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On the ProbLem of Optimizing 
Contact Force Distributions I 

A .  K L A R B R I N G  2 

Communicated by E. J. Haug 

Abstract. The problem of optimizing the distribution of contact forces 
between a rigid obstacle and a discretized linear elastic body is con- 
sidered. The design variables are the initial gaps between the potential 
contact nodal points and the obstacle. Two different cost functionals 
are investigated: the first reflects the objective of minimizing the 
maximum contact force; the second is the equilibrium potential energy. 
Contrary to what has been claimed in the literature, it is shown that 
these cost functionals do not give, in general, the same optimal design. 
However, it is also shown that, ira certain frequently realized assumption 
is met by the system flexibility matrix, then this equality does hold. 

The rain-max cost functional is nonconvex and nondifferentiable, 
and Clarke's theory of nonsmooth optimization is used to establish a 
sufficient optimality condition. Investigating its consequences, both 
necessary and sufficient optimality conditions can be given. The equili- 
brium potential energy cost functional, on the other hand, turns out to 
have the remarkable porperties of differentiability and convexity. 

Key Words. Contact problems, optimal shape design, optimality condi- 
tions, nondifferentiable optimization. 

I. Introduction 

Consider a linear elastic body,  fixed over a part  of  its boundary,  while 
another  part  may come into fricfionless contact with a rigid support. This 
paper  is concerned with the optimal shape design problem of finding the 
best shape of  the obstacle. Similar problems have been considered in 
Conry and Seireg (Ref. 1), Haug and Kwak (Ref. 2), Benedict and Taylor 
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(Ref. 3), Benedict (Ref. 4), Kikuchi and Taylor (Ref. 5), Benedict, 
Sokolowski and Zolesio (Ref. 6), Bends0e and Sokolowski (Ref. 7), and in 
the recent monograph by Haslinger and Neittaanmfiki (Ref. 8). The 
definition of "best," i.e., the choice of cost functional, differs between these 
publications. In the earlier works (Refs. 1 and 2), where discrete or discret- 
ized bodies are treated, the objective was to minimize the maximum contact 
force (or stress). However, such cost functional is nondifferentiable, and 
mainly because of this difficulty, Benedict and Taylor (Ref. 3) suggested to 
minimize the equilibrium potential energy of the system. Intuitively, they 
argued that such cost functional should give the same result as the min-max 
one. This conjecture seems to have been accepted without further investiga- 
tion. In this paper, we treat this issue in some detail for the case of discrete 
or discretized bodies, when the design constraint is of volume or 
isoperimetric type. It is shown that in general the conjecture of Benedict 
and Taylor is false. However, under a certain condition on the flexibility 
matrix of the elastic body or structure, it can be shown to hold. The 
mechanical interpretation of this condition is that, when equal contact forces 
are applied to all contact nodes, no associated (work conjugate) displace- 
ment is negative. Such a condition can be expected to hold for many practical 
situations, notably, for Hertz-type contact problems (the elastic body can 
be well approximated by a half-space). 

Following this introduction, the discrete contact problem is introduced 
as in Klarbring (Ref. 9) and some useful quadratic programming folanula- 
tions are given. Next, the two optimal design problems arising from the use 
of the two different cost functionals are treated separately. 

Section 3 is concerned with the problem of minimizing the maximum 
contact force [Problem (M)]. The existence of a solution is first shown. 
Then the theory of nonsmooth and nonconvex optimization developed by 
Clarke (Ref. 10) is used to establish a sufficient optimality condition. 
Interpreting this condition, a useful result is established: for an optimal 
design, the equilibrium configuration is such that all potential contact nodes 
are actually in contact with the obstacle. Using the restriction inferred by 
this result, the problem can be restated as a linear programming problem, 
and necessary and sufficient optimality conditions can be established. 

In Section 4, the problem of minimizing the equilibrium potential 
energy is treated. It is first noted that it can be equivalently stated as the 
problem of maximizing the equilibrium reciprocal energy [Problem (P)]. 
The reciprocal energy is the energy associated with a formulation of contact 
problems in terms of contact forces; see Ref. 9. This problem turns out to 
have two remarkable properties: firstly, the cost functional is differentiable 
as a function of the design, despite the fact that the solution of the state 
problem is not; secondly, it is concave. The latter property enables us to 
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set up a necessary and sufficient optimality condition that, in fact, can be 
solved in closed form for the optimal design. 

In Section 5, the proof  of  equivalence of the two problems is given; 
in Section 6, a modification of  the design constraint is discussed. In Section 
7, some conclusions and comments  end the paper.  

Notation. The paper  uses the following notations for subvectors and 
submatrices: if  a vector x is of  order n, I c { 1 , . . . ,  n}, then xx represents 
the subvector of  x consisting of  all elements x~ for i ~ I ;  if a matrix A is of  
order n x m, I c { 1 ,  . . . ,  n} and J c { 1 , . . . ,  m}, then Ax. represents the 
submatrix of  A consisting of all the rows As. for i 6 l, while A.s  represents 
the submatrix of  A consisting of  all the columns A 9 for j c I ;  finally, 
AI j  = (AI.) . j .  

2. State Problem 

Consider a discrete or discretized elastic body. Its configurations are 
represented by a vector u of  nodal  displacements and the forces acting on 
it by a vector F. Assume that the structure is free of  mechanisms so that u 
and F are related by a symmetric positive-definite stiffness matrix K, i.e., 

F = Ku.  (1) 

Furthermore,  assume that a vector w of contact displacements may be 
derived from the nodal displacements as 

w = C l u ,  (2) 

where C1 is a kinematic t ransformation matrix. Introduce also a matrix C2 

such that [C'I, C~]' is nonsingular. The superscript t means transpose of  
vector or matrix. A new displacement vector u2 is defined by 

u2 = C2u. (3) 

For vectors P of  contact forces and F2 of  prescribed forces, work conjugate 
with w and u2, we then obtain 

F C~IP ' (4) = + C 2 F  2 . 

Next, frictionless contact conditions are introduced. Let g be a vector 
of  gaps between contact boundary  nodes and the rigid obstacle. We then 
have the following complementar i ty  condition 

w<_g, P<-O, P ~ ( w - g )  = 0. (5) 
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It can be seen (Ref. 9) that (I), (2), (4), and (5) represent the necessary 
and sufficient Kuhn-Tucker conditions of the following quadratic program 
(QP): 

Up(u) = min{Hp(u*)[u* ~ Kp}, (6) (P) 
where 

l-Iv(u) = 1/2utKu - F~C2u (7) 

is the potential energy function and 

top := {u I c ,  u <-g} (8) 
is the set of kinematically admissible displacements. 

Problem (P) is a formulation of the frictionless contact problem in 
terms of displacements. It will next be shown that a QP problem in terms 
of contact forces may be derived. From (I), (2), and (4), with 

A = C1K-tC'l ,  w*= C1K-1C'zF2, 

we have 

A P  = w - w*. (9) 

Then, (5) and (9) represent the Kuhn-Tucker conditions of the following 
QP: 

FIR(P) = min{FIR( P*) ] P* ~ KR}, (10) (R) 
where 

FIR(P) = 1 /2PtAP + PS( w * - g ) ,  (11) 

KR:= {PIP<_0}. (12) 

This is the so-called reciprocal formulation of the contact problem; see 
Refs. 9 and 11-13. 

It may be seen (Ref. 9) that (P) and (R) are dual problems in the sense 
of the duality theory of QPs. We have the following result. 

Proposition 2.1. Problems (P) and (R) have unique solutions u and 
P which are related by the equation 

u = K-1 (C~P+ C~F2). (13) 

For the solutions u and P, it further holds that 

Hp(u) +He(P)  + 1/2F~CzK -1 C'2F2 = 0. (14) 

For completeness we write down explicitly the Kuhn-Tucker conditions 
of problem (R), 

A P + w * - g < - O ,  P < - - O ,  ( A P + w * - g ) ' P = O .  (15) 

This is a linear complementary problem (LCP), so the existence of a unique 
solution can also be inferred from the theory of such problems. 
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3. Problem (M): Contact Force Minimization 

A natural objective when choosing the shape of contacting bodies is 
to minimize the peak contact force (or stress in the continuous case, see 
Section 7). This problem was considered in Refs. 1, 2, and 6. Here, we will 
consider the case where the shape of the rigid obstacle is altered while the 
deformable structure is fixed, meaning that the design variable is g. Since 
(R) is uniquely solvable, the function g--~ P(g) is well defined. As cost 
functional, we consider the max function 

JM(g) = max{-Pi(g)  I 1 <- i--- n}, (16) 

where n is the number of contact points and Pi is the ith element of  P. 
Obviously, if the design is not subjected to restrictions, the minimum value 
of  JM will be zero. Relevant design conditions are 

g1<-g<-g2, (17) 

u'~= E g,_< v, (18) 
i=t 

where g~ and g2 are fixed vectors, V represents the volume of the gap 
between the structure and the rigid obstacle, and U' = ( 1 , . . . ,  1) is a vector 
of ones. Note that V may be negative. 

In the present study, our main concern is with the constraint (18). In 
Section 6, a discussion is given concerning modification of the results when 
(17) is imposed. 

Let K be the closed convex set defined by (18). We then state our 
problem (M) formally: find g ~ K such that 

(M) JM(g)=min{JM(g*)jg*~K}, (19) 

The functions g ~ Pi(g), 1 -< i --- n, are not differentiable due to the unilateral 
constraint P ~ KR. However, they are directionally differentiable and Lip- 
schitz continuous (Refs. 14 and 15). The latter implies that also JM is 
Lipschitz continuous (Ref. 10). Furthermore, Pi(g) is in general nonconvex 
(even nonmonotone) as it is understood from an elementary example given 
by Cottle (Ref. 16). Thus, JM will in general be nonconvex, as well as 
nonsmooth. However, it is possible to assure the existence of a minimum 
value. 

Theorem 3.1. Problem (M) has a solution. 

Proof. Problem (M) is equivalent to the problem of finding /3 ~ R 
such that 

/3 =min{B*[13* + P~(g*) >_O, l <_ i <_ n, g* ~ K}. 
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Owing to (15), this problem can be rewritten as a complementary program- 
ming (CP) problem, Refs. 17 and 18: 

min /3, 

s.t. fl+P~>-O, t<-i<-n,  

Utg < _ V, 

A P + w * - g < - O ,  P<-O, 

P ' ( A P +  w * - g )  =0. 

Next, let L and M be disjoint index subsets of the set {1 , . . . ,  n}. Then, the 
CP problem can be represented as 2" auxiliary linear programming (LP) 
problems, defined as 

rain /3, 

s.t. /3+P~>-O, l<--i<-n, 

Utg -< V, 

PL <- O, A L . P  -- gL + w* = O, 

PM =0, A M . P - g M + w * ~ < - O .  

Not all the auxiliary problems have feasible solutions. However, at least 
one such problem has a solution: fix an admissible g and solve (15) to get 
the corresponding sets L and M. Furthermore, all optimum values are 
bounded below by zero. Thus, the solution av(M) follows by comparing 
the finite solutions of a finite number of LP problems. [] 

The idea of representing problem (M) by means of auxiliary LP 
problems can be made the basis of algorithms for its solution (Ref. 2). 

The solution need not be unique, as is demonstrated by the following 
example. 

Example 3.1. 

A= -1 

and 

Let 

-11] , w*=O, 

(a) gt + g2 < - V, 

where V<0. Lemma 3.1 will show that, if strict inequality holds in (a) at 
a minimum point of JM, then P = 0 at that point. On the other hand, from 
(15) it is seen that P =0 contradicts V<0. Thus, we can consider only the 
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Spring model representing the flexibility matrix of Example 3.1. The spring constant 
is k = I. The structure is shown in the unstressed configuration. 

case where (a) holds as an equality. The functions g ~ P~(g) are then given 
by 

p(g)t = (1I, V + g 2 )  , if V+g~ <--O, 

P(g) t=((V-g2) /2 ,0) ,  if V + g 2 >  0. 

Then, any gl-= V - g 2  and ga with 0-< g2 ~ - V  is an optimal solution such 
that JM = -  V. This problem may be represented by the spring model of 
Fig. 1. 

Next, we want to find necessary conditions for a point to be a local or 
global minimum of J~t. Since both the max function and P~ are nondifferenti- 
able functions, this is not a standard problem. However, the theory 
developed by Clarke and summarized in Ref. 10 provides a useful tool for 
its solution: in our notations, the corollary of Proposition 2.4.2 in Ref. 10 
reads as follows. 

Corollary 3.1. 
above) and attains a minimum (local or global) over K at g. Then, 

0 ~ OJM(g)+ NK (g). 

Here, NK(g) is the normal cone operator defined by 

I { x c R " t x t ( f - g ) < - O ,  V f ~ K } ,  if g~  K, (21) 
NK (g) := [25, i f g c K ,  

and OJM(g) is the generalized gradient of Clarke (Ref. 10). I f  JM is convex, 
the generalized gradient coincides with the subdifferential of convex analysis 
(ReK t0). To present the generalized gradient, we first note that Clarke's 
Proposition 2.3.12 gives 

OJM(g) c CO{-OPi(g)[ i ~ M(g)}, (22) 

Suppose that JM is Lipschitz (as was already shown 

(20) 
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where co stands for the convex hull and M ( g )  is the set of indices i for 
which J ~ ( g )  = -P~(g ) .  Next, we will use Theorem 2.5.1 in Ref. 10. Let Ily 
be the set of  points where P~ fails to be differentiabte (which can be shown 
to be of measure zero when P~ is Lipschitz), and let S be any set of measure 
zero (which can of course be the empty set). Consider any sequence gr 
converging to g while avoiding points belonging to f~y c~ S and such that 
the sequence 7P~(gr) converges. Denote by lim 7Pi the set of all such limits. 
Then, 

OPt(g) = co{lim VP~}. (23) 

To give a more explicit expression for (23), we will utilize the formulation 
(15) of Problem (R). For a given g, the unique solution P introduces the 
three index sets A, B, C defined by 

i ~ A ¢:~ Pi<0 ,  A i . P  - gi + w* = O, 

i ~ B  ¢::> P~=0, A ~ . P - g ~ + w * = O ,  

i ~ C cr~ P~ = O, A ~ . P -  gi + w* < O. 

(24a) 

(24b) 

(24c) 

A sensitivity analysis (Ref. 14) shows that Pi are differentiable when B = •. 
Furthermore, it turns out that lim VPi includes only a finite number of 
elements which can be produced by including in all possible ways the 
indices of  B in A and C; see Haslinger and Roubi~ek (Ref. 19). That is, 
letting 

I = A w B  and J = C ~ B \ B ,  

where/~ c B, and requiring that 

A t . P  - gx + w* = O, P j  = O, 

gives 

P, = ( A H ) - I ( g ,  - w*) ,  

which means that 

l i m r c ' p i = { x l x ' = ( ( A n ) ; l , 0 ' ) ,  if ie  I;  x = 0 ,  if i e J } ,  (25) 

where I and J include complementary subsets of B in all possible ways as 
indicated above. 

Finally, to write condition (20) explicitly, we characterize the normal 
cone. According to well-known results of convex analysis, we have that, if 
g e K ,  

NK (g) = {x = U/a. j/a. --> O,/x(Utg - V) = 0}. (26) 

If  g¢~ K, the normal cone is, according to (21), the empty set. 
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Condition (20) states that there exists an etement x ~ OJ~a (g) such that 
- x  ~ NK (g). This means that, at a minimum point of  J, there exists an 
element of  0JM(g) that is equal to - /zU.  We have the following necessary 
optimality condition. 

Theorem 3.2. At a design where JM attains a minimum over K, there 
exists a multiplier ~ >-0 such that 

l zU~co{xlx  t = ((Au)  ~], 0~), i f i ~  I;  x =0 ,  i f i ~  J;  i~ M(g)},  (27) 

where i, I, and J take all possible values. 
Two distinct cases arise, as reflected by the following two corollaries. 

Corollary 3.2. If  (27) holds with/z = 0, then A = Q in the correspond- 
ing equilibrium state. 

Corollary 3.3. If  (27) holds with t~ > 0, then C = Q in the correspond- 
ing equilibrium state. 

Corollary 3.2 holds, since the diagonal elements of  (Axx)-~ are nonzero. 
As a consequence of  these results, we have that A # O implies C = Q, and 
C # Q implies A = @. 

Note that A = ~Zi corresponds to an equilibrium state with zero contact 
force. C = O means that, for the optimal design, the equilibrium state is 
such that all contact nodes are in contact. 

The next theorem for some cases limits the set of  possible minimizers. 
We first state two lemmas. 

Lemma 3.1. If  JM attains a minimum at an interior point g of  K, then 
P (g )  =0.  

Proofl That g is an interior point of  K means that U'g < V, which by 
(26) implies /z = 0. Then, the result follows from Corollary 3.2. [] 

Lemma 3.2. If U'w* > V, then for all g ~ K, P(g) ¢: O. 

Proof. Assume that P(g)=0,  which by (15) implies w*_<_g. That is, 

U'w*<- U'g-< V, 

and we obtain a contradiction. 

Theorem 3.3. Under the assumption of  Lemma 3.2, any minimizer of  
JM iS such that A # Q ( 3  C = Q), i.e., P ~ 0, and J~4 attains no minimum 
at interior points. 
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Under the assumptions of  Lemma 3.2, this theorem tells us which one 
of  the 2" LP problems mentioned in the proof  of  Theorem 3.1 actually gives 
the solution. Since LP problems are convex, from the standard theory (see, 
for instance, Ref. 20) one obtains necessary and sufficient conditions. 

Theorem 3.4. Let the assumption of  Lemma 3.2 hold. Then, g is a 
solution of  Problem (M) if and only if there exist/z -> 0 and A2 >-- 0 such that 

/~U ~ co{A7~ [ i c M(g)} - A-~).2, 

A P  - g + w* = O, g t g -  V = O, 

P <. O, A~P = O. 

Proof. 
conditions of  the obtained problem are 

1 - A ~ U = 0 ,  

-A1 + A2 + AA3 = 0, 

/ x U -  A3 = O, 

g >- O, Utg _< V, /x(U~g - V) = O, 

A,_>0, Ufl+P>_O,  A',(U/3 + P)  = 0, 

A2--O, P--<O, A~P=0,  

A P - g  + w* =O. 

Taking account of  Theorem 3.3, the theorem then follows. 

Take M = Q  in the proof  of  Theorem 3.1. The Kuhn-Tucker  

[] 

A related intuitively obvious result that nevertheless should be explicitly 
stated is the following theorem. 

Theorem3.5. I fU 'w * -  V, then  any g ~ K such that  w* <- g is a sotut ion 

of  Problem (M) and corresponds to P = 0. 

Proof. That such g gives P =  0 is obvious from (15). Since JM->0, it 
is a solution if it exists. This, however, follows by taking g = w* ~ K. [] 

Note that Theorem 3.5 does not exclude the possibility of  local 
minimizers such that P ( g )  ~ 0 even if the assumption is satisfied. To show 
such a property, we introduce an assumption on the matrix A, which is 
likely to hold in many practical situations. 
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Assumption A1. 
positive; that is, 

• A u > 0 ,  
i=l 

The sum of the elements of each column (or row) is 

Y j ~ ( 1 , . . . ,  n) ~ A U > 0  ~ U t A > 0  '. 

Theorem 3.6. Let Assumption A1 hold. Then, the following two situ- 
ations never occur simultaneously: 

(i) JM has a minimizer gl such that A # 0 ,  i.e., P(g~)~-O. 
(ii) JM has a minimizer g2 such that A = 0 ,  i.e., P(g2) -"--O. 

Proof. According to Lemma 3.1, situation (ii) implies that 

Utw * -< V. (28) 

On the other hand, from (15), situation (i) means that, since A # O implies 
C = O ,  

U~AP+ Utw * = Utgl. (29) 

Also, Lemma 3.1 implies Utg~ = V, which together with (28) and (29) gives 

UtAP >- 0 

in situation (i). However, under Assumption A1, only P = 0 is compatible 
with this inequality, which contradicts A # 0 .  [] 

In Section 5, it will be seen that Assumption A1 leads to even stronger 
results. In fact, the convex set of solutions of Theorem 3.4 turns out to 
consist of one point only, which can be explicitly given. 

Theorem 3.7. Under Assumptions A and that of Lemma 3.2, Problem 
(M) has the unique solution g which corresponds to 

P = U( V -  Utw*)/U'AU = A-L(g -  w*). 

Proofl This result follows from Corollary 4.2 and Theorem 5.1. [] 

4. Problem (P): Minimization of Potential Energy 

Basically, since (16) is nondifferentiable, Benedict and Taylor (Ref. 3; 
see also Haslinger and Neittaanmiiki, Ref. 8) have suggested to use as cost 
functional the potential energy in equilibrium instead of  (16), i.e., 

Y,,(g) = n,,(u(g),  g), (30) 
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where g ~ u(g) is the well-defined function given by the unique solution 
of (6). Remarkably, Jp(g) turns out to be differentiable (Ref. 8) despite the 
fact that g ~ u(g) is nondifferentiable. 

Here, we will not consider (30) directly, but instead base our develop- 
ment on the reciprocal formulation (10). Due to relation (14), minimizing 
Jp(g) is equivalent to maximizing 

Jp(g) =IIR(P(g), g) (31) 

as was previously noted by Kikuchi and Taylor (Ref. 5). Thus, we consider 
the problem of finding g c K such that 

(P) Jp(g)=max{Jp(g*)lg* e K}. (32) 

Note that, although (P) can be expressed as a saddle-point problem, 
the existence of a solution does not follow from the general theory of 
Eketand and Temam (Ref. 21), since K is unbounded and the functional 
does not have the proper growth properties. Similarly, the theory in Ref. 8 
demands that K be bounded. However, we will see that the solution can 
actually be constructed explicitly. 

We now show that Je is differentiable. Denote by 

P ' =  lim [P(g+~,t)-P(g)]/t (33) 
t . .~O + 

the directional derivative of P(g) at the point g in direction g. The directional 
derivative of Jp becomes 

Jrp=P'AP'+(w*-g) 'P'-P'~,=(AP+w*-g) 'P'-Pt~, .  (34) 

Now, if i ~ C, then obviously P~ = 0; and if i ~ A ~ B, then from (24) 

(AP + w*-g)i  = O. 

Thus, we conclude that Jp is differentiable and that 

VJp(g) = -P(g).  (35) 

Standard theory of constraint maximization [or the equivalent of (20)] gives 
the following optimality condition. 

Theorem 4.1. At a point g ~ K where Je attains a maximum, there 
exists a multiplier/2--> 0 such that 

~ U = - P ( g ) .  (36) 
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Corollary 4.1. An optimal solution of (P) corresponds to a uniform 
distribution of  contact forces. 

Equation (35) is also the key to the proof  of concavity of  Jp. 

Theorem 4.2. Je is concave. 

Proof. Set P * =  P(g*) and P =  P(g). Then, 

IIR( P, g*) ->FIR(P*, g*). 

Invoking the explicit form of  IIn,  one gets 

I]R( P, g) - P ' ( g * -  g) ~ lIn( P*, g*), 

and using (35) and the definition of Jp, one obtains 

JP(g) + VJP (g)t (g * - g) -> Je(g*). 

For a differentiable function, this inequality defines concavity (see, for 
instance, Ref. 20). E] 

Corollary 4.2. The following conditions are necessary and sufficient 
for a point g ~ K to be a solution of  Problem (P): 

/2->0, / 2 (U 'g -  V ) = 0 ,  (37a) 

/2U = -P(g) .  (37b) 

This result allows us to construct the solution explicitly. 

Corollary 4.3. If  U'w* > V, then J,,, has only one maximizer g, which 
is such that 

P = - f l U  = U( V -  U'w*)/U'AU = A-~(g - w*). 

Proof. From Lemma 3.2, we see that t2 > 0, meaning that U'g = V at 
a maximizer. In a neighborhood of  a solution where /2 > 0, the function 
g ~ P(g)  can be represented as 

P(g) = - a - l ( w * - g ) .  (38) 

Then, taking (36) into account, the result follows. [] 

Theorem 4.3. If V<-Utw *, then a solution of  Problem (P) exists, 
corresponds to P = 0, and is given by any g ~ K such that w* -< g. 

Proof. Assume that there are maximizers such that P # 0, i.e.,/2 > 0. 
From Corollary 4.3, we see that this leads to V > U ' w * ,  so we get a 
contradiction. Existence follows by taking g = w* ~ K and the characteriz- 
ation w*_<.g from (15). [2 
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Example 4.1. This is Example 3.1 revisited. With the data of Example 
3.1, the unique maximum point of Jp is gt = ( V, 0), corresponding to P = U V. 

5. Comparison of Problems (M) and (P) 

When comparing the two cost functionals, one notices that by definition 
JM cannot give an optimal design such that the related contact forces have 
greater magnitude than the ones given by J, .  On the other hand, Jp gives 
a uniform distribution of contact forces that might be preferable from the 
point of view of applications. In this section, it is shown that, in important 
cases, the two cost functionals actually give the same result, so the uniform 
force distribution is the one with lowest maximum. However, we also show 
that this equality does not hold generally. Denote by gM an optimal design 
given by JM ; correspondingly, denote by gp an optimal design given by Jp. 
By definition, 

-P i (gM)<--Pi (gp) ,  l<.i<-n, (39) 

and from this it follows that 

max{-Pi(gM ) + Pi(gp) l l <_ i < _ n}_<0. (40) 

Example 3.1 has shown that, in general, equality does not hold for all i in 
(39). Nevertheless, it seems to indicate the possibility of an equality for 
some i and thereby the conclusion that the inequality in (40) can be 
substituted for an equality. However, the following example shows that 
such a proposition is false. 

and 

Example 5.1. Let 

W* ----- O, 

gl+g2 ~ - V<0. 

As concluded in Example 3.1, when V < 0 it is necessary to consider equality 
only in the design constraint. The functions g ~-~ P~(g) are given by 

P ( g ) ' = ( 2 V - g l ,  5 V - 3 g ~ ) ,  if 5 V / 3 ~ g l ,  

P(g) '  = (g~/5, 0), if 5 V/3 > gin. 

Thus, the optimal solution of Problem (M) is 

g 1 = 5 V / 3 ,  g2 = -21//3, 

which gives JM = -  V/3.  
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On the other hand,  the unique min imum point  o f  Jp is 

gl = 3 V/2,  g: = - V/2,  

corresponding to P = U V / 2 .  The spring model of  Fig. 2 represents this 
problem. 

Subsequently, we will give restrictions o n t h e  matrix A such that 
inequality can be substituted for equality in (39) and (40), respectively. We 
first note that  we can restrict the investigation to the case where U'w* > V, 
since (as shown in previous sections) in the other case both problems have 
coinciding trivial solutions corresponding to P = 0. 

Theorem 5.1. Let Assumption A1 hold. Then, 

Pi(gM)=P~(gp), l<--i~n. 

Proof. Since we may consider only the case U'w*> V, we have 

AP(gM)+W*--gM =0 ,  A P ( g e ) + w * - g p = O .  

Also, it holds that  U*gM = V and U~gp = V, so we have 

UtAP( gM)+U'w  * -  V='0,  UtAP(gp)  + U'w * -  V = 0 .  

That is, 

U'A(P(gM ) - P(ge))  = O. 

Invoking Assumption A1, the theorem follows. D 

Fig. 2. 

0 

gl 

g 

Spring model representing the flexibility matrix of Example 5.1. The spring constants 
are k~ = 1, k 2 = 5 and the angle 0 = arctan 2. The structure is shown in the unstressed 
configuration. 
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As is obvious from the previous proof, a slightly weaker assumption 
leads to equality in (40). 

Assumption A2. The sum of the elements of each column (or row) is 
nonnegative; that is, 

• Ao>-O, 
i=1 

Vj6{1 , . . . ,  n} <::> AU>-0 ¢:> UtA>--O t. 

Theorem 5.2. Let Assumption A2 hold. Then, 

P~(gM) = P~(gv), if UtA.~ > O, 

and there is always at least one such i c {1 , . . . ,  n}. 

Proof. The result follows from the proof of Theorem 5.1 and the fact 
that A is nonsingular. [] 

Note that Assumptions A1 and A2 are exact in the previous theorems. 
As shown by Examples 3.1, 4.1, and 5.1, when they are not satisfied, the 
conclusions of the theorems cannot be expected to hold in general. 

6. Modified Design Constraint 

In previous sections, the set of designs K was defined by the volume 
constraint (18). As noted in Section 3, a relevant constraint is also the box 
constraint (17). 

When K is defined by both (17) and (18) and is nonempty, solutions 
of Problems (M) and (P) obviously exist, since K is then compact. 

For such a new K, the optimality conditions (27) and (36) are modified 
only on their left-hand sides. That is, the normal cone needs to be differently 
expressed. If 

K : = { g l U ~ g  < - V, g, <-g<-g2}, 

then 

N K ( g )  = {x = U/x+ A2-A~ IX1, A2E R",/.t >-- O,/.~(Utg - V) = O, 

A,>--0, A~(g,-g) =0, h2>--0, h~(g-  g2) =0}. 

The left-hand sides of (27) and (36) are changed for U g +  A2-A~. 
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Going through the results of  previous sections, we make the following 
conclusions for a changed K:  only local versions of  Corollaries 3.2 and 3.3 
can be stated; i.e., if  p. + h2i - h l i = 0, then i E B w C; and if ~ + h2~ - h l i # 0, 
then i ~ A w  B;  Lemmas 3.1 and 3.2 are valid; Theorem 3.3 is valid, except 
for the implication within brackets, meaning that Theorem 3.4 is not valid; 
furthermore, all additional results of  Section 3 are not valid or need 
modification; Theorem 4.2 is obviously not affected by a changed K;  and 
Corollary 4.2 is modified as follows. 

Theorem 6.1. A point g ~ K is a solution of  Problem (P), with K given 
as above, if and only if 

t~ >- o, t~( U '  g - v )  = O, 

A ~ O ,  A',(gl-  g) = O, 

Up.+ A2- h~ = - P ( g ) .  

However, it does not seem possible to solve these equations in order to 
extend Corollary 4.3. 

A third type of  constraint is considered by Haslinger and Neittaanmiiki 
(Ref. 8). It can be inferred from the argument that the slope of  the obstacle 
(measured from some reference line) should not be too large. In the discrete 
case, it is given by 

- c < _ g i + ~ - g i < _ c  , l < _ i ~ n - 1 ,  

where c > 0 is a constant. The introduction of  such a constraint has no 
essential implications for the discussion in this section. 

7. Conclusions and Comments 

In relation to the problem of  optimizing contact force distributions, 
two different cost functionals have been considered. The resulting problems 
are investigated in detail, and it is shown under what conditions they actually 
coincide (i.e., give the same optimal design). Some comments concerning 
extensions and interpretations of  the results can be given. 

The optimization process is viewed as one where the obstacle is changed 
and the deformable body is unchanged. However, as noted in Ref. 3 and 
used also in Refs. 1, 2, and 5, since we are dealing with small displacements, 
g must be small for the formulation to make physical sense. Thus, the 
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optimization process can be reinterpreted as one where the obstacle is fixed 
and the boundary of the deformable body is changed, but without affecting 
the stiffness. This conclusion makes clear that the two-body problem, 
discussed in Ref. 3, is covered by the present theory. 

Note that contact forces are treated as primary variables in this work, 
which in the case of a naturally discrete body is the obvious choice. However, 
in the case of a continuous body that is discretized (e.g., by finite elements), 
in order to get the state problem of Section 2, it may not be natural to 
optimize contact force distributions, but rather contact stress distributions. 
For discretizations that can be shown to converge to the continuous problem, 
contact forces are obtained from contact stresses simply by multiplication 
by weighting factors W~ (Ref. 22). These functions are given by the numerical 
integration rule employed and represent in the simple case of linear finite 
elements the area surrounding contact nodes. The cost functional (16) can 
be replaced by 

]M(g) = max{-P~(g)/ W~[1 - i~  n}, 

and the constraint (18) by 

giWi-< V. 
i = 1  

One then sees that, by redefining the elements of A as W~WjA# and those 
of w* as W~w*, problems formally identical to (M) and (P) are obtained, 
but with forces replaced by stresses and g replaced by G = {giW~}. Thus 
mathematically, there is essentially no difference between optimizing contact 
forces and optimizing contact stresses, and there is no qualitative difference 
between the theory obtained using contact stresses and that obtained using 
contact forces. 

The results of this work reduce the computational effort needed to 
produce designs in practical situations to a minimum. If Assumption A is 
satisfied, both problems have coinciding solutions and the optimal gap is 
calculated simply by matrix multiplication. If Assumption A is not met, 
this is still true for Problem (P), while Problem (M) is solved by solution 
of a standard LP problem. 

Related to problem (M) there are some open questions posed by this 
study. Firstly, what is the relation between the sufficient optimality condition 
of Theorem 3.2 and the necessary and sufficient one of Theorem 3.4? 
Secondly, does Theorem 3.6 hold even when Assumption A is not satisfied? 
By studying complementary cones (Ref. 15), one can convince oneself that, 
when n = 2, the answer to the latter question is in the affirmative. Since 
both of these questions are related to the existence of local minimizers, and 
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since global minima can be determined without answering them, they are 
posed mainly from the point of  view of  theoretical curiosity. 
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