 
easily scrutinized for qualitative insights. The simplicity of the game struc- 
ture is due to the fact that the state variables are absent from the costate 
system and the choice of  controls is independent of  the value of  x (the 
state variables)." 

The term "trilinear" refers to the linearity of the Hamiltonians in the 
state and costate variables as well as in functions of the control variables 
(compare Refs. 1-6). 

As will be demonstrated in Section 2, it is the absence of the state 
variables from the Hamiltonian maximizing conditions as well as from the 
adjoint equations that is a prerequisite for the possibility of getting solutions 
in a DG. In many cases 5 the linearity of  the Hamiltonians in the state 
variables as well as the optimal controls' independence of the state variables 
is crucial for solvability. DG's that possess these properties will be termed 
state-separable games, since the determination of Nash optimal controls can 
be done separately from the determination of the state variables. For 
two-person DG's with scalar control variables, this creates a possibility of 
determining the qualitative behavior of the solutions by using phase-plane 
analysis. 

After Refs. 1, 2, 4-6, not very much interest has been devoted to the 
subject of  solvability of DG's;  see, however, Ref. 3, Chapter 9; Ref. 9, pp. 
16-27; and Ref. 10. What seems to have escaped observation is the fact 
that, besides the trilinear games, there are other classes of DG's, the solution 
of which can be explicitly found or qualitatively described. Examples of 
DG's that are not trilinear (but are state separable) are Refs. 11 and 12. 
Other games where a phase-diagram approach yields important insights 
into the structure of optimal strategies are, e.g., Refs. 5 and 7. 

In Section 2, we give a formal presentation of the DG's under study, 
and the basic concepts are defined. In this section, we also state the main 
conclusions in the form of a series of propositions. In Section 3, with a 

5 Exceptions are, for instance, Refs. 7 and 8. 
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view to applications, we proceed to characterize, in terms of  state equations 
and performance indices, the structure needed to guarantee various types 
of  solvability. The regults are illustrated in Section 4 by different management 
science applications. In Section 5, we give some results on the stability 
properties of interior equilibria. Finally, in Section 6, we summarize the 
results and state some unsolved problems. 

2. Basic Definitions and Main Results 

We consider N-person nonzero-sum DG's,  N - - 2 ,  and we seek open- 
loop Nash equilibria. Thes ta te  of the game is given by the n-dimensional 
column vector 

x = ( x l , . . . , x ~ ) ' ,  n>- t. 

The prime denotes the transposition of a vector. Each player controls a 
vector control variable u ~ ~ N m,, where 

mi>-l ,  i = l , . . . , N .  

For 

u = ( u l , . . . ° u N )  ', 

the dynamics of the game are given by the system of ordinary differential 
equations, 

2 = f ( x ,  u, t), x(O) =xo fixed, (1) 

where 

f = ( f t ,  . . . , f , ) ' .  

Admissible controls u i belong to prescribed control regions U ~ C= ~m, Perfor- 
mance indices are in Bolza form, 

J i (u )  = exp( - r l t )L~(x ,  u, t) d t + e x p ( - / r ) S ~ ( x ( r ) ,  T),  (2) 
to 

where the horizon date T is fixed. Functions fj, L i, S i are assumed to satisfy 
appropriate smoothness conditions, e.g., they are in C z. The controls are 
open-loop, i.e., 

# = ui( t, Xo). 

The players are assumed to be Ji-maximizers. 
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A Nash equilibrium N-tuple 

u,=(ul* , . . . ,u  N*) 

is defined as follows (see, e.g., Ref. 13). Let 

u.=(u,*, . . . ,  u N*) 
and 

i u = ( U  l*,  . . . , b / i - l * ,  U i, U i + 1 . ,  . . . , u N * ) ,  

where u ~ is arbitrarily chosen in U *. Then, 

~(u*) _> J'('u), 

for all ~uc U i, for all (to, Xo) c [0, T] ×~ ' ,  and for all i =  1 , . . . ,  N. 
Let 

,~ (t) = [h~(t)] 

be an N x n matrix of current-value adjoint variables (see Refs. 13-15); 
and let 

Ai= (a~,,..., a'o) 
denote the ith row of h. Note that, here and in the sequel, we set 

i = l , . . . , N ,  j = l , . . . , n .  

Then, 

Hi=Hi(x, u, A ~, t)=Li(x, u, t)+ ~ h~(t)fj(x, u, t) (3) 
j=l  

is the current-value Hamiltonian of player i (see Refs. 13 and 14). The 
adjoint variable h~. can be interpreted as the shadow price of the state 
variable xj as assessed by player i. 

Necessary conditions for an open-loop Nash equilibrium are given by 
the adjoint equations 

,(i = riAi _ H i ,  (4) 

the terminal condition 

h '(T) = S~, (5) 

and the Hi-maximizing condition 

H~(x*,u*,Zi, t)>~Hi(x*,iu, hi, t), ~uEU i. (6) 

In cases where U ~ is open or when u i* belongs to the interior of a compact 
control region U i, condition (6) can be replaced by 

H',,(x*, u*, ~i, t)=o. (7) 
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Note that, with H i nonlinear in u and bounded controls, boundary 
solutions normally can be excluded by imposing appropriate assumptions 
on the functions defining the state equations and the integrands of the 
criteria. 

To determine whether the N-tuple u* is indeed optimal, a sufficiency 
condition has to be invoked, for instance, the sufficiency condition in Ref. 
15 (Corollary 1). Essentially, the condition requires the concavity in x of 
maxu, H i or the concavity of H j in (x, ui), for all (A ~, t). Concavity of the 
Hamiltonians in the state variables x and the optimal control's independence 
of x imply the concavity of maxu, H ~ with respect to x, because we restrict 
ourselves to open-loop solutions. This provides the sufficiency of the opti- 
mality conditions in almost all examples occurring in the following; excep- 
tions are the research game treated in Ref. 7 and a pricing-investment game; 
see Refs. 8 and 17. Moreover, the function S i must be concave in x(T). 

In the case of an infinite horizon, which is important in many economic 
and management science problems, the transversality conditions (5) are no 
longer necessary conditions, in general. However, provided the concavity 
condition holds, then the following limiting transversality conditions are 
sufficient for problems with free right-hand endpoints: 

lira exp( - f l r )h~(  r )  = O, 
T--~ oo 

(8) 
lira exp( -  riT)Aj( T)[xj(T) - x*( T)] ~ 0. 
T - ~ o o  

In most applications, the system of necessary conditions does not admit 
an explicit solution, since the necessary conditions imply an intractable 
two-point boundary-value problem. Nevertheless, for qualitatively solvable 
DG's (see Definition 2.t), important insights into the structure of the Nash 
equilibrium can sometimes be obtained using phase-diagram and stability 
analysis: for such games, only a terminal value problem has to be solved. 

Definition 2.1. Assume that u i is differentiable with respect to time. 
A DG is qualitatively Nash solvable if the following system of differential 
equations can be derived from the necessary conditions: 

~ =  ~i(u, t). (9) 
Here and in the sequel, we suppress the star notation for optimal solutions. 
Note that, for dimensions higher than N =- 2, mi = 1, no qualitative insights 
are possible, since the theory of phase-diagram analysis in higher- 
dimensional spaces is not well developed. Also note that, even in the case 
N = 2, rni = I, the qualitative behavior in the (u I, u2)-plane of the equili- 
brium and the optimal trajectories may be very hard or impossible to 
characterize. 
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In some DG's, it turns out that one or more of the adjoint variables 
are of no importance in the determination of u*. This motivates the following 
definition. 

i " i i if  H~, and do Definition 2.2. An adjoint variable hj is redundant Hx k 
i not contain hi, for all k = I, . . . ,  n, with k # j ,  where the partial derivatives 

are evaluated along the optimal path. 
Thus, redundancy of  an adjoint variable h~- means that u i* is indepen- 

dent of h~. In Section 3, we exhibit game structures that imply redundant 
adjoint variables. 

As mentioned in the introduction, a special interest relates to state- 
separable DG's. The concept of state-separability is defined as follows. 

Definition 2.3. A D G  is state separable if 

Hi,'x],5,_o-- 0, (10a) 

H~x=0.  (10b) 

Condition (10a) states that Hi#, maximized with respect to u i, is 
independent of the state variables. Condition (10b) states that H i is linear 
in the state variables. The implications of state separability are that u ~* is 
expressed only in terms of adjoint variables and that the adjoint equations 
do not contain the state variables. Thus, the essential feature is that the 
determination of the controls and the adjoint variables is separated from 
the determination of  the state variables. The generalized trilinear games of  
Clemhout and Wan (Refs. 1, 2, 4-6) are state separable. 

Note that, in the state-separable case, the open-loop Nash controls are 
independent of the initial state. By invoking sufficient conditions for feed- 
back Nash equilibrium controls (Ref. 16), it can be shown that open-loop 
Nash equilibria are indeed feedback Nash solutions. As in Refs. 1, 4, 20 
and related papers, we have the special situation in which there is a feedback 
control being constant with respect to the state and depending only on time. 

The following proposition connects Definitions 2.1, 2.2, 2.3. We have 
to discern whether the total number of control variables 

N 

m:=Y~ rn, 
i - - I  

is greater than or equal to the number of adjoint variables, 

M>- Nn, (11) 

or whether this is not the case, i.e., 

M < N n .  (12) 
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Proposition 2.1, Consider a state-separable DG. If (11) is satisfied, 
then the game is qualitatively solvable. If  (12) holds and at least N n - M  
adjoint variables are redundant, then the game is qualitatively solvable. 

Proof. Assumption (10b) implies that the adjoint variables are 
independent of the state variables. Moreover, by assumption (10a), it holds 
that the M Hamiltonian maximizing conditions do not contain x. Applying 
the theorem of implicit functions, we obtain, under appropriate regularity 
conditions, 

u'= Ki(~ i, ~ ' , . . . ,  A ~, t), (13) 

where a i is defined as 

~/i = ( u t , . . . ,  ui-t,  ui+l . . . .  , uN). (14) 

With reasonable assumptions on L i and fj, then u i is differentiabte with 
respect to time. Differentiation in (13) with respect to time and substitution 
of the adjoint equations and the Hamiltonian maximizing conditions yields 
the first part of  the proposition. Note that here assumption (11) has been 
used. 

By (10), we see that the Hamiltonian maximizing conditions are a 
system of linear equations in the nonredundant adjoint variables. Denote 
these variables by h~ , . . . ,  AK, where 

K<-M,  A~ ~s Aj, i , j = l , . . . , K .  

By using the second assumption of  the proposition, we can calculate 

A, = ~0,(u, t). (15) 

Differentiation in (15) with respect to time yields 

N 
ft,= E (OtO,/ouh)fth +(oq~i/Ot). (16) 

h=l  

Substituting (15) and (16) into (4) yields the system (9). [] 

In the autonomous case (i.e., when the functions f, L i, S j are not 
explicitly dependent of  time), then the differential equations (9) can, at 
least in principle, be analyzed in the u-space using phase-diagram analysis. 
See, for example, Refs. 7, 18, 19. The terminal conditions are 

hi(T) = O~(u(T)) = (17) S~,(x(T)). 

(17) can only be evaluated if S ~ is linear in xl. 
Note that a state-separable DG with scalar state variable is qualitatively 

solvable. Also note that the conditions of Proposition 2.1 are sufficient, but 
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not necessary; i.e., there exist qualitatively solvable DG's that are, for 
instance, not state separable. Such a game is studied in Ref. 7 (see also 
Refs. 8 and 17). Finally, note that redundancy in itself does not guarantee 
qualitative solvability; see, e.g., the advertising game in Ref. 3. 

A slightly more restrictive assumption than state separability is obtained 
by deleting in (10a) the qualification 

i 
H u ,  = O, 

i.e., assuming 

i i H ~  = (t8) H,~x = O, O. 

The advertising game studied in Ref. 20 has this property. 
The next proposition states a sufficient condition for a DG to be 

explicitly solvable. By this, we mean that the controls can be explicitly 
specified as functions of  time. Of course, this assumes that all relevant 
functions are specified. 

Proposition 2.2. If  a DG has the property 

H'.x ~ -  = H ~  - 0, 

then it is explicitly solvable. 

(19) 

Proof. (19) implies that the adjoint equations are independent of x. 
Also, the candidates for Nash optimality do not depend on x; i.e., u i is 
given by (13). The adjoint equations are a system of linear differential 
equations which can be analytically solved. This yields 

Substituting these adjoint variables into K: yields 

u i=  ~7i(~7 i, t), 

which can be solved by invoking the theorem of implicit functions. [] 

Note that there exists DG's that are explicitly solvable even if (19) 
does not hold. Examples are linear-quadratic games and the games studied 
in Refs. 11 and 17 (see also Ref. 2t). 

If, in addition to (19), we assume 

i . Hu'¢ = 0, 

then the DG turns into N independently solvable optimal control problems. 
Examples of  this are found in Refs. 22 and 23. Note that the condition 

i 
H x x  = 0 
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i may be slightly weakened; Hxj~j need not be equal to zero. However, it 
could be maintained that such problems are in a sense degenerate games, 
since player i (under optimal play) determines his control independently 
of ~*, the state xj, and the costates h~. Note that there also exist DG's 
where one player solves an independent optimal control problem, but the 
optimal strategy of the other player depends on that of his competitor (see, 
e.g., Refs. 18 and 21). 

In Proposition 2.1, it was shown that state separability plus redundancy 
impty qualitative solvability. In Proposition 2.2, we demonstrated that (19) 
implies explicit solvability, and therefore also qualitative solvability. 

3. Game Structures and Solvability 

Consider the following five sets of assumptions concerning the Hamil- 
tonians, each reflecting a particular structure of the DG's model: 

(A1) Hiux i i = Hxx = H , ,  = 0; 
i i .  (A2) H ~ x = H x x =  =0 ;  H u i t ~  ~ 

(A3) H~x = Hxx = 0; 

(A4) i i . H.,x = Hx~ = 0, 

(A5) H~,.,~l.~,~o=O; H ~ = 0 .  

Here, Assumption (Ap) implies Assumption (A9) for p < q and p, q = 
1 , . . . ,  5. Note that each of Assumptions (A1)-(A3) is sufficient, but not 
necessary, for qualitative solvability. 

With a view to applications, we express Assumptions (A1)-(A5) in 
terms of assumptions regarding the state equations and the performance 
indices. In this way, it can easily be ascertained whether a particular DG's 
model is qualitatively or explicitly solvable. We also give examples of DG's 
that possess these structural properties. 

The condition (10b) is present in all five assumptions and is also needed 
in Propositions 2.1 and 2.2. Note, however, that there exist qualitatively 
solvable DG's in which H ~ is nonlinear in the state. To guarantee satisfaction 
of condition (10b), the state equations and the integrand of the performance 
indices must be linear in the state, i.e., 

f(x,  u, t)= g(u, t)x + h(u, t), 

L'(x, u, t )=  MJ(u, t)x + Ni(u, t). (20) 

Now, we give the following definition. 
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Definition 3.1. 
and objectives (SCSDO) if 

f(x,  u, t)= g(x, t)+ h(u, t), 

U(x, u, t)= M~(x, t)+ Ni(u, t); 

see also Ref. 9, p. 16. 
In (A1)-(A3), we have the condition 

/-r.x-- 0. 

A DG is state-control separated with respect to dynamics 

(21) 

N 

U(x, u, t)= Z M'(x, t)u i. 
i = 1  

Here, we depart from the assumption that the Hamiltonians are nonlinear 
in the controls. 

The weaker condition i Huia, = 0 in (A2) will be satisfied whenever the 
game has the following structure: 

N 

f(x,  u, t)= ~, gi(x, u i, t), 
i = t  

N 

Li(x, u, t)= ~ Mi(x, u i, t); 
i = 1  

i.e., the controls are separated in the dynamics as well as in the criteria. 
Consider the special case n - - N .  

(23) 

(24) 

The structure given by (22) is, however, not necessary for (10a) to hold. 
The condition H'~, = 0  in (A1) means that H i must be linear in u; i.e., 

N 

f(x,  u, t) = • gi(x, t)u i, 
i = l  

This condition will hold if the game has the SCSDO-property, and vice 
versa. Note that, if the game has the SCSDO-property and the functions g 
and M ~ are linear, then (10b) also holds. 

In (A4), the condition 

Hi~,x = 0 

will hold whenever functions f; and U have the following structure: 

fj(x, u, t)= g~(x, fti, t) + hj(u, t), 

C'(x, u, t) = M'(x, u, -~ t)+ N'(u, t). (22) 
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Definition 3.2. A DG is said to have noninteracting dynamics with 
respect to state and controls (NIDSC) if 

f ( x ,  u, t) = ( f l (x , ,  u 1, t ) , . .  . , f~(x, ,  u ' ,  t)). (25) 

Games with this property are treated in Refs. 24 and 25; see also Ref. 9, 
p. 21. 

In Definition 3.2 we may think of xi as the state variable of player i. 
This is in fact the case in many economic and management science problems. 
For example, x~ may represent the market share or sale rate of firm i. 

Proposition 3.1. If a DG has the NIDSC-property, then all 
N ( n  - t) adjoint variables A j, i C j, are redundant. 

Proof. By assumption, for i g j, we have 

JSx, = fJ=' =0, 

which implies that 

H':,=0 
i does not contain the adjoint variables aj. Also, 

,( i= r',~ ' , -  H ~, 

is independent of A i. In conclusion, the strategies u ~ can be determined 
independently of Aj. [] 

Definition 3.3. A DG is said to have noninteracting dynamics and 
objectives with respect to state (NIDOS) if 

f ( x ,  u, t) = ( f , ( x , ,  u, t ) , .  .. , fn(x , ,  u, t)), 

U(x ,  u, t ) =  Li(x,, u, t). (26) 

Proposition 3.2. 
if the game has the NIDOS-property and if A}(T) = 0. 

Proof. The adjoint equation is 

xj"~- r A j  - x j - -  
k = l  

= Aj[r'-f~x,(Xj, u, t)]. 

The solution of this equation is 

{;T } exp f j x ~ d t - / ( T - t )  . 
t 

An adjoint variable A~ vanishes identically for all t, 

(27) 
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Since 

=o 

was assumed, Aj(t) must vanish identically for all t. Q 

4. Examples 

In the preceding part, we have considered the general case, 

N->2,  n->l ,  m i - 1 .  

The essential feature of qualitative solvability is the derivation of the 
differential equations system (9). However, from an applications point of 
view, this system may not be very useful. It cannot be analyzed (in control 
space), unless we restrict ourselves to the case 

N = 2 ,  rni = 1, 

i.e., two-player games with scalar controls. Note that the number of state 
variables does not matter in this connection. The reason for this intractability 
is that the qualitative theory of differential equations in higher-dimensional 
spaces is not very well understood; see, e.g., Ref. 26. 

Therefore, in this part, we consider the case 

fi' = ~b*(u,, u2), i = 1, 2, (28) 

where u; is scalar, assuming also that system (9) is autonomous. 
In the following, we present some simple examples illustrating each 

of  the Assumptions (A1)-(A5) listed above. Here, we consider the case 

N = 2, n -< 2, mi = 1. (29) 

The dynamics as well as the objectives have been slightly simplified. 

Example 4.1. (Re f  27). Here, n = 1, 

f (x ,  U 1, U2) = u l  -- lg 2, 

Li(x, u 1, u 2) = x i -  u% 

where 

xj = 1-x i .  

Example 4.2. (Re f  22). Here, n = 1, 

f (x ,  u 1, u 2) =log u I - l o g  u 2, 

L i ( x ,  u 1, /,/2) ___= xi  _ u i, 



JOTA: VOL. 45, NO. 2, FEBRUARY 1985 

where 

x j=  1 -x / ,  

Example 4.3. (Refl  28).  Here, n = 2, 

f =  ( f b f 2 )  = ( u ' - ( u l )  ~ -  u2u I --X1, /l 2 -  ( / , / 2 ) 2  ul __X2) ' 

Li(x ,  ui, U2) = - -X i  --  Ui. 

Example 4.4. ( R e f  20) .  Here, n -=2, 

f =  ( f l ,  f2), where f i  = u i _ (ui)2 _ x ~ -  x~u j, 

Li(x ,  u l, u 2) = x i -  u ~. 

Example 4.5. ( R e f  11). Here, n = 1, 

f ( x ,  u l, U 2) = UlU2(I --X), 

Li(x ,  /.,/1, U 2) = c i ( / 1 i ) (  1 __X)__  / , / I u 2 ( 1 - - X ) - - X ,  

where the function c ~ is concave. 

191 

5. Stability Properties of Interior Equilibria 

In this section, we assume that the functions f L i, S ~ do not depend 
explicitly on time, and we restrict ourselves to the case (29). In the following 
three propositions, we assume, for n = 2, that 

i A t are redundant for i = 1, 2, j = l, 2, i # j .  (30) 

Proposition 5.1. Assume that (A2) and (30) hold, and that 

r ~ -fx~ > O. (3 t) 

If  in 

AI = 6; (u  ~) (32) 

the function ~i is monotonic and 

~i --1 i i i 
( 9 )  (Lx f f ( r  - f x , ) ) e  U ,  (33) 

then there exists a unique equilibrium in the interior of  the admissible 
domain U ~. being an unstable node. Moreover, the isoclines are parallel to 
the coordinate axes. 
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Proof. From (7), (A2), (30), we obtain (32). According to (A2), the 
game is qualitatively solvable, and (9 )may  be written as 

fii = [Oi (ui)]-~[O~(u~)(r~ - f x~)  - L~]. (34) 

Note that fix, as well as L~, are constant. The isoclines 

fii= 0 

are given by 

0 ' ( u  ~ ) = _~r ~ ,~r i - f~ ,  ). ( 35 )  

From (35) and (31), we get 

O~ll]/ oui]~ii=O = ri -- f x ,  > O, 

Ofti/OuJla'= o = O, i Cj .  

Thus, the isoclines are parallel to the axes and the stationary point is an 
unstable node. 

If 0 r is monotonic in u ~ and 

i i --1 i i L x , ( r - f x , )  c O ( U ) ,  

then the solution of (35) is unique. 

Proposition 5.1 is illustrated by Example 3.2 and the following example. 

Example 5.1. ( R e f  29). Here, n = 1, 

f ( x ,  u ' ,  u 2) = g ' ( u ' ) - g 2 ( u 2 ) ,  

Li(x ,  u i) = x - u i, 

where the functions gi are concave. We have taken a modification of the 
objective functional. 

If we replace (A2) in Proposition 5.1 by (A3), then the following 
proposition can be proved. 

Proposition 5.2. Under the Assumptions (A3), (30), (31), and if 

rl = r2 = r, (36) 

fl~, = f2x2, (37) 

each stationary point in the interior of the admissible domain is an unstable 
node. 
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Proof. 
derive a differential equations system in the controls, 

u' = a ' /A ,  (38) 

where 

= dt 11~h22- -  dr I zdt 2 

with 

from (7), and 

~ i  = j i r i i ~u'[~ ( -f~x,)-Lx,]- O'~'[q/(rJ-£, 0 L~ - -  x j ] ,  

From (38), we obtain 

oid/ou'lu~=o = (OA~/Ou~)/A, (39) 

oc,'/ouJlu,=o = (OZTOuO/A, j # i. (40) 

Evaluating (39) and (40) at the stationary point and tlsing the assumptions 
(36), (37), (20), we get 

Oai/Ouila~=oj= o = r - f = ,  > 0, (41) 

Ofii/OuJla,=o,u,=o = O, j # i. (42) 

Thus, the Jacobian determinant of the system (38) is 

(r-O&/ox~)2>O. 

(41) and (42) provide the result of the proposition. [] 

Note that we have proven that each stationary point is an unstable 
node, but not the existence or uniqueness of an interior stationary point. 

Examples of games satisfying the assumptions in Proposition 5.2 are 
Example 3.3 and the following example. 

Using the necessary optimality conditions (4) and (7), we can 

Example 5.2. ( R e f  23).  Here, n = I, 

f ( x ,  u l, u 2) = g(u ~, u2), 

Li(x ,  u 1, u 2) = x i - u  i, 

where g~*uJ # 0. 
It is interesting to note that, for the games considered above, only 

unstable nodes are possible as stationary solutions. If  we consider the class 
of games which are state separable and where the adjoint variables Aj are 
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redundant for i ¢ j ,  then there are two possible types of interior stationary 
solutions: either unstable nodes or saddle points. 

Proposition 5.3. Under the Assumptions (A5), (30), (31), and 

H,,u~ = 0, for i C j, 

the interior stationary solutions are, according to the sign of the Jacobian 
determinant, either unstable nodes or saddle points. 

Proof. By assumption, we get from Proposition 2.1 that the differential 
game is qualitatively solvable, and we can derive the following set of  
differential equations in the controls: 

~i' = [G, (u ' ) ] - 'Er '~ ' (u  ~) - HxJ,  (43) 

where we have used (32). The isoclines 

~i=  0 

have the form 

r i ~ ( u i ) -  H i =0. xi 

The elements of  the Jacobian determinant evaluated at a stationary point are 
• i i O u / O u t , , = o =  i i -1 i ~ i i i i [O~'(u )] [rO~,(u  ) - H x , , ; ( O A , / O u  )] 

= r ' - f ~ ,  (44) 

oW/oWl,¢= o = ~ ~ -Hx,,a/q. , , , , (u ). (45) 

From (44) and (45), we see that the functional determinant of the system 
(43) can either be positive or negative. This, together with (44), shows the 
proposition. [] 

Note that neither existence nor uniqueness of a stationary point was 
proved. 

Proposition 5.3 is illustrated by the following examples. 

Example 5.3. ( R e f  30). Here, n = 2, 

f (  x, u 1, u 2) = (g l( u ' )  - x,  - a l( u2)x,,  g2( u2) - x 2 -  ~ 2 ( u  l ) x 2 ) ,  

Li(x ,  u 1, u 2) = x i -  u i, 

where g~ is concave and cd increases monotonically. 

Remark 5.1. If 
i Hx,~J = 0 
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holds for one i, then the Jacobian determinant has a positive sign, implying 
that the stationary point is an unstable node. This is illustrated by the 
following example. 

Example 5.4. ( R e f  18) .  Here, n = 1, 

.f(X, f./1, U2)= h l ( u l ) _  h2(u2)x, 

L I ( x ,  u 1 , u 2) = q t x  - u I, 

L2(x ,  u 1, u 2) = u 2 x  - q2x,  

where h I is concave, h 2 is convex, and q~, q2 are constant. 

6. Concluding Remarks 

The main results on solvability are stated in the propositions of Section 
2 and 3. Properties of interior equilibria were treated in Section 5. We have 
identified a class of differential games with nice structural properties. For 
this class, which includes the trilinear games, a system of differential 
equations for the open-loop Nash solutions can be derived. In some cases, 
this system can be solved explicitly whereas, for other differential games, 
qualitative insight into the properties of the solution may be gained. 

The concepts of state separability and redundancy play an important 
roie in the solution of a large class of differential games. To our knowledge, 
these concepts have not been explicitly defined before (see, however, Ref. 
20, p. 648, and Refs. 1-2). We believe that the results on solvability, apart 
from a theoretical value, should prove useful in management science and 
other applications of differential games theory. Thus, a proposed DG's 
model can easily be scrutinized with a view to ascertaining whether a solution 
can be obtained. However, this remark needs some modifications. 

Much work still remains to be done with respect to solvability in general. 
First, we note that, in most cases, the conditions stated are sufficient, but 
not necessary, implying that a solution may be obtainable even if the 
conditions fail to apply. Second, given redundancy, is state separability the 
basic condition, in the sense that it is the only one which guarantees 
qualitative solvability? Third, games with Hamiltonians linear in the controls 
and with constrained controls should also be investigated. Here, it might 
be conjectured, difficulties probably will appear, calling for revisions of 
definitions and reformulation of propositions. Note that the general theory 
of such games still appears to be rather incomplete. Finally, note that vast 
areas have not been covered in the present exposition, for instance, coopera- 
tive games, noncooperative games with other solution concepts than the 
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Nash equilibrium, and games with closed-loop strategies. Thus, there are 
still a lot of  promising avenues for further research on solvability of  differen- 
tial games. 
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