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Nonscalarized Multiobjective Global Optimization 1 

E, A. G A L P E R I N  2 

Communicated by G. Leitmann 

Abstract. A new approach to multiobjective optimization is presented 
which is made possible due to our ability to obtain full global optimal 
solutions. A distinctive feature of this approach is that a vector cost 
function is nonscalarized. The method provides a means for the solution 
of vector optimization problems with nonreconcilable objectives. 

Key Words. Vector optimization, nonscalarized multiobjective pro- 
gramming. 

1. Introduction 

It is generally accepted that an optimization problem should have one 
sole objective to be mathematically solvable. I f  there are several conflicting 
objectives, they are to be somehow adjusted to provide for a substitute single 
objective problem with a scalar cost function. This approach led to different 
scalarization schemes: the utility (inverted utility) function method, Pareto 
optimality, the global criterion method, and the bounded objective function 
method (Refs. 1-13). The deficiency of such approach has long been recog- 
nized and different schemes with less straightforward scalarization have been 
developed, such as the lexicographic method (which fails, if at least one 
subproblem has one single minimizer), goal programming (minimizes a norm 
of  vector deviation from partial minima or other goals related to component 
objective functions), and cone construction and perturbation methods (to 
determine the so-called efficient or weakly efficient points); see, e.g., Refs. 5 
and 10-24. 
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The concept of a scalar (or scalarized) objective function is believed to 
be self-evident due to our traditional thinking in terms of unique solutions 
under complete information. It stems from conventional point-to-point 
descent (ascent) methods, which deliver one or several pointwise optimizers 
that may contradict each other in the case of several conflicting objectives. 

Recently developed full global optimization methods (Refs. 25-26), 
capable of providing the entire set of all global optimizers, allow us to work 
out a different approach under which vector optimization problems appear 
as natural as the scalar ones, and scalar optimization problems represent 
just a special case of balanced vector optimization. Scalarization becomes 
an irrelevant and needless procedure, if the objectives are really independent. 

However, there are vector optimization problems that are poorly formu- 
lated and represent, in fact, scalar optimization with several reconcilable 
objectives. In this case, scalarization is natural and necessary. To illustrate 
the phenomenon, let us consider an example. 

Example 1.1. Solve the problem 

maxzl=x-2y, (1) 

min z2 = 0.3x +y,  (2) 

x+y2l ,  x-yN3,  x~O, y~O. (3) 

The solution of subproblem (1), (3) is (3, 0) with zi(3, 0)= 3. The solu- 
tion of subproblem (2), (3) is (1, 0) with z2(1, 0)=0.3. 

If one formally applies a linear utility function (we call it linear scalariz- 
ation; cf. Pareto optimality), then, considering min(-zl)  instead of max z~ 
in (1) and denoting 

or (which is simpler, with ~ = X, XI = 1 - ~) 

z= -(1 -~)zl + Xz2=X(1.3x-y)-x + 2y, (4) 

yields the problem of finding 

min z = min [X (1.3x - y) - x + 2y] (5) 
x , y  

under the conditions (3). If X< 1/1.3 =0.77, then the optimal point is (3, 0) 
with 

z~=3, z°=0.9 >0.3, Az2= 0.6. 
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If  A>0.77, then the optimal point is (1, 0) with 

z ° = 0.3, z ° = 1 < 3, Azl = -2 .  

It is clear that both solutions just repeat the solution of  subproblems above 
and are irrelevant to the solution of  the original problem (1), (2), (3). 

However, if A=0.77, then we have the optimal set xe[1, 3], y = 0 ,  and 
one can find x* that yields equal deviations from optimal values vis-a-vis z~ 
and z2 from the equation 

lAzy[ = 3 - x* = 0.3x* - 0.3 = Az2. (6) 

Equation (6) yields x* = 2.54, with z~' = 2.54 < 3, z* = 0.76 > 0.3, and Az2 = 
IAz~l =0.46. 

At first glance, it seems like goal programming, but it is not. Indeed, 
denote deviations from optimal values z °=  3, z °=  0.3 as follows: 

dl = 3  - z t  = 3 - - x +  2y>0 ,  (7) 

d2=z2-O.3=O.3x+y-0.3>O. (8) 

Then, the goal programming requires minimization of  a positive-definite 
function or a norm, for example, 

rain (dq+d~) ~/p, p>_ 1, (9) 
x , y  

under the constraints (3). It can be verified that (e.g., for p = 1 and p = 2) 
we get the same goal optimal point (3, 0) yielding the solution of  subproblem 
(1), (3) with the cost function (2) not represented in the optimal solution. 
The objective (2) is dissolved in the procedure of  the goal programming 
without any effect at all on the result, although it is present in the formulation 
of  the goal programming cost function (9). We note also that minimizing a 
norm of deviations is a kind of  scalarization that heavily depends on a 
definition of  the norm and does not mean any equilibrium among component 
deviations. 

Before clearing the situation, let us ask the question: is the problem (1), 
(2), (3) with two written objectives a double or a single objective problem? 

Case 1. Suppose that zl is revenue and z2 are expenses. Then, problem 
(1), (2), (3) is a poorly formulated single-objective problem with the profit 
function z=zl-z2=O.7x-3y as its natural scalarization and the optimal 
value z ° = 2.1 at the point (3, 0). 

Case 2. Suppose that zl is profit of  one division and z2 is loss of  
another division of  the same company. Then, the company can reconcile the 
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objectives with certain trade-off between two divisions which renders natural 
scalarization yielding again a single-objective problem. 

Case 3. Consider min(--Zl) =--x+2y in place of max Z 1 in (1), and let 
- z j ,  z2 be the expected collateral damage of two cities in two allied countries 
engaged in a conflict with a third country. Then, the magnitude of damage 
inflicted onto one city cannot be reconciled at the disfavor of another city, 
and the problem becomes essentially a double-objective problem with con- 
flicting objectives. A sensible approach to the solution is to assure the mini- 
mal equal deviation from the minimal expected damage for each city. 
Denoting this common deviation by 7/> 0, we have under constraints (3), 
with the use of the solutions of subproblems (1), (3) and (2), (3), 

3 -  r l < x - 2 y < 3 ,  for max zl, (10) 

0 .3<0 .3x+y<0 .3+  r/, for min Zz. (11) 

In Fig. 1, shaded areas denote regions where amount of damage has 
increased by 7/for both cities. Figure 1 is drawn in terms of max zl, min z2 
to facilitate comparisons with previous solutions. 

By inspection of Fig. 1, it is clear that, with increasing r/, there will be 
the first point of intersection of augmented shaded areas and this first point 
will be located on the x-axis. Letting y = 0, omitting trivial inequalities in 
(10), (11), and dividing (11) by 0.3, we get 

3 - 71 < x <  1 + 11/0.3 = I + 3.33q. (12) 

V 

o 

S 

Fig. 1. 
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A solution for (12) exists if and only if 

3 -  r/_< 1 +3.33r/, (13) 

that is, for I/_>0.46; and for I? =0.46, we have the first single point of 
intersection of augmented shaded areas, 

x* = 3 - 0.46 = 2.54, (t4) 

same as that obtained from (6). The minimal value of 77 = 0.46 is called the 
balance number, and the value x* = 2.54 corresponds to the minimal equal 
increase of damage related to each city, 

[Az~l = A(-zl)  = r/= 0.46 = Az2. 

The above example shows that there are two kinds of multiobjective 
(vector) optimization problems: 

(a) 

(b) 

problems with reconcilable objectives where scalarization is natu- 
ral and serves to rectify a poorly formulated vector optimization 
problem and turn it into an adequate single-objective problem; 
problems with nonreconcilabte objectives; here, scalarization is 
irrelevant and may only distort the original problem, replacing it 
by a new single-objective problem that may have nothing to do 
with the original problem to the point that certain objectives may 
totally disappear from the results, as was the case (7)-(9) in the 
above example. This justifies the necessity of developing a new 
approach to the solution of vector optimization problems with 
nonreconcilable objectives. 

2. Notions of Balance Number, Balance Point, and Balance Set 

The notion of balance numbers for conflicting objectives was first intro- 
duced in Ref. 25, pp. 138-139, and we briefly reproduce here some pertinent 
points. Consider continuous m-vector function f =  { J ] , . . .  , f ,}  defined on 
a compact robust set )~c  R n. Each component of f defines a separate optimi- 
zation problem, 

minf,.(x), xE)~, i= 1 . . . . . .  m. 

If we apply to those problems a set-to-set full global optimization 
method, such as the beta algorithm (Ref. 25, pp. 92-101) or the integral 
global optimization method (Ref. 26, pp. 17-20), then we obtain exact 
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(in the limit) or 0-precise setwise solutions, 

(c o, `(o.) c ° = rain f (x), 
xeY(  

.(o = { x e ` ( l f ( x )  = cO}, i= 1 . . . . .  m, (15) 

0 ~ o  o ( c . ,  X . 3  ° Crli- Ci ~ O, 

x.,-{xJIf ,(x)-ci<_o}, i=l . . . . .  m, (16) 

where 

c°i= m a x f  (x~ 
• , xEX~ J r ~  J" 

It may happen that the set `(o is a singleton, `(o = {xO}. It is important 
however that, for robust ,(, the set `(~i is also robust. Indeed, for the cubic 
algorithm, -° X ,i is a quasi-cubic set gT* (Ref. 25, pp. 43-47), which is obvi- 
ously robust. For the beta algorithm, we can take as a candidate for -o X 0; an 
appropriate quasi-cubic set/~k (robust) for sufficiently high index k. Such a 
set may contain infeasible points that can be eventually excluded by taking 
the intersection `(~i= Ok n . ( .  

Consider a vector global optimization problem, denoted briefly as 
rain(f, `(), with its corresponding partial solutions (15) and (16). 

Definition 2.1. A vector problem min(f,  `() is said to be balanced, if 
there is a nonempty intersection, 

` (o= '~ XO # (~ ; (17) 
i = 1  

otherwise, it is called unbalanced. 

Definition 2.2. The set ..(o of (17) is called the global optimal solution 
of a balanced problem min(f,  .(). 

Definition 2.3. Given 0 >0, a vector problem min(f,  `() is said to be 
o-balanced, if X °= ~ ,  but there is a nonempty intersection, 

- o _  [~ X ~ ; # ~  (18) X,7- 
i = l  

otherwise, it is called 0-unbalanced. 

Definition 2.4. The set X~ of (18) is called the O-optimal solution of 
an if-balanced problem rain(f,`() .  
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Clearly, every balanced problem is also q-balanced for any q >0, but 
not vice versa. For an q-balanced problem min(f, X), the values c~i, i= 
1, 2 , . . . ,  m, of (16) are upper bounds for q-optimal values of each subprob- 
lem min ( f ,X)  and may define the vector of global minimum values 

o _  o c , -  {c,;}, q > 0 given, for the vector problem min(f, .() depending on points 
- - O  contained in X , .  

If we take 

q > max max f (x) - rain min fi (x), (19) 
i x E X  i x ~ X  

then X~ =X, so that for such q every problem min(f, X) is q-balanced. This 
justifies the following definition. 

Definition 2.5. The quantity 

q0=min qlG#z_>0 (20) 

is called the balance number of the vector problem min(f, .(). 
The balance number represents a measure of conflict between compo- 

nents of the vector cost function f For nonconflicting f., the problem 
min(f, Y?) is balanced, q=0, which fact in general cannot be detected by 
point-to-point methods for a multiextremal problem. The importance of the 
notion of the balance number for multiobjective economic and engineering 
problems is dear. 

Example 2.1. Consider the multiobjective linear programming 
problem 

min x, min y, min z, (21) 

x+y+z=l, x~0, y20,  z20. (22) 

Here, f =  {x, y, z} and R c R ~  is the triangle in (22). Each single-objective 
problem has the solution 

s~=0, Y~={(x,y,z)eR~lx=O,y+z=l}=OX, (1, 2, 3), (23) 

where (1, 2, 3) means the circular permutation of (1, 2, 3) and (x,y, z) 
simultaneously. 

The vector problem is unbalanced since 
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However, each two-criteria problem is balanced and has the solution 

sl=0,  X'I= {(0, 0, 1)} = {x=y=0 ,  z= 1}, (1,2,3). (24) 

The balance mtmber of the vector problem is r/0= 1/3 and its 1/3-optimal 
global solution is 

X7/3 = {(t/3, 113, I13)}, with s~/3,i = 1/3, i=  1, 2, 3. (25) 

If we take in (21) 

min w = ) ~ x  + )~zy + Z~z, 

then for )~1 =,~2=23 = 1/3 we would have, due to (22), w= 1/3=const, so 
that X°() 0 =X, the entire triangle, and the point (25) cannot be located. If we 
take another choice of %l, L2, &3, then )~o(z) would be a piece of boundary 
~°(Z) c 0X of the set X in (22), whereas the point (25) is in the interior, 
)7 ~/~ c in t  X. 

This is a general phenomenon. A balanced multicriteria linear program- 
ming problem does not need scalarization and has its solution on the bound- 
ary of the feasible set. An unbalanced multicriteria linear programming 
problem may have its q-optimal solution in the interior of the feasible set. 
In general, it is not scalarizable, since any linear scalarization will have its 
optimal solution on the boundary of the feasible set. 

The common 17 in (16), (18) reflects the same deviation from the global 
minimum value allowed for all partial single-objective problems leading to 
the uniform suboptimal global solution (18) for the vector problem. Gen- 
eralization for different r/j is straightfolward. Denote 

r/= r/l+. • " +  rl, , ,  a i = r b / r l ,  

and replace 7/ in (16) by r/~=a~r/, allowing different deviations for each 
subproblem. Definitions 2.3, 2.4, 2.5 remain the same with some fixed pro- 
portion in allowable deviations given by the numbers aj_>0, Eai = 1. If 
certain r/i 0 = a~or / = 0 (always 11 > 0), this means that, for those cost functions, 
the exact global minimum value is required. 

A fixed proportion given by the numbers a ;>0 can also be removed. 
However in this case, the notion of the balance number introduced in Ref. 
25, p. 139, is insufficient and should be replaced by the notions of balance 
points and of the balance set. 

Definition 2.6. An m-tuple 1"/= {qj . . . . .  r/,,}, r/i>0 is called a balance 
point, if the intersection 

R~= (~ R ~ , ~  (26) 
i = !  

is nonempty and every intersection (26) with one r/f replaced by a smaller 
positive number is empty. 
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It is clear that substitution of  more than one 7/; by smaller numbers will 
also lead to empty intersection. However, certain r h can be made smaller at 
the expense of  some other r/i being greater. This leads to the notion of  the 
balance set. 

Definition 2.7. A set of  all m-tuples r~ satisfying (26), i.e., a set of  all 
balance points, is called the balance set. 

To compute the balance set, let us fix a balance point r~= 
{rh, r/2 . . . . .  r/,,} and a point x*e . (~ .  Due to (26), 

gt --O x e X  ~,, for all i =  1 , . . . ,  m; 

and since ..~o -o , are some partial sets as X , i  of  (16) but corresponding to 
different r/iS 17 =cons t  as in (16), at x* we have the inequalities 

f(x*)-c~<q~, i=1  . . . . .  m. (27) 

If  at least one of inequalities (27) were strict (nonsaturated), then we 
could decrease the corresponding r/i meaning that, in this case, the point ~/ 
would not be a balance point; see Definition 2.6. Thus, for a balance point 
~/, all relations in (27) are equalities, 

f(x*)-c°=rli, i=1  . . . .  ,m. 

Suppose that ~ is not an isolated point, and consider small admissible 
variations 5 f /=  {6q~ . . . .  ,5r/,,} within the balance set. Suppose that varia- 
tions 5~/ will produce small variations of 2(~ within ,~ leading to another 
point 

~=x* + SxeX°~+~c~. 

Suppose finally that every f~ is differentiable at x*eX. Then, in a 
neighborhood 

W,(x,)  = U 

we can write, for equalities in (27), 

Vf(x*)Sx= ~ [Of~(x*)/Oxj]Sxj= 6rh, i= 1,. . . ,  m. (28) 
j= l  

It may happen that, according to the problem under consideration, all 
5xj, x* can be excluded from the m equations (28) resulting in one or more 
differential relations in ~/-space yielding the balance set. If  those relations are 
integrable, then we obtain the balance set or balance surface in conventional 
analytic form. 
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Remark 2.1. I f  we treat (28) as a linear system with a fixed Jacobian 
matrix, then we obtain not the balance set but a small piece of  its linear 
approximation in a neighborhood ~ ( 0 )  of a balance point 0. 

To illustrate the procedure and possible pitfalls, consider again the 
above examples. 

In Example I. 1, we have, for (27), 

3 - z l  = 3 - x + 2 y =  rh, for max zl, (29a) 

z2 -O.3=O.3x+y-0 .3  = r/2, for rain z2. (29b) 

If  we formally take variations, we see that the Jacobian matrix is nonsingular 
so that 6x, 6y cannot be excluded, leading to nonexistence of a balance set. 
However, such solution is incorrect, since (28) is valid not for R but for 

U 

In our example, 

.X°oc {x, yt l <x  <<_3, y=O }, 

see Fig. 1, so that we have first to set y = 0 in (29) and then take variations, 
yielding 

- tSx = tSrh and 0.3Sx = 6//2. (30) 

Excluding 6x, we get 

0.3~rh + 802=0, 

yielding the integral 

0.3//1 + / /2=  b = const. (31) 

To determine the constant b, we note tha t / / j  = 0 corresponds to the point 
(3, 0) of global max zl. At this point, we have z2(3, 0) = 0.9; thus, 

//2 = z2(3, 0) - min z2 = 0 . 9 -  0.3 = 0.6. 

From (31) with//1 =0,  we have b=/ /2=0.6 ,  so that 

0.3//1 +/ /2=0.6.  (32) 

This calculation is valid for any AT~ from the segment [1, 3]; hence, we 
obtained the entire balance set, 

3//1 + 10//2=6, //1 >__0, //2>0. (33) 
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In Example 2.1, all partial minima are equal to zero, so that we have, 
from (21), 

x - 0 = 7 1 ,  y - 0 = 7 2  , z - 0 = 7 3 ,  (34) 

yielding 

6x = 871, 8y = 872, Sz = 8rh. (35) 

The Jacobian is again nonzero; however, from (22), we get 

~rl~ + 872 + t~73=,~x + @ + Sz=O, 

with the integral 

rh + 72 + 73 = b = const. (36) 

We can determine b from (24), where 

7t=72=0 and 7 3 = 1 - 0 = 1 ;  

thus, b = I and we obtain the balance set, 

/11 q'- 72 -1- 73 = l ,  71fl,3 >0. (37) 

If the balance set is known, then balance numbers can be trivially deter- 
mined. To calculate the uniform balance number 17o of (20), we set 7i = 70, 
i= 1 , . . . ,  m, and solve (33), (37) for 70. In Example 1.1, we get from (33) 

70 = 6 / 1 3  = 0 .46 ,  

as above. In Example 2.1, we get from (37)  

70 = 1/3, 

as above. To calculate the apportioned balance number, we set 7; = air/, 
a i>0  given, Za;= 1, and find 7 from the equation of the balance set. For 
example, from (37) we get 

17 = 1/Za i= 1, 

and solutions (24), (25) follow for corresponding ai. 
The balance set presents an important characterization of a multiobjec- 

tire problem. Of course, precisions r b > 0 are assigned on the basis of econ- 
omic or technical considerations and do not have to belong to the balance 
set which is usually unknown and difficult to determine. However, theoreti- 
cally the balance set represents a boundary; on one side of the boundary, 

- o _  the margins 7~ are insufficient and the problem is unbalanced, X ~ - ~ ;  on 
the other side, 7i are excessive, the problem is balanced, X~ ~ ~ ,  and every 
solution is inside certain margins 7i. 
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3. Solution of Nonsealarized Vector Optimization Problems 

Suppose that, for a given precision q > 0, the problem is balanced. The 
computation of J(~ by taking the intersection, as in (18), is too time consum- 
ing. Instead, certain modifications of the beta algorithm can be worked out 
to solve such problems. Note that the set J(~i is not a singleton; thus, an q- 
optimal point x~)?~i found by a point-to-point descent method may not be 
q-optimal with respect to J), j#i ,  implying xtJ(~.  

3.1. Sequential Procedure. Take the first cost functionJq(x) and apply 
the beta algorithm to obtain the first q-optimal solution J(~l in the form of 
a quasi-cubic set/~k which can be determined by the method described in Ref. 
25, pp. 43-47, with additional exclusions by a distinction operator acting 
independently in the framework of the beta algorithm. Replacef~(x) byf2(x) 
and again apply the beta algorithm, now to the set/~k, which we shall denote 

- - o  /~,t, to emphasize its relation to X, I ,  

X.l ~ B k n X - B , I  cTX. 

The set B.1 may contain infeasible subsets which do not hinder the process 
and can be later excluded by deletion and distinction operators. The second 
run, withfz(x) as the cost function, yields a quasi-cubic set B,2 c_/~.l. Apply 
again the beta algorithm to the set/~.2, with )~(x) as the cost function, to 
get the set B.3, etc., until the last cost function f.,(x) has been applied to 
obtain the set/~.,,,. By construction, all those sets are nested, 

It is clear that 

J?~ =_~,,. c~.g. (38) 

The inclusion (not the equality) in (38) is natural, due to the action of 
the beta algorithm, specifically, of its deletion operator. Now, it remains to 
clear the intersection, which can be done by further application of distinction 
operator; see Ref. 25, pp. 83-92. In reality, if we need just one point x°~ 
- - o  X ~, such point can be located by picking points in B,,, at random and 

checking their membership in )7 until one point fits in. 

3.2. Rotational Procedure. It may be advantageous to install a func- 
tion rotator within the beta algorithm in the following way. In the first 
iteration, make deletions by applying all functions f l (x) , . . .  , f , (x)  one by 
one, then proceed with further iterations, applying all cost functions in turn 
at each iteration. This constitutes a version of the multicriteria beta algo- 
rithm as this procedure can be applied to obtain the exact solution j~o of 
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(17), in the limit, for 1/=0. Note that, if for at least one i in (18) the set 
X ° is a singleton, then it trivially yields the solution of a balanced vector 
optimization problem which can be found also by point-to-point methods. 

It is worth noting that the sequential procedure, in general, cannot yield 
.~o, not only computationally (impossibility to obtain X~ in iterations) but 
also theoretically, as the first exact set R~ of global minimizers may prove 
to be nonrobust, preventing further application of the beta algorithm to 
minimize over R~ with respect to J~(x) . . . . .  f , , ,(x).  

3.3. Windmill Procedure. The functions jq (x ) , . . . , f~ (x )  may be 
different in the amount of computations needed to obtain their values and 
also in the estimates of their respective constants Lz . . . .  , L , , .  This makes 
it more effective to use an adaptive controller instead of a simple function 
rotator• The structure of such a controller depends on given cost functions 
f (x) ,  i=  1 . . . .  , m, and cannot be fixed in advance. The controller makes 
automatic replacements of cost functions in the iteration process according 
to some acquired experience, providing a vast area of creativity for the user. 

3.4. Parallel Procedure for Unbalanced Problems. Suppose now that, 
for given precisions r/i> O, the vector optimization problem is unbalanced. 
Then there arise two problems, one of finding the balance number q0-r/ i ,  
i = 1, . .  m, and another one of finding the -o •, set X ~0 which may prove to be 
a singleton. Solving these problems presents much difficulty, since pictures 
like Fig. 1 are generally unavailable. Even the notion of a solution may vary 
in this case. 

One possible approach is as follows. Apply the beta algorithm to each 
of m subproblems in parallel, but with different r/i> 0 and the same trans- 
lated grid generator. An r/i-solution for each subproblem will be obtained 
in a finite number of iterations (see Ref. 25, pp. 43-47 and 92-95) and will 
represent a quasi-cubic set. Due to the common grid generator, the task of 
determining the intersection 

.~ *=  'N X°o,, (39) 
i=l 

analogous but not identical to (18), is trivial and X* will consist of none, 
one, or several subcubes singled out from solution sets X~,. I f . (*  ~ ~ ,  then 
the problem is actually r/*-balanced; this is not known in advance and 11"= 
{r/l . . . .  , r/m} is not necessarily a balance point• 

If X* = ~ ,  then the problem is r/*-unbalanced. For this eventuality, we 
have to retain in the memory several previous iterations (otherwise, we 
would have to repeat the solution again), which contain quasi-cubic sets 
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corresponding to greater r/i; see Ref. 25, pp. 43-47. Checking the intersec- 
tion (39) in backward order will always solve the problem. The first non- 
empty intersection 

m 

-'(~ = (']/(o, ~ ~ (40) 

yields the solution set and a point 

f/= { a x r h , . . . ,  a,,r/m), ai>_l, i= 1 , . . .  ,m, 

for which the problem is f/-balanced. This semiautomatic procedure 
augments all r/£ according to a fixed common grid generator; see Ref. 25, 
pp. 43-47. 

Obviously, the set X~ can be further refined to diminish each aiql or a 
controller can be introduced to modify the iteration process and obtain some 
smaller rh, i= 1, 2 , . . . ,  k, k<m, for certain objective funetionsfi deemed to 
be more important than others. A version of such selective procedure is 
described in Ref. 25, pp. 143-145. 

4. Discussion and Conclusions 

A new approach to multiobjective optimization is presented. Scalariza- 
tion is retained for cases of poorly formulated problems in order to rectify 
the formulation by the introduction of a proper single objective instead of 
several objectives unthoughtfully put forward at the first glance 
consideration. 

For cases with essential and independent objectives, it is shown that 
scalarization does not reconcile the objectives and may have nothing to do 
with the vector problem. In such cases, scalarization serves only to provide 
for the possibility of mathematical solution by outdated point-to-point opti- 
mization methods. 

In contrast, with the application of set-to-set full global optimization 
methods, scalarization is needless and vector problems have natural and 
economically sensible solutions which correspond to a measure of satisfac- 
tion provided for each of the conflicting objectives. This measure of satisfac- 
tion can be specified in advance through the new notions of a balance point 
and of the balance set introduced in the paper. 

Numerical methods are presented for the solution of vector optimiza- 
tion problems without scalarization. The solution thus obtained represents 
a point or a complete set Of equioptimal points corresponding to the balance 
number or to a prespecified balance point ¢/. 
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A scalarized objective function may also imply certain balance point f/, 
though unknown in advance, and it might seem that the introduction of 
balance points amounts to a sort of scalarization. That this is not the case 
was shown in Example 2. I where no linear scalarization existed for the 
balance number 770 = 1/3. 

For a given balance point 0, a corresponding scalarized objective may 
not exist within a certain class of functions. Even if it exists, it may be 
more difficult to find one than to solve a vector optimization problem. The 
application of a full global optimization method (Refs. 25, 26) in parallel to 
all component scalar subproblems renders the global optimal solution of the 
vector problem automatically for any balance point 0 specified in advance. 
Each coordinate r/i of  the balance point f/= { r/l,. • . ,  r/,,} represents a meas- 
ure of achievement of a certain objective within the equilibrium defined by 
the balance set. This set corresponds to the best possible solutions of the 
vector problem with conflicting objectives. If given margins r/e are not equal 
to coordinates of a balance point, then it is either impossible to find a 
solution within given r/e, or certain r/~ can actually be improved. This demon- 
strates the importance of the balance set which, if presented to decision 
makers, gives a clear picture of what is possible to achieve in the situation 
with several conflicting objectives. 

The balance set is difficult to determine, even for multiobjective linear 
programming problems. Fortunately, we do not need the balance set for the 
solution ofa  multicriteria optimization problem. Depending on the complex- 
ity of constituent subproblems min ( f ,  X), i=  1 . . . . .  m, there may be two 
cases. 

Case 1, Ifsubproblems min(f., ]~) are easy to solve, they can be solved 
first and partial optima c~ become known. Then, if R ° of (17) is empty, 
certain margins r/* can be specified in advance for each objective, no matter 
whether or not they are equal to coordinates of a balance point f/= 
{ r h , . . . ,  r/m}. If the vector problem happens to be balanced for given 
{ r/*}, which is the case if and only if there is f) = { r/i} such that I?* < rb, for 
all i= 1 , . . . ,  m, then a solution is found by the methods described above. If 
the problem is unbalanced for those {r/*}, then the first three procedures 
(designed for balanced problems) will not be finite, and after some iteration 
there will be no visible improvement in the values of some partial minima. 
This signals that the problem is unbalanced and appropriate r/* should be 
increased. Nevertheless, if actually attained q; are acceptable, then the prob- 
lem is solved and those { r/;) represent an approximation to a balance point 
fl. This balance point presents actual margin distribution among different 
objectives and is generated by a particular function controller applied in the 
algorithm. If such balance point is unacceptable, then the computations 
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should be restarted with the fourth algorithm (parallel procedure for unbal- 
anced problems). 

Case 2. Preliminary solution of subproblems ra in(f  ,X)  may be 
costly, and it is not required for the solution of a vector problem. Without 
the solution of subproblems min(jS, X), the partial minima c~ are unknown 
and margins O* cannot be assigned. In this case, it is risky to apply proce- 
dures with a specified function controller (which are good for balanced 
problems). The parallel procedure should be applied, and the decision to 
accept actually produced c,, for a nonempty X* of (39) should be made in 
the process of iterations. Once all c,, are accepted, the process is terminated 
and the problem is solved. In this case, theoretical partial minima c o remain 
unknown as well as precision s r/i of the values c~,, c,~- c~ ~ rli. However, the 
set X* and the values c,~ are produced by the algorithm yielding a global 
optimal solution (_c~,, X*) of the vector problem without solving component 
subproblems. If X* is not a singleton, then the solution can be continued 
and the values c,, can be further improved. 
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