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Reference Point Approximation Method 
for the Solution of Bicriterial Nonlinear 

Optimization Problems 

J ,  J A H N  1 A N D  A .  M E R K E L  2 

Communicated by W. Stadler 

Abstract. This paper presents a reference point approximation 
algorithm which can be used for the interactive solution of bicriterial 
nonlinear optimization problems with inequality and equality con- 
straints. The advantage of this method is that the decision maker may 
choose arbitrary reference points in the criteria space. Moreover, a 
special tunneling technique is given for the computation of global 
solutions of certain subproblems. Finally, the proposed method is 
applied to a mathematical example and a problem in mechanical 
engineering. 
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I. Introduction 

Problems of  bicriterial nonlinear optimization arise in different areas 
in the applied sciences, for instance structural mechanics, chemical pro- 
cesses, and chip design. Sometimes problems with more than two objectives 
can be transformed or even simplified to bicriterial problems, We assume 
that the constraints are given explicitly in the form of inequalities and 
equalities. 

To be more specific, we have the following assumption. 

Assumption 1.1. S~  R" is a given nonempty set; f =  ( f t ,  f2): S-~ R 2, 
g i : S ~ ,  i= 1 , 2 , . . . , p ,  and hi:S--~, i = 1 , 2 , . . . ,  q, are given functions. 
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Under this assumption, we consider the bicriterial optimization problem 

min 

s.t. 

[ f l ( x ) ]  ( la)  
f~(x)J' 

g,(x)<-O, i = l , 2 , . . . , p ,  ( lb)  

h,(x)  = O, i = 1, 2 , . . . ,  q, ( lc)  

x e S. ( ld)  

Notice that we have to minimize the criteria f l  and f2 in the sense of  
Edgeworth-Pareto (a definition of a minimal solution is given below). If  
the resulting functions are defined on the whole space R", then very often 
the set S can be chosen as R ~. For simplicity, we define the constraint set 
of  the problem (1) as 

S : = { x ~ S l g i ( x ) < - O ,  i = l , 2 , . . . , p ;  h i (x )=0 ,  i = l , 2 , . . . , q } .  

Definition 1.1. Let Assumption 1.1 be satisfied. A vector g c S is called 
a minimal solution, or an Edgeworth-Pareto optimal point, or a functional 
efficient point of  the bicriterial optimization problem (1), if there does not 
exist any x c S with 

f~(x)<-L(~), 

A(x) <-A(~), 

where the strict inequality sign holds for at least one inequality. The set of  
minimal solutions of  the problem (1) is denoted by M. 

Of  course we assume that the problem (1) is solvable, or in other words 
that the assumption below holds. 

Assumption 1.2. The set M of  minimal solutions of  the problem (1) 
is nonempty. 

The mathematical vector optimization problem (1) would be solved, 
if we could determine the whole set M of minimal solutions; but the original 
decision problem which leads tO the mathematical formulation (1) is not 
completely solved if the set M is determined. The decision maker wants to 
select a minimal solution among all elements of  M. Such a subjectively 
optimal solution can be determined by a so-called interactive method which 
uses additional information about the preference structure of  the decision 
maker. 
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Until today, there are various methods for the interactive solution of  
vector optimization problems (e.g., see Ref. 1 for classical approaches). In 
this paper, we use a reference point approximation method, which has 
already been successfully applied to linear vector optimization problems 
(see Ref. 2). The conception of this algorithm reads as follows. 

Algorithm 1.1. 

Step O. The decision maker chooses a weighted Chebyshev normli, tt. 
Step 1. The decision maker chooses an arbitrary reference point y ~  

R 2. Set i = 1. 
Step 2. Compute a solution of the approximation problem 

rain tly ~i~ -f(x)II .  (2) 
x E M  

Step 3. This solution is presented to the decision maker~ who termin- 
ates the iteration process or proceeds as follows: The decision 
maker chooses another reference point y~i+~} and continues 
the procedure with i := i + t in Step 2. 

I f  the decision maker applies this method to a vector optimization 
problem, he has to articulate his goals by choosing an arbitrary reference 
point y~Oe ~2. Then, a minimal solution of the problem (1) is determined 
whose image is as close as possible to the goal vector of the decision maker 
in the sense of a weighted Chebyshev norm. One can choose also other 
norms, like the Euclidean norm, but the Chebyshev norm leads to a simpler 
interpretation of the results. 

It should be mentioned that Algorithm 1.1 is related to other reference 
point methods (e.g., see Refs. 3 and 4). The main difference from the known 
reference point methods lies in the optimization problem in Step 2 of 
Algorithm 1.1: the constraint set is M and not S. So, a solution of  this 
problem is always a minimal solution of the original problem (1), even if 
we choose the reference point y;i~ arbitrarily. But notice also that the 
approximation problem (2) may not be solvable, because the set M does 
not need to be closed; in this case, it is better to replace "rain" by " inf"  
in (2). 

The following theorem shows that the approximation problem (2) can 
be simplified in special cases. 

Theorem 1.1. See, e.g., Ref. 5, Corollary 3.1 (a). Let Assumption 1.1 
be satisfied; let the vector optimization problem (1) be given; and assume 
that there is a reference point y ~ R 2 with 

Yi < f ( x ) ,  for all x c S and i = 1, 2. 



90 JOTA: VOL. 74, NO. I, JULY 1992 

Then, a vector ~ ~ S is a minimal solution of the problem (1) if and only 
if there exist tl, t2 > 0 such that 

max{t~(f~(g) -y~)} 
i=1,2 

< max{t,(f(x) - y,)}, 
i=  1,2 

for all x e S with f(x) #f(g). (3) 

Inequality (3) says that ~ is an image-unique solution of the approxima- 
tion problem 

min Ily-f(x)ll, 
x ~ S  

where I1 • 11 denotes the weighted Chebyshev norm with weights tl and t2. 
So, in the special case that the reference point has certain properties, the 
approximation problem (2) in Algorithm 1.1 can be simplified. But one 
should also see that a best approximation has to be image-unique, which 
is hard to check on a computer (usual efficiency tests lead to numerical 
difficulties). 

2. Algorithm 

Based on the conception of the reference point approximation method, 
we want to formulate a method which can be used in practice. The main 
difficulty which arises in Algorithm 1.1 is the determination of the set M 
of  minimal solutions of the problem (1). This set can be approximately 
determined with the aid of a method due to Polak (Ref. 6), which is reviewed 
in a simplified form. 

2.1. Modified Polak Method. For an appropriate approximation of 
the set M [and the image set f ( M ) ,  respectively], one determines the points 

a := min fl(x), 
x~=S 

b :=fl(x) ,  with f2(x) = min f2(x), 

on the y~-axis (see Fig. 1). Then, one discretizes the interval [a, b] by 
choosing points 

y~k):=a+k(b-a)/m, for k = 0 ,  1,2 . . . . .  rn, with rn~lM fixed. 

For every discretization point y~k), k = 0, 1, 2 . . . . .  m, one solves the scalar 
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Fig. 1. 
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Approximation off(M) with the Polak method. 

optimization problem 

min f2(x), (4a) 

s.t. x c S, (4b) 

f , (x)  =y~k). (4c) 

Then, one gets points y(k) :=f(x(k)) [where x (k~ is a solution of  the optimiz- 
ation problem (4)], which belong to the set f (S) .  But in general, it is not 
ensured that the preimages x (k) are in fact minimal solutions of  the vector 
optimization problem (2). 

In order to obtain minimal solutions, one has to select points such that 
y(2k, ) > y(2k2 ) > y(2k3)> • • • 

describes a strictly monotonically decreasing sequence. So, the set 
{x (k'), x(k : ) , . . . ,  x (k,.')} is an approximation of the set M of minimal solutions 
(see Fig. 2). In this case, the approximation problem 

min jlY-f(x){l 
x E M  

ii!/ \ J 

I I t I ~ I I I I 

I I ~ I I I ! I I 
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a y~) b 

Fig. 2. Determination of minimal elements off(S). 

yl 
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in Step 2 of Algorithm 1.1 (where y ~ ~2 is now an arbitrary reference point) 
can be replaced by the simpler problem 

min lly-f(x(kP)ll. 
j =  1,2,...,m" 

If the set f(M) is connected, Polak uses splines in order to connect the 
computed points f(x%)). Here, we connect these points by straight lines, 
because the boundary part f ( M )  of the set f (S)  does not need to be smooth. 

For the solution of the scalar optimization problem (4), one needs a 
constrained optimization method, for instance a usual penalty method. 
Since most of these methods can be used for the calculation of only local 
minima and not for the determination of global minima, in general the 
Polak method cannot be carried out satisfactorily. So, for the solution of 
practical problems, one has to guarantee that the determined "solutions" 
of problem (4) are in fact also global solutions. 

2.2. Tunneling Technique. In this section, we turn our attention to the 
determination of the global solutions of the subproblem (4) for S = R" in 
Assumption 1.1. If f~ and f2 are nonlinear functions, we have to apply a 
method for nonlinear constrained optimization. The usual algorithms of 
this class can be used only for the determination of local solutions. Methods 
designed for the computation of global solutions (for instance a Monte 
Carlo method) are time consuming. Since the parametric optimization 
problem (4) has to be solved for every parameter y{O), (,) Y l  , " " " , Y ~ m ) ,  o n e  

needs a numerical method which is not too slow and which guarantees that 
the obtained solutions are global ones. Therefore, we use a hybrid method, 
which is a combination of a penalty method and a tunneling technique. 

If one uses a penalty method for the solution of the constrained 
optimization problem (4), with 5~=~", one has to solve a sequence of 
unconstrained problems of the form 

min f2(x) + I.z~p(x), (5) X~R n 

where (/,~)2~ is a sequence of positive real numbers tending to infinity and 
p is a penalty function i.e., especially, 

p(x)>-O, for all x~R", and p(x) = 0¢:>x ~ S^fl(x) =y~k~; 
e.g., see Ref. 7. Assume that ~ ~ R" is an approximation of a solution of 
the problem (5) (in practice, it is obtained by applying a computer program). 
Then, for some fixed e > 0, consider the constrained optimization problem 

min 1/[f2(~)-f2(x)]+pop(x), (6a) 

s.t. fz(x) - - f 2 ( x )  ~ e, (6b) 

x c R". (6c) 
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A solution $ of this problem has the property that 

f 2 ( ~ ) - < f 2 ( ~ )  - ~ < f 2 ( ~ ) ,  

and by the minimization of 1/[f2(~) - f2(x)]  +/x~p(x), one gets f2(x) << f2(2) 
and ff is nearly feasible. Figure 3 shows this tunneling effect in the case of 
p---0 and x6R.  

It is obvious that, in general, a solution of problem (6) is not a global 
solution of problem (4). But such a solution can be used as a new starting 
point (for instance) for a penalty method with the subprobtem (5). The 
idea of this hybrid technique is based on the fact that descent methods in 
unconstrained optimization (like the BFGS method) determine points in 
the same valley where the starting point is located. A new starting point 
obtained by finding a tunnel to another valley may lead to a local solution 
with a smaller function value. 

In order to solve the constrained optimization problem (6), we use a 
special penalty method with subproblems of the type 

min l /[f2(x) - fz (x) ]  + p.jp(x) + vi max{O, f2(x) -f2(x)  + a}2, (7) 
X ~  n 

where (VZ)lcN is a sequence of positive real numbers tending to infinity. 

2.3. Interactive Procedure. Next, we summarize our preceding investi- 
gations and formulate an interactive method for the numerical solution of 
the bicriterial nonlinear vector optimization problem (1) under Assumption 

A 

1.1 with S := N". 
The resulting algorithm reads as follows. 

A(~) - 
. . . . . . . . .  t 

I 

t 

t 
, I 

Fig. 3. Simplified illustration of the tunneling technique. 

A 

-> 
3~ 
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Algorithm 2.1. 
Part 1. Computation Phase. 

Step I. Determine the real numbers a and b, where 

a := min f~(x), 
x ~ S  

b :=f l ( ; )  with f2(;)  = min f2(x). 
x ~ S  

Step 2. 

Step 3. 

Step 4. 

For a given number m ~ N, determine the points 

y~k):=a+k(b-a) /m,  k = 0 ,  1 , . . . ,  m. 

For every discretization point y~k), k = O, 1 , . . . ,  m, determine 
a global solution x (k) of the constrained problem 

f2(x(k))=min f2(x), 

s.t. x~  S, 

fl(x) =y~k). 

For the determination of such a global solution, apply a 
penalty method with subproblems of type (5) solved with the 
BFGS method, compute a new starting point with a penalty 
method with subproblems of type (7) solved with the BFGS 
method, and again apply a penalty method with subproblems 
of type (5) solved with the BFGS method. This scheme may 
be carried out repeatedly, if the minimal values do not change. 

Select all minimal elements of  the discrete set {f(x(°)), 
f ( x ( ' ) , . . . ,  f(x("))}. Denote this set of  minimal solutions 
by hT/. 

Part 2. Decision Phase. 

Step 5. The decision maker chooses the weights tl, t2 > 0 of the weigh- 
ted Chebyshev norm in R 2. 

Step 6. The decision maker chooses an arbitrary reference point 
y(1) ~ R2. 

Part 3. Computation Phase. 

Step 7. Set i := 1. 
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Determine a point ~ )  ~ M with the property that 

max{ tjly~i)- f,( ~ ) j }  <- max{ tjlyC, i)-f,(x)t}, for all x~  ~7/. j=L,2 , - -J , j=l.2 . J ~ . 

Part 4. 

Step 9. 

Step 10. 

Decision Phase. 

The point ~ )  ~ M is presented to the decision maker. If  the 
decision maker accepts this point as the subjectively best 
one, then stop. Otherwise, proceed to the next step. 
Based on additional information about the original problem 
using computational results obtained in Step 3, the decision 
maker proposes a new reference point y~+l)~ •2. 

Part 5. Computation Phase. 

Stepll. Set i : = i + l ,  and go to Step 8. 

Part 1 of Algorithm 2.1 is the computer-intensive part, while Parts 2-5 
can be carried out interactively in a very fast way. So, Algorithm 2.1 is 
normally applied in such a way that Part 1 is executed independently from 
the other parts. The actual interactive method starts then with the elements 
of  the set M. 

Notice that it is not necessary to determine equidistant points y~g~ in 
Step 2 of Algorithm 2.1. These points can also be chosen with the aid of 
other schemes as is done in the Polak method. 

In Step 5, the decision maker can choose the weights of the weighted 
Chebyshev norm. This is important, because very often it does not make 
sense to compare the objectives numerically without scaling fl  and f2- In 
Step 10, it should be possible to provide the decision maker with all 
information obtained in the computation phases. For instance, the graphical 
presentation of the image set of minimal solutions enables the decision 
maker to select new reference points. 

3. Numerical Results 

The algorithm developed in the preceding section is now applied to 
two bicriterial nonlinear optimization problems. The first problem is very 
simple; it is designed for the illustration of the tunneling technique. The 
second problem is a complicated nonlinear structural optimization problem 
from mechanical engineering. 
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Example 3.1. We consider the following bicriterial optimization prob- 
lem, taken from Ref. 8: 

m i n  (Xl),  
\ x2/ 

s.t. x2-2.5-<0, 

( X  1 - -  0 . 5 )  2 - -  X 2 - -  4.5 -< O, 

-x~-x~-<O, 
- ( x l +  1)2- (x2+ 3)2+ 1 -<0, 

( x~ , x2) ~ R 2. 

Since the objective mapping of  this problem is the identity, the image 
and preimage sets are equal. This set is illustrated in Fig. 4. It can be seen 
from this figure that the set M of minimal elements is not connected (in 
fact, it consists of  three arcs); therefore, a jump must be carded out between 
the disconnected parts. Such a jump can only be realized with the aid of a 
global minimization technique like the proposed tunneling technique. With 
a local minimization technique, it is in general not possible to jump from 
one arc of M to another one while increasing the y~k) values in the Polak 
method. 

Table 1 lists the minimal elements f ( x  (k)) ~ M. These results were 
obtained with Part 1 of Algorithm 2.1. If  one connects these computed 
points by straight lines where one notices that there are two jumps which 

1 I ) 
Y~ 

Fig. 4. Image set of the objective mapping. 
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Table 1. Iterated minimal elements (ylk)'s 
chosen nonequidistantly). 

k f (x  (k)) ~ M 

0 (-2.131087, 2.422933) 
1 (-1.930941, t.409813) 
2 (-1.731149, 1.315711) 
3 (-1.531138, 1.238715) 
4 (-1.331107, 1.156983) 
5 (-1,131001, -1.207556) 
6 (-0.931086, -2.002503) 
7 (-0.731135, -2.036241) 
8 (-0.526106, -2.117397) 
9 (-0.315858, -3.729672) 

10 (-0.115894, -4.013447) 
11 (0.084136, -4.327440) 
12 (0.500000, -4.500500) 

can be located with the proposed tunneling technique, one gets a set 
illustrated in Fig. 5. This set is already a good approximation of the set M 
of  minimal solutions. 

If  one chooses the weights t~ = tz = 1 in Part 2 of  Algorithm 2.1, one 
gets estimates as best approximations from the set of minimal elements 
given in Table 2. 

Next, we investigate a structural optimization problem, namely the 
optimal design of a sandwich beam. This problem has already been formu- 
lated and solved by Eschenauer-Sch~ifer (e.g., see Refs. 9-11). 

Example 3.2. We consider a sandwich beam consisting of a pitted 
aluminum core and covered by two aluminum coats. This beam is supported 
by five steel bars (see Fig. 6). 

The design variables are as follows: xl =thickness of  the coat; x2 = 
height of  the pitted core; x3, x4=coordinates  of  the substructure; x s=  
diameter of  bar No. 5; x6 = diameter of  bars No. 1 and No. 4; x7 = diameter 
of  bars No. 2 and No. 3. 

The aim is to minimize the weight f l  of  the whole structure and the 
deformation f2 of  the beam under  its net weight. These two objectives are 
given as follows: 

fl(X) = [2Xr~XX32 q- X] "+- 2X7~/(l -- 2X3)2/4 + X24 + xs(l  -- 2X3)Jpsgfs 

+ (2xapD + X2pk) b~gf~l, (8a) 

f2 (x )  = ~/(2/3)[max{w(~:, x)I0-< ~-< l/2}]2+ (1 /3 )w(1 /2 ,  x )  7, (8b) 
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Fig. 5. Approximation of the set of minimal elements. 

w(~, x) = [ H~(x)/6B,(x)l(~t 2 -  ~3) + [ qo(x)/24Bs(x) ](~4_ (/3) 

- [H2(x)/48B,(x)]~/2 + [qo(x)/ZG,(x)](~l- ~2) 

+[Hz(x)/ZG~(x)]~, 
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Table 2. Compromise solutions. 

Estimate as best approximation 
Reference point from the set of minimal elements 

(-2,0) (-1.331107, 1.156983) 
(0,0) (-1.131001, -1.207556) 
(-1,3) (-2.131087, 2.422933) 
(-2,2) (-2.131087, 2.422933) 

with 

Ha(x) = F2(x) /2  + qo(x)( l /2)  + ( 2 x J  l)[ F4(x )x3 /x4 -  Ss(x)] ,  

H2(x) = F2(x) + (4x , / I )[F4(x)x3/x4 - Ss(x)] ,  

F2(x) = XT~/ ( l - 2x3)2/4 + .~4P~g£, 

F4(x) = ( 1 / 2 ) [ x 6 ~ +  xT~/ ( l - 2x3)2/4 +--~4+ xs( I - 2x3) ]p~gf,, 

qo(x) = (2x~pl:, + x2pk)b~gf~, 

Ss(x) =[1/ e(x)]{F2(x)[x41/tZB,(x)+ x, d G,(x)t] 

- F4(x)[(x3/xa) r + 4(x~ + x])~/z/Ex6x412 + 2x~/ErrAox41] 

+ qo(x)[5xJ2/96B, (x )  + x4/2Gs(x)]},  

e(x) = (8/El~)[(x~ + x])3/2/x6+((t-Zx~)2/4+ x~)3/z/xT] 

+ 4x~/EDADt 2 + x24/3B,(x) + 4x2/G,(x)12 + (l - 2x3)/Exst,  

n,(x) = EDb,x,(x~ + x~)2/2, 

G,(x )  = Gkb,(x~ + x2)2/ x2. 

The values o f  the constants  are listed in Table 3. 

Fig. 6. Sandwich beam. 

÷ 
2C 4 
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Table 3. Values o f  the constants.  

Constant Value 

l 2000 mm 
b~ 200 mm 
Po 2700 kg/m 3 
ED 70,000 N/mm 3 
Pk 90 kg/m 3 
G k 30 N/mm 2 
Ps 7860 kg/m 3 
Es 210,000 N/mm 2 
g 9.81 m/s 2 
L 1.2 
O'kmax 300 N/ram 2 
s 1.4 

Table 4. I terated minimal elements (y~k)'s chosen nonequidistant ly) .  

f~(x (k~) f2(x (k~) Ji(x Ck~) f2(x (k?) 

8.170743 1613,325880 65.485503 0.032772 
10.170946 335.297128 68.483001 0.031190 
12.173212 129.391623 71.483001 0.029269 
14.169546 63.646828 74.483001 0.027133 
16.168230 37,121296 77.483001 0.024913 
18.170628 22.107509 80.483001 0.022716 
20.170631 15.165513 83.482979 0.020618 
22,170864 11.005089 86.483001 0.018664 
24.168286 8.316745 89.482979 0.016877 
26.170787 6.480834 92,485484 0.015261 
28.170658 5.187719 92.903848 0.015049 
30.170622 4.241161 94.903869 0.014126 
32.168918 3.534406 115.455054 0.011496 
34.170188 2.988244 118.452682 0.009315 
36.169843 2.558842 121.455039 0.008211 
38.168907 2.215119 124.455107 0.007615 
40,168608 1.935677 126.454850 0.007393 
42.168488 1.705571 128.456033 0.007245 
44.170746 1.160908 131.455268 0.007108 
46.170746 1.006852 134.455584 0.007021 
47.485498 0.271472 137.456063 0.006949 
49.485507 0.109936 140.456706 0.006872 
52.482961 0.054953 143.4575t3 0.006780 
55.480575 0.041851 146.457594 0.006669 
58.482930 0.037930 149.394510 0.006540 
61.483003 0.034422 151.392035 0.006455 
63.485505 0.033628 
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Fig. 7. Approximation of the set of minimal elements. 

The constraints o f  this p rob lem are given as 

0 . 1 - x l - 2 ,  

10-- < x 2  < - -  100, 

0-< x3 -< 990, 

O -  x4-< 990, 

1 0 < - x 5 -  < 100, 

10 ---~ X6 --'~ 100, 

lO<-x7 - 100, 
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Table 5. Compromise solutions. 

Estimate as best 
approximation from 

Reference the set of minimal 
point elements Preimage of the estimate 

(50,10) (42.168488,1.705571) 

(10,10) (18.170628,22.107509) 

(30,5) (30.170622,4.241161) 

(50,2) (49.485507,0.109936) 

(1.408978, 11.848378, 
989.930847, 0.248698, 
10.000272, 10.049928, 10.000246) 
(0.466426, 11.755359, 
989.930632, 0.248085, 
10.000682, 10.071396, 10.000504) 
(0.937273, 11.840433, 
989.930879, 0.248696, 
10.000241, 10.046709, 10.000213) 
(0.257025, 97.324846, 
0.022438, 989.977789, 
10.001214, 10.001056, 10.001630) 

and 

[H6x)(  l /2) - qo(X)(12/S)l/ (x, + xz)b~q 

4" t -- F4(  x )(  x3 /  x4) -4r (2x3/l)(F4(x)x3/x 4 -- Ss(  X ) )I /  b~xx 

<- crkm,x/ S. (9) 

So, we have to minimize the two functions fx and f2 subject to these 
constraints. The application of  Part 1 of  Algorithm 2.1 leads to estimates 
of  minimal elements of  the image set of  ( f l ,  f2) listed in Table 4. 

With the aid of  the iterated minimal elements we obtain an approxima- 
tion of  the set of  minimal elements illustrated in Fig. 7. I f  one chooses the 
weights tl = t2 = 1 in Part 2 of  Algorithm 2.1, one gets estimates as best 
approximations from the set of minimal elements given in Table 5. 

We should notice that this structural optimization problem is in fact a 
nonsmooth problem [see (8) and (9)]. But nevertheless, it is possible to 
work with the BFGS method. It is well known that this method is not very 
sensitive for problems with mainly smooth functions. Of course, this state- 
ment is based on numerical experience and cannot be generalized. 

4. Conclusions 

It is shown in this paper that a reference point approximation method 
can be used successfully for the solution of  real-world problems in bicriterial 
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nonlinear optimization. The numerical effort in Part 1 of Algorithm 2.1 is 
immense, but the interactive phases can be carried out rapidly. From the 
point of view of the decision maker, it is important to note that only reference 
points are required which represent the decision maker's goat and which 
can be easily given. Moreover, it is important to mention that these reference 
points can be chosen arbitrarily and that they are not restricted to certain 
regions in the criteria space. 
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