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On the Structure of Convex 
Piecewise Quadratic Functions I 

J. SUN 2 

Communicated by F. Zirilli 

Abstract. Convex piecewise quadratic functions (CPQF) play an 
important role in mathematical programming, and yet their structure 
has not been fully studied. In this paper, these functions are categorized 
into difference-definite and difference-indefinite types. We show that, 
for either type, the expressions of a CPQF on neighboring polyhedra 
in its domain can differ only by a quadratic function related to the 
common boundary of the polyhedra. Specifically, we prove that the 
monitoring function in extended linear-quadratic programming is 
difference-definite. We then study the case where the domain of the 
difference-definite CPQF is a union of boxes, which arises in many 
applications. We prove that any such function must be a sum of a 
convex quadratic function and a separable CPQF. Hence, their minimiz- 
ation problems can be reformulated as monotropic piecewise quadratic 
programs. 

Key Words, Convex polyhedra, extended linear-quadratic programs, 
monotropic programming, piecewise quadratic functions, separability 
of functions. 

1. Introduction 

A convex function f :  R %--~R w {+oo} is piecewise quadratic if its domain 
[i.e., the set dora f = {x e R" If(x) < oe}] is a union of  finitely many convex 
polyhedra, on each of  which the function is given by a quadratic formula 
(including affine formula as a special case). Due to continuity of  the convex 
piecewise quadratic function (CPQF) on its domain, the expressions o f f  
on different polyhedra cannot be arbitrary. Our concern in this paper are 
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the relationship between these expressions and the overall structure of a 
CPQF. 

The interest in studying CPQF is stimulated by recent research of 
Rockafellar and Wets (Refs. 1-3) on stochastic programming and optimal 
control problems. In their theoretical framework, constraints are separated 
into two classes; one should be satisfied exactly and another may be violated. 
A monitoring term in the objective function is used to reduce the violation. 
Based on this formulation, a clear duality relationship can be derived and 
new algorithms are proposed for previously unsolvable problems. At the 
center of their model is a linear-quadratic minimax problem, 

(E) minimax L( x, y) 

= p r x + q r y + ( x r P x ) / 2 - ( y r Q y ) / 2 - y r R x ,  x~  U,y~ V, 

where the superscript T designates the transpose of a vector. Problem (E) 
induces the primal-dual pair of extended linear-quadratic programs: 

(P) m i n ~ u f ( x ) ,  where f (x )=supy~vL(x ,y ) ,  

(D) max,~vg(y), where g ( y ) = i n f ~ e L ( x , y ) ;  

here, U(cR" )  and V ( c R  m) are convex polyhedra, representing the con- 
straints that should be satisfied exactly; p and q are fixed vectors; P (positive 
semidefinite), Q (positive semidefinite), and R are fixed matrices. Then, 
we have 

f ( x )  = p rx + (x rPx)/2 + Pvo( q - Rx), 

g(y) = q ry _ (y rQy)/2 _ pup( Rry _p  ), 

where 

pvQ(V) = sup{y rv - (yTQy)/2}, 
y e V  

pup(U) = sup{xTu -- (xTpx)/2}. 
x ~  U 

The functions Pro and PuP are the monitoring terms characterizing devi- 
ations of Rx from q and R Ty from iv, respectively. In Ref. 2, it is shown 
that both Pro and Pup are CPQF in our sense. Of course, there are other 
applications of CPQFs, some of which are described in Refs. 4-8. 

The structure problem of the CPQF has been studied from another 
angle. In Ref. 9, it is proved that a function is convex piecewise quadratic 
if and only if its subdifferential mapping is polyhedral in Robinson's (Ref. 
10) sense. This property is used in analyzing the duality and parametric 
properties of convex piecewise quadratic programming. From the viewpoint 
of algorithmic development, however, it is convenient to know how the 
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expressions of a CPQF are interrelated and under what conditions a CPQF 
can be decomposed into simpler functions. Especially, if a C PQF is separable 
[i.e., the function is of the form f ( x ) = f l ( x l ) + ' "  . + f , ( x , ) ,  where x;, 
i = 1 , . . . ,  n, are components of x and f ( x l )  are one-dimensional convex 
piecewise quadratic functions], then, even if additional linear constraints 
exist, we may solve the corresponding minimization problem, the so-called 
monotropic piecewise quadratic program, quite etficiently (Ref. t l) .  
Naturally, one wants to know the possibility of changing a general CPQF 
into a separable CPQF by a cegain transformation of variables. Since the 
original function is linear-quadratic, affine transformation is preferable. 
This problem is tightly related to the structure problem to be investigated 
in this paper. 

In the next section, we categorize the CPQF into two types (difference- 
definite and difference-indefinite) and derive the relationship between 
expressions on neighboring polyhedra for both types. The result implies 
that the difference-indefinite type is not separable under any nonsingular 
affine transformation. On the other hand, we prove that the monitoring 
functions in problems (P) and (D) are difference-definite. In Section 3, we 
analyze the difference-definite CPQF whose domain is a union of boxes 
and show that any such function must be a sum of a convex quadratic 
function and a separable CPQF. Consequently, we point out that the 
problem of minimizing this function is equivalent to solving a monotropic 
piecewise quadratic program. 

2. Structure of General Convex Piecewise Quadratic Functions 

In the following derivations, without loss of generality, we assume that 
the CPQF under discussion satisfies the following conditions: 

(C1) The dimension of dora f is n. Otherwise, we could discuss the 
problem in a lower-dimensional space by changing the coordin- 
ate system. 

(C2) d o m f = P l w ' " w P m ,  where all Pi, i=  1 . . . .  , m, are convex 
polyhedra of dimension n and int P~ c~ int Pj = O, i #j .  This 
assumption is reasonable because all lower-dimensional poly- 
hedra in dora f must be contained in some of the n-dimensional 
P/s; therefore, the removal of those lower-dimensional poly- 
hedra from dora f does not change f due to continuity o f f  in 
dom f Furthermore, if two polyhedra have a common internal 
point, then the quadratic expressions on them must be identical 
and it is a trivial case pertaining to our purposes. 



502 JOTA: VOL. 72, NO. 3, MARCH 1992 

Definition 2.1. Let Pi, Pj ( i # j ) c d o m f .  We say that P~ and Pj are 
neighboring with each other if the affine hull of Pin Pj is of dimension 
n -  1. The affine hull of Pi c~ Pj (a hyperplane) is called their common 
boundary. 

Definition 2.2. A CPQF is said to be of difference-definite type if all 
of the differences between its expressions on neighboring polyhedra have 
positive or negative semidefinite Hessian. Otherwise, it is said to be of 
difference-indefinite type. 

Proposition 2.1. Le t f (x)  be a CPQF. Let/°1 and P2 be two neighboring 
polyhedra in dom f with common boundary {x[aTx  = b}. Let f l (x)  and 
f2(x) be the quadratic expressions of f on P1 and P2, respectively. Then, 
there exist a vector ti and a constant b such that 

f2(x) = f l ( x ) +  [a rx - b] [arx  -/~]. (1) 

Moreover, a and a are linearly dependent i f f  is difference-definite, whereas 
if f is difference-indefinite, there exists at least a pair of P~ and P2, such 
that ~ is linearly independent of a. 

Proof. Let X°E P1 ~ P2, and let Q be an orthogonal matrix such that 
Q T R Q  is diagonal, where R is the Hessian of f 2 - f a .  Under the affine 
transformation 

x =  Qy + x °, 

the function 

f ( x )  = f ( Q y  + x °) 

has expressions f~(Qy + x °) and f2(Qy + x°), respectively, on 

~ 1 =  Q - a ( p x - x ° )  and ~2= Q - ~ ( P 2 - x ° ) ,  

and the common boundary of ~1 and ~2 passes zero. Without loss of 
generality, let 

H -= {y [h (y )  =- ya - c2Y2 . . . . .  c ,y ,  = 0} 

be this common boundary, and let 

f3(Y) --- f2( Qy + x °) - f l (  Qy + x °) 

= (d~y2+s~y~)+. • . + ( d ,  y2 ,+s ,y , ) .  

By continuity of f in dom f, f3(Y) -= 0 on H. Then, one of the following 
must be true: 

(i) f3(y) = s lh(y) ;  
(ii) f 3 ( y ) = d l h ( y ) 2 + s ~ h ( y )  and h ( y ) = y a ;  
(iii) f3(Y) = h(y)[d~(y~ + cjyj ) + sl], da # 0 and h(y)  = yl - cyj ,  cj # O. 
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To prove this, denote { 2 , . . . ,  n} by J and notice that f3(y) - 0 on H implies 
that 

(; ; o=--2 (4y +sjyj)+d  cjyj +s, cjyj. 
j E J  j E J  

A quadratic form identically equals zero only if all of  its coefficients are 
zero. Therefore, we get 

dj+d,c~=O, VjeJ,  (2) 

d, cjck=O, Vj, k ~ J , j # k ,  (3) 

sj+s~cj=O, Vie J: (4) 

We consider the following three cases separately: 

Case 1. d~=0; 
Case 2. d~ ~ 0 and for all j ~ J, cj = 0; 
Case 3. d~ ~ 0 and there exists a j ~ J such that c~ ¢ 0. 

Case 1. We have d~ = 0. Then, dj = 0, g j  ~ J, because of (2). From (4), 

Thus, 

and 

d j+d~c}=0,  sj+s~cj = 0. 

2 2 2 .a~ f3(y)=dt(y l -c;y j )  , s~(yl-cjy~)=h(y)[d~(y,+cyj)+sl]. (5) 

This is (iii). Notice that, in this case, J3 is indefinite. 
Now, the inverse transformation 

y = Q - l ( x - x  °) 

will change h(y) back to a multiple of  a r ( x - x ° ) = a T x - b  and f3(Y) to 
f2(x)-f~(x). I f f  is difference-definite, only (i) and (ii) can happen; then, 
we have 

fz(x) =f,(x) + a(aTx -- b)2 + ¢l(a TX -- b), 

we get sj = - s , c j ,  Vj ~ J. Thus, f3(Y)= s,h(y). This is (i). 

Case 2. We have dl ¢ 0 and cj = 0 for all j ~ J. Then, from (2) and (4), 
we get dj =sj  = 0, for all j c J. This implies (ii). 

Case 3. From (2)-(4), we get dk = sk = ck = 0, Vk ~ J - {j}. Hence, we 
have 

f3(y)=d~y~+4y~+s,yl+syj, h(y)=y~-cyj ,  
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where ct and /3 are certain constants. Thus, (1) is valid with d being a 
multiple of  a. I f  f is difference-indefinite, either (i), (ii), or (iii) could 
happen, but there is at least a pair of  P1 and P2 such that (iii) is valid. In 
addition, from (5), the normal vectors of  

h ( y ) = y l - c y j = O  and dl(y~+cjyj)+sl=O 

should be linearly independent because c j~0 .  This implies (1) and the 
linear independence of  a and ti. [] 

Remark 2.1. When a and ti are independent,  the images of  a and 
under a nonsingular linear transformation of  variables should be still 
independent.  Thus, the term [a rx - b][ a rx - b] will not be separable under 
the transformation. Therefore, the difference-indefinite CPQF is not separ- 
able under any nonsingular affine transformation of  variables. Moreover, 
the following corollary says that, if  f is difference-indefinite, then there 
exists two neighboring polyhedra P1 and P2 such that the restriction of  f 
on P~ u P2 naturally belongs to a nonconvex function. 

Corollary 2.1. (Extensible Convexity) A CPQF is difference-definite 
if and only if, for any neighboring P1, P2 c dom f, the function 

Sfl(x), if x is on Pl's side of the common boundary, y(x) 
[ f2(x) ,  if x is on P2's side of the common boundary, 

is convex, where f l  and f2 are the quadratic formulas of f on P1 and P2, 
respectively. 

Proof. f is convex if and only if, for any x ~ dora f, w ~ R", the function 
qb(a)=f(x+aw) is convex, where a ~ R. The latter is true if and only if 
~b-(a) - ~b+(a), where ~b- and ~b + are the ordinary left and right derivatives 
of  ~b. It is obvious that we only have to consider such a that x + aw is on 
the common boundary. Since affine transformation does not change con- 
vexity, it suffices to show that, for any y ~ H = {Yl h(y) = 0} and z pointing 
to the ~2's side of  the hyperplane H, the directional derivatives o f f , (y ,  z)>- 
0. If  z is the opposite direction, we can show that f~(y, z)<--0 similarly. 
Here, f3(Y) and h(y) are the same as in the proof  of Proposition 2.1. Note 
that 

f;(y, z) = V f3(y) 7"z. 

For case (i), Vf3(y)-Cz is independent of  y. Thus, if for some yO~ H we have 
f'3(y °, z) >- O, then there holds 

f'3(y, z) >- 0, for all y ~ H. 
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According to the convexity of  j~ such yO certainly exists. For (ii), Vf3(y) 
only depends on y~. However, y~=0  for all y c H ,  so Vf3(y)Tz is also 
independent  of  y on the boundary. In summary, i f f  is difference-definite, 
the local convexity of  f around some x ° ~ P1 w P2 implies the global con- 
vexity of J~ 

On the other hand, i f f  is difference-indefinite, then there exist Pa and 
P2 such that (iii) in the proof  of  Proposition 2.1 is valid. Hence, we have 

f3(Y) = h(y)[ dl(Yl + cjyj ) + $1] = h(y)(2dlyl + s1), 

on H = { y l y ~ - c y ~ = O ,  cj ~ 0}. 

Therefore, 

Vf3(y)rz=(z~-cjzj)(2dly~+s~), for y 6  H. 

However, because z ~ H, we have z~-  cjzj ¢ 0. Thus, Vf3(y)Tz cannot keep 
the same sign for all y c H due to d~ ~ 0. Thus, f is not convex. [] 

A simple example of the difference-indefinite CPQF is 

2 2 I x~ + x2, if xl -< 0, x2 >-- 0, 
2 2 f ( x l , x2 )=~x~+xlx2+x2 ,  if xl-> 0, x2-->-0, 

(+oo,  if x2<0.  

If  we extend the formula x~ + x2 2 to the second and third quadrants and the 
formula x~ + x~x2 + x~ to the first and fourth quadrants, the resulting function 
f is convex on the upper half of the plane, but not on the lower half of the 
plane. 

An important CPQF is the monitoring function pro(u) in problem (P) 
[ s i m i l a r l y ,  pup(V) in (D)]. We now show that this function is difference- 
definite. For briefness, we only discuss the case of  Q being positive definite. 
The discussion on semidefinite Q can be reduced to this case; see Ref. 2. 

Proposition 2.2. The function 

Pvo ( X ) = sup{yT"x - ( yT Qy ) / 2 } 
y c V  

is a CPQF of difference-definite type, where V is a convex polyhedron and 
Q is a positive-definite symmetric matrix. 

Proof. Since nonsingular linear transformation of  variables does not 
change difference-definiteness, without loss of generality, we assume that 

y c R  ~, y r Q y = y 2 + . . . + y 2 .  
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Then, 

pro(X) = sup{y Tx - (y ry)/2} = (xTx)/2 - inf Ily - x 1 1 2 / 2 .  
y~V y~V  

We need to show that the function 

d(x)=- i n f l l y - x l [  2 
y~V 

has the difference-definite property. (In Ref. 2, it is already shown that 
pro(X) is a CPQF.) Note that d(x) is the square Euclidean distance from 
x to V. It may change its expression only if the projection of  x on V changes 
from one face of  V to another face of  different dimension. The neighboring 
expressions of  f, say f l  and f2, correspond to two faces of  V, say F1 and 
F2, such that one (say /:1) is contained in the boundary of another (say 
F2). Since F1 is on the boundary of  F2, the square Euclidean distance from 
x to F1 is not less than that from x to F2. The corresponding expressions 
dl(x) and d2(x) of d(x) then have the following property: 

dl(x)-d2(x)>-O, for all xe R". 

This is only possible if dl(x)-d2(x) has a positive semidefinite Hessian. 
[] 

Remark 2.2. Proposition 2.2 indicates that not all CPQF can be 
expressed as monitoring functions. 

3. Separability of the Difference-Definite CPQF 

Now we would like to know whether the difference-definite CPQF can 
be decomposed into a separable form for computational purposes. We 
notice that, if  a CPQF is separable, then the quadratic formula on each of 
the polyhedra in its domain has the form xTDx+qTx+r, where D is a 
diagonal n × n matrix. Of course, D, q, r may vary on different polyhedra. 
Such a CPQF is said to be diagonal. On the other hand, the diagonality of 
a difference-definite CPQF on two neighboring polyhedra implies by Propo- 
sition 2.1 that their common boundary should be parallel to a coordinate 
hyperplane unless these expressions differ only by a linear function. Hence, 
for a difference-definite CPQF, diagonality suggests a box structure of its 
domain. In this section, we show that the opposite is almost true. Namely, 
if all Pi c dora f are of  the form {x] Ej -< xj- - 6j, j = 1 , . . . ,  n} (ej may be -oo 
and 8j may be + ~ ) ,  then such f(x), called the CPQF defined on boxes, 
must be a sum of  a convex quadratic function and a separable CPQF. It 
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should be mentioned that this type of  domain structure often arises in 
practice (e.g., Refs. 2, 4, 6, 9) and that it is not too narrow to make this 
assumption in theory as one might have imagined. 

Proposition 3.1. If  a diagonal CPQF is defined on boxes, then 
this function must be separable. Namely, there exist one-dimensional 
convex piecewise quadratic functions f~(xj), j = 1 , . . . ,  n, so that f ( x ) =  

A ( x ) + .  . . + L ( x o ) .  

Proof. The common boundaries of  the polyhedra in dora f are parallel 
to coordinate hyperplanes. The boundaries, together with coordinate hyper- 
planes, partition dora f into boxes, 

dora f = B1 w.  • • w B,,. 

f ( x )  has a diagonal expression on each of  B~ for i = t , . . . ,  m. Let us call 
a vertex of  B~ the southwest corner of  B~ if each component  of  the vertex 
is not greater than each corresponding component  of other vertices of B;. 
Without loss of  generality, we assume that: 

(A) 0 e dom f and f (0)  = 0, for otherwise the same arguments below 
can be made for the function f ( x  + x °)  - f ( x ° ) ,  where x ° c dora f 

(B) The southwest comer  of B1 is the origin and there is a vertex of  
B ,  i >  1, ( d l , . . . ,  d,) ,  such that the n edges of  B~ initiated from 
( d l , . . . ,  d,),  

{xcBi]xj=djW• 1, l ~ j - n } , . . . ,  

{ x c  B~ t x j  = d j W  ¢ n, 1 < - j ~  n } ,  

are contained either by boxes Bk, k < i, or by a coordinate axis. 

To achieve (B), we can order B/s  in this way. First, label boxes in R+ 
according to the texicographic order of their southwest corner; then, we 
reflect the second quadrant into R+ and do the same for its boxes, then 
reflect the third quadrant into the second, and so on. 

We now prove that 

f ( x )  = f ( x , ,  0 , . . . ,  0) + f (0 ,  x2, 0 . . . .  ,0)  + - . .  + f ( 0 , . . . ,  0, x , ) ,  (6) 

for x e d o m f  by induction. The formula is true on box B1 and all coordinate 
axes by (A) and direct verification. Now, suppose that this formula is valid 
for all Bk, k < i, and consider box B~. By assumption (B), each edge of box 
Bi that goes through the vertex ( d ~ , . . . ,  d,)  either belongs to some box Bk, 
k < i, or belongs to some coordinate axis, hence this formula is valid on 
these edges of  B~. Since f is diagonal on B~, direct verification shows that, 
for any x e Bi, the following formula is valid: 

f ( x )  = f ( x l ,  d2 ,  . , . , d , )  + . . . + f (  d ,  , . . . , d , _ ,  , x , )  - ( n - 1 ) f (  d ,  , . . . , d,). 
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By the validity of formula (6) on the mentioned edges, for x ~ Bi we have 

f ( x l ,  d z , . . . ,  d,,) +. . . + f (  d l , . . . ,  d,,_~, x , , ) -  (n - 1 ) f ( d ~ , . . . ,  d,) 

= [ f ( x l , 0 , . . . , 0 ) + f ( 0 ,  d z , 0 , . . . , 0 ) + "  . + f ( 0 , . . . , 0 ,  d ~ ) ] + . . .  

+ [ f ( d l ,  0 , . . . ,  0) + - - .  + f ( 0 , . . . ,  0, d,_l,  0) + f ( 0 , . . . ,  0, x , ) ]  

- (n  - 1 ) I f ( d 1 , 0 ,  . . . ,  0)  + - . - + f ( 0 , . . . ,  0,  dn)]  

=f(xx ,  0 , . . . ,  0 ) + f ( 0 ,  x2, 0 , . . . ,  0 ) + - . .  + f ( 0 , . . . ,  0, xn). 

Thus, (6) is true in Bi. This completes the induction. [] 

Corollary 3.1. For any difference-definite CPQF f ( x )  defined on 
boxes, if it is diagonal on one of  these boxes, then it is diagonal on all the 
boxes; hence, f ( x )  must be separable. 

Proof. Assume that dom f =  B~ u .  • . u Bm and f ( x )  is diagonal on 
B~, where the order of Bi's satisfies the same condition as in the proof  
of  Proposition 3.1. By repeatedly using Proposition 2.1, we imply the diag- 
onality of f + l  from f ,  i = 1 , . . . ,  m - 1 .  Proposition 3.1 then ensures the 
separability. [] 

Corollary 3.1 says that the inseparability of a CPQF defined on boxes 
might be caused by a bad expression on a single box. The following result 
confirms this observation. 

Proposition 3.2. Any difference-definite CPQF defined on boxes can 
be expressed as the sum of  a convex quadratic function and a separable 
CPQF. Moreover,  the quadratic function in the sum is exactly the expression 
on one of  the boxes in dom f 

Proof. Let B 1 , . . . ,  Bm and f l , - - - , f m  be the boxes in dom f and the 
expressions associated with them. Consider the auxiliary function 

g(x) - - f ( x )  - f l ( x )  + h ( ~  + . - .  + x~), 

where h-> 0 is large enough to ensure the convexity of  g. Because g is a 
difference-definite CPQF defined on boxes and is diagonal on B1, by 
Corollary 3.1, there exist one-dimensional CPQFs g ~ , . . . ,  g, such that 
g(x) = gl(X1) q-" " " d- gn(xn). Suppose that, for j = 1,, . . ,  n, 

I 
+oo, if xj < Cjo, 

pjlx2 + q.ilxj + ~l , if cjo <- Xj <- c~l, 

g~ (xj) . . . .  

I P~kjX~ + qjkjXj + rjgj, if c~kj-~ -<-- Xj <-- Cjkj, 
k +co. if xj ~;> Cjk J, 

Let 

pj = min{ Pjk I k = 1 . . . .  , kj }, for j = 1 , . . . ,  n. 
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Then the n-tuple ( P l , . - .  ,P , )  corresponds to at least one box, say B2, so 
that the expression of g on B2 is 

G ( x )  = p,x  + . . . + p.x  + . . . . 

Here , . . .  denotes the nonquadratic terms. Now, we show that f - f 2  is convex 
and separable. Note that 

f(x) - f2(x)  = g(x) - [J;(x) - f l ( x )  + A(x 2 + ' ' '  + x~)] 

= g ( x ) -  = . . . .  

j= l  

Since 

pjk>-pj, for k =  1 , . . . , / 9 ,  

f-f2 is a (separable) convex function. This completes the proof. [] 

Remark 3.1. Proposition 3.2 says that minimizing any difference- 
definite CPQF defined on boxes can be reduced to minimizing the sum of 
a separable CPQF and a smooth convex quadratic function, The problem 
of minimizing such a function xrRx + qrx +~ f(x~) can in turn be reformu- 
lated as 

min{yry+qTx+ ~f(x~),y Qx}, where QTQ=R. 

Thus, this type of problem is essentially a monotropic piecewise quadratic 
programming problem. Of course, it can also be solved by other decomposi- 
tion techniques, e.g., the one recently proposed by Han (Ref. 12). 

4. Conclusions 

Convex piecewise quadratic functions can be divided into two classes-- 
difference-definite and difference-indefinite ones. The expressions of  a 
difference-definite CPQF are determined by its expression on one poly- 
hedron plus a linear combination of [(ai)rx - bi] 2 and (a~)Tx--b, where 
(a~)rx-bi=O, i = 1 , . . . ,  t, are equations of the common boundaries 
between the neighboring polyhedra in its domain. The same is true for a 
difference-indefinite CPQF, but with additional terms of the form [(a ~)rx-  
b~][(a~)Tx--/~], where ~ is linearly independent from a ~. The existence of  
such ~ makes a difference-indefinite CPQF inseparable under any nonsin- 
gular affine transformation of the variables. The difference-definite class is 
important for applications, because it includes the monitoring function as 
a special case. If, in addition, a difference-definite CPQF is defined on 
boxes, then it can be expressed as the sum of a convex quadratic function 
and a separable CPQF. Therefore, their minimization problems can be 
reduced to monotropic piecewise quadratic programs. 
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