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Abstract. The classical R-matrix structure for the n-particle Calogero-Moser models with (type IV) elliptic 
potentials is investigated. We show there is no momentum independent R-matrix (without spectral 
parameter) when n ~> 4. The assumption of momentum independence is sufficient to reproduce the 
dynamical R-matrices of Avan and Talon for the type I, II, lII degenerations of the elliptic potential, The 
inclusion of a spectral parameter enables us to find R-matrices for the general elliptic potential. 
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1. Introduction 

The Calogero-Moser model [1, 2] is perhaps the paradigm of a completely 
integrable system of n-particles on the line which interact via pairwise potentials 
v(qi - qj). The most general form of the potential in such models [3] is the (so called 
type IV) elliptic potential, v(q) = a2ga(aq), where go is the Weierstrass elliptic function. 
The warious degenerations of this function yield rational (type I, v (q )=  1/q2), 
hyperbolic (type II, v(q) = aZ/sinh(aq) 2) and trigonometric (type III, v(q) = a2/sin(aq) 2) 
potentiials. In accord with their importance these models have been studied from 
many ,different perspectives. They have a Lax pair formulation, iL = [L, M]; the 
ansatz for this Lax pair leads to a study of functional equations [4-7]. Further, these 
models may be expressed as the Hamiltonian reduction [8, 9] of integrable flows on 
the cotangent bundle of symmetric spaces. The quantisation [10] of these models has 
also been of some interest. Recently, the related (type V) potential v(q) = 1/q 2 + 9q 2 

has been shown to be relevant to the collective field theory of strings [11]. 
The proof of the complete integrability of a system given in terms of a Lax pair 

involve, s several stages. The first, an immediate consequence of a Lax pair formula- 
tion, is the observation that the quantities T r E L  k are conserved. Here the trace is 
taken over the representation E of the Lie algebra g to which the operator L is 
associated. Another stage is to show these provide enough functionally independent 
conserved quantities. Finally, and this is perhaps the most tedious step, one must 
show the quantities are in involution, i.e. {Tr~L k, TrEL m} = 0. This step is model 
dependent. For the Calogero-Moser this stage may be achieved by arguments based 
on asymptotics [2], inverse scattering [12] or direct recursion [13]. Given an 
L-operator, an alternative approach to proving this Poisson commutativity proceeds 
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via the R-matrix [14-16]. An R-matrix is an E ® E matrix satisfying 

{L ,Q L} = [R, L ® 1] - [R ~, 1 ® L]. (1) 

An immediate consequence of the existence of an R-matrix is that 

{Tr~L k, TreE m} = Tre®e{Lk ,@ L'}  = km TrE®EL k-1 ® g m-1  {L @, L} = O. 

The vanishing follows from (1) by expressing {L ,Q L} as a commutator and using 
the cyclicity of the trace. An R-matrix also allows one to canonically construct the 
matrix M of the Lax pair [14]. Recently Avan and Talon [17] constructed the 
R-matrices for the Calogero-Moser models and potentials of type I, II, III and V, 
thus providing this alternate means of proof. The R-matrices found by Avan and 
Talon were dynamical: that is, they depended on the dynamical variables (in their 
case positions) of the model. In contrast to systems governed by purely numerical 
R-matrices [15], dynamical R-matrices needn't satisfy the Yang-Baxter equation and 
the theory of dynamical R-matrices is not well understood [t8-20]. One hopes that 
such concrete examples of dynamical R-matrices as are provided by the Calogero- 
Moser models will aid in the elucidation of this theory. 

Our present work investigates the R-matrix structure of the Calogero-Moser 
models further. The R-matrices of Avan and Talon were constructed on the basis of 
two assumptions, namely momentum independence and the vanishing of certain 
terms of the R-matrix. These assumptions were found to be consistent with the 
potentials of type I, II, III, V but did not allow the type IV potential. One might ask 
what happens if these assumptions are relaxed. We shall show that the second of 
Avan and Talon's assumptions actually follows from that of momentum indepen- 
dence (given sufficient particles). We can therefore conclude that no momentum 
independent R-matrix exists for the L-operators under consideration. In [21] 
Krichever enlarged the class of L-operators yielding type IV potentials to include a 
spectral parameter. The usual L-operators exactly correspond to those values of the 
spectral parameter for which the operators are hermitian. We show that the inclusion 
of the spectral parameter allows us to construct a momentum independent R-matrix. 

The plan of this Letter is as follows. In Section 2 we will introduce our notation, 
the L-operators under consideration and the equations to be solved. Section 3 looks 
at the simplifications resulting from the assumption of momentum independence. 
Section 4 then shows that for the usual L-operator no momentum independent 
R-matrix can be found. Upon introducing a spectral parameter in Section 5, we then 
exhibit a solution to the corresponding equations. We conclude with a brief 
discussion. 

2. Preliminaries 

As an alternative of the matrix entry calculations often presented, we give our 
calculations in terms of a basis of the underlying Lie algebra. Although we will 
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ultimately specialise to the gl, case, we believe this to be both computationally and 
conceptually easier. It will also enable us to isolate those features peculiar to gl,,. 

We begin by deriving the relevant equations to be solved and introducing our 

notation. 
Let X ,  denote a Cartan-Weyl basis for the (semi-simple) Lie algebra g associated 

with the operator L. That  is {Xu} -- {Hz, E~}, where {H~} is a basis for the Cartan 
subalgebra D and {E,} is the set of step operators (labelled by the root system • of g) 
and 

[Hi, E~] = c~iE,, [ E , , E _ , ]  = o~'H, and 

With IX, ,  X~] = c ~ X ~  defining the structure constants of g, we see, for example*, 
that c{~ = 6,,ac~ and c~_~ = c~z. Further, we adopt the Hermiticity convention 
E~ = E_~ for the representations of g. The structure constants may then be chosen to 
be rea]l and to have the symmetries: c~ = - c~ = c,~_p = - c_~_p.-z 

With this notation at hand we express the L operator as 

t2 =- ~ LuXu = p" H + i ~ w~E~, 

where [21] 

w, - w(~'q; u) - 0"(U - -  ~" q) e~(.)~.q" (2) 
a(u)cr(e'q) 

Here or(x) and ~(x) = ~'(x)/~r(x) are the Weierstrass sigma and zeta functions [22]. 
The quantity u in (2) is known as the spectral parameter and we will only make its 
appearance explicit when confusion might otherwise arise. It will also be convenient 
to use the shorthand f~ for a function on D that takes the value f ( e . q )  when 
evaluated at q. The functions w~ satisfy the addition formula 

w,w'~ - wpw', = (z~ - zp)w,+p, where z~(u) = w~(u) 2w~(u) ~o~ + ½~(u). (3) 

Clearly L = L t when w~ = - w_~ and this is the case usually considered. Requiring 
Hermiticity restricts the spectral parameter with the result that u ~ {o)1, c%, -co~ - 
co2}, where 2co~,2 are the periods of the associated elliptic functions. 

For  the Lie algebra gl,, the case of most interest to us, q5 = {ez - e~, 1 ~< i ¢ j ~< n} 
with the e~ an orthonormal basis of ~". If e~ denotes the elementary matrix with 
(r, s)-th entry one and zero elsewhere, then the n x n matrix representation Hz = eu 
and E~ = e~j when c~ = e~ - ej gives the usual representation of L. Working with the 
simple algebra a, corresponds to the center of mass frame. 

4tThroughout, Roman indices will denote the Cartan subalgebra basis elements while the early Greek 
indices e:, fl, ... will denote the step operators. 
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Let us begin unravelling (1). The left-hand side becomes 

{L @, L} = E { Lu, L*}Xu ® X ,  = i Z o~jw'~(Hj @ e~ - Ea @ Hi) (4) 
,u,v j , ~  

upon using { p j, w, } = { p;, ~'q}w" = aiw',. Turning now to the right-hand side of (1), 
we have R = RuvXu ® X ,  and R ~ = RvuXu ® Xv. Then 

JR, L ®  1] - [R ~, 1 ® L ]  

= RU*([Xu, L] ® X~ - X~ ® [X,,  L]) 

= R~'~LX([X~,, Xx] ® X~ - X,  ® [Xu, Xz]) 

= (R~Vc~zLZ - R~Uc~zL~)X~, ® X , .  

In terms of the Lie algebra basis, (1) then becomes the equation 

{ L u, L ~ } = l,r"~u,~,a~t z - R~U c~z L z. (5) 

Observe that (5) has the structure of a matrix equation, 

VR + R t V  = A, 

for the unknown matrix R in terms of the specified 

A " ~ = { L u , L  ~} and V U ' = c ~ L  z. 

Equation (5) yields three different equations, depending on the range of {#, v}. For 
(#, v) = (i,j), (i, ~) and (e, fi), respectively, these are 

0 = ~ ( R ' J @ -  R~i~j)w-~,, (6) 
o~ 

- aiw'~ = i~ 'pR ~i + a ' R i w ,  + ~( f l iwpR -t~ + w~,-t~Rt~ic~,-~) (7) 
IJ 

and 

0 = ~'RPw~ - fl'R~w~ + i(a'pR ~ - f l 'pR tJ~) + 

+ ~(n~Pc~_vw~_v -- RV~c~Ij-~w~_v) (8) 
V 

Here we have introduced the shorthand f l .R  u=- EifliR iu. Equations (6)-(8) are the 
components of (1) in our basis. 

3. Momentum Independence 

We now turn to the solution of Equations (6)-(8) subject to the assumption that the 
R-matrix is independent of momentum. This assumption (introduced in 1-173) means 
that 

R ~i=0,  R ~ - ~ + R  - ~ = 0  and R ~ = 0  i f ~ _ + f l .  (9) 

The first of these restrictions follows from (7) while the remainder come from (8). For 
example, in the matrix components of gln introduced earlier, we have R ~i = 0 ¢~ 
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R ~ku = 0 and we thus obtain Equations (14) of [17]. At this stage, Equation (6) is 

satisfied identically and the variables remaining are R ~J, R ~=, R =~ and R ~-~. The 

remaining equations to be solved are 

--o~iw' ~ = c~.Riwe q'- ~ i R - ~ w ~  -- o; iR~w_~ (10) 

and 

e ' R  aw~ - fi" R ~wp 

= c ~ ( R ~ %  - R~ew_~)  + cP_,~(R-~w~ + R - e P % ) .  (11) 

The first term on the right-hand side of i l l )  is nonvanishing only for ~, = /?  - e e  

while the second term is nonvanishing for ~ = f l  + ~. We note that for the 

simply-laced algebras (e. e = 2, Ve e q~), at most one of the terms on the right-hand of 

(11) can be nonvanishing and we henceforth assume this to be the case. Now, by 

viewing the root ~ = fi - e as being also the sum ~ = fl + ( - e ) ,  we obtain the two 
equations 

ct" Re w~ -- fl" R~we = c ~ ( R ~ w ~  -- Ree w_~) (12) 

and 

- e . R P w _ ~ - -  f l . R - ~ w ~  ~ ~-~ = c~v(R w v + R-~Pwv) .  (13) 

We shall utilise the consistency of these equations below. 

Our  tirst observation is that R ~j = q6 q + P~J for some constant t / that  we shall later 

determine and matrix U j orthogonal to the roots, e-PJ  = 0¥j. To see this, view (10) 

as an equation between vectors; thus e . R  ~ must be proport ional  to e~. If we define 

the constant of proportionali ty by e.  R ~ = t/~cq, where t/~ could in principle depend 
on cq then by linearity 

(~ + /~) .R ~ = ~ + ~ ( ~  +/~,) = ~ + ~ / ~  

and so t/,+a = t/= = ~p_--t/. Now for each e we have £~c~R~J= t/cg, and so 

R ~j = q6 q + U j. The matrix P~J orthogonal to the roots arises when we have u(1) 
factors present in g. Thus we have 

-w '~  = rlw~ + R - = w ~  - R ~ w _ ~ .  (14) 

The assumption of momentum independence leads then to the two equations (11) 

and (14),. 

4.  T h e  C a s e  w~ = - w _ ,  

Our discussion has so far made no use of the form of w~. For  the remainder of this 
section we will assume that w~ is an odd function, the case usually considered. As we 

shall see, this results in some quite strong conclusions. The next section, which deals 
with the inclusion of a spectral parameter,  will consider the more general case. First 
let us show 
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L E M M A  4.1. ~/= 0. 

P r o o f  U p o n  subtract ing f rom (14) the analogous  equat ion  obta ined by replacing 
with -c~ and using the second equat ion  of (9), we find 

r / =  - I(R~" + R-~-~) .  (15) 

Fur ther ,  upon  subtract ing (12) f rom (13), we obta in  

f l . ( R  ~' - R - ~ ' ) w p  ,~  ~i?¢,-~, R - p ~  _ R~,~, - = ~ , . -  + RPP)w~. (16) 

The  same opera t ions  appl ied to the analogous  equat ions based now on 7 = ( - ~ )  - 

( - f l )  and - 7  = ~ - / 8  yield 

f i ' ( R  ~ - R - ' ) w p  = c~r(R - ' - ~  + R - p - p  - R - ~  - R a - P ) w ~ .  (17) 

U p o n  compar ing  these last two equat ions and using (15) together  with R ' - ' +  
R - ~  = 0, we find tha t  r / =  0. [ ]  

Therefore  R ij = U J; the choice pij = 0 corresponds  to the middle two equat ions of 

Avan and Ta lon ' s  second assumpt ion  [-17]. We have now reduced the possible 

nonzero  variables of the R-mat r ix  to R ~', R ' '  and R " - "  subject to 

w~ 
R ~ - ~ + R - ~ = 0 ,  R ~ + R - ~ - ~ = 0 ,  R ~ + R  - ~ -  (18) 

Wa 

and 

cz . (R  ~ --  R-P)w~,  

Of course, c~ -- 0 unless 7 = /3  - e ~ ~ (in which case c~.7 ¢ 0). O u r  me thod  of 
solving these equat ions proceeds as follows. Let  us define the quant i ty  A~7 by 

D E F I N I T I O N  4.2. 

Apr =- /3" ( R  e - R - r ) w r  - c~_aazr .  (20) 

Obvious ly  this is closely related to the left hand  side of (19). Our  aim will be to show 

this quant i ty  to be constant ,  f rom which we will be able to deduce the remaining 
equat ions  of  Avan and Ta lon ' s  second assumption.  

L E M M A  4.3. A~p = Ap~ = - Ap~ = A~_~ = A_p~. 

P r o o f  First  let us mot iva te  the definition of Apt and then derive its symmetries.  
Suppose  7 ---/3 - e e * so only the first te rm in (19) is nonvanishing.  The analogous  

equa t ion  to (19) for/3 = (/3 - ct) - ( - e )  is 

(w' ' ) 
~ -~ - - -  + 2R - ~  wp. (21) a" (R ~ -- R -  ~)w~ = c_~p w~ wy 
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U p o n  adding wp x (19) to wr × (21) and using the symmetries of  the structure 

constants  together with the addit ion formula (3) for w~, we obtain 

~ ' ( R  p - R - a ) w a  + o~'(R ~ - R-r)w~ = c~(z~ - zp). 

(For  the case at hand, z~ = z_ ~.) After substituting e = fl - 7 in this expression and 

making  use of  the fact e ' ( R  ~ - R -~) = 0, which follows from (19), we obtain 

f l . ( R  ~ - R - r ) w r  - cL~azr = 7.(R p - R-P)wp  - c~z~ .  (22) 

Therefore Ap~ -- Aep. U p o n  using e = fi - 7 the remaining symmetries are similarly 

shown. [ ]  

Thus, to every triangle formed by three roots  a, fl, 7 we have associated a single 

constant  A ~  (up to a sign which is taken care of below). 

N o w  suppose the roo t  a may  be expressed as a sum of two distinct pairs of roots, 

= f i - - 7  = f i ' - 7 ' -  This requires that  n ~> 4. For  the simply-laced case being 

considered, we may  further assume c~ . (7 -  7 ' ) =  0 and that  our  labelling is such 

that  7 -- 7 '~ qb. Wha t  then is the relation between A~_ v and A~_~,? Using (19) we see 

that  

( 7 -  7 ' ) ' (  R~ --  R - ~ )  = 0. (23) 

Fur ther  c}_r = c},_~,, and so 

A~_~ = - 7"(R ~ -- R - ~ ) w ~  --  c}_yz~ = -- 7" (R  ~ - R-~)w~  - c},_y,z~ = A~_e,. 

We have just shown that  the constants  A~_r associated with a triangle of  roots  are 

the same whenever they share a roo t  a as a c o m m o n  edge. N o w  we can get from one 

triangle: of  roots  to any other  by intermediate roo t  triangles. Therefore the constants  

A~_r depend on all the roots  in the same fashion and we have shown 

L E M M A  4.4. A~a = c ~ _ ~  ~¢ f o r  some func t ion  ~¢. 

On combining this lemma and (19) we see that  

w' 
e " ( R  p - R -a )w~wp  = cr~ I -  + "~P + 2 R  - ~  wrwp = c~(~¢  + zp)w~. (24) ] \ w ~  w~ 

Thus ~? determines R - '~  and (via (18)) R "~, assuming we are given w~ and z~. 

Further,  

L E M M A  4.5. For  n >~ 4 ~¢ is a cons tant  and R - ~  is a f unc t ion  o f  a only. 

P r o o f  Once again, suppose the root  ~ may  be expressed as a sum of two distinct 

pairs of roots, ~ = fl - 7 = fl' - 7'. Compar ing  (24) with the analogous  equat ion in 
fl', 7' enables us to show that  

\wp, 
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and so we may solve for ~¢ explicitly in terms of the roots shown. We have argued 

however that d depends on all of the roots in the same fashion• Therefore s¢ is a 

constant. Having shown that d is a constant, let us rewrite (24) again, assuming that 

= fl - 7 = fl' - 7'. Then, 

' w' w~ w~, 
w~ wa = 2R - ~  + .,~ = ( d  + zP')wr,wa, 

( d  + zp)w~wp wp w~ - -  wp, 

The right-hand side of this equation is a function of fl and 7 only, while the left is a 

function of fl' and 7'. Thus both are functions of ~ only and the remainder of the 
lemma follows• []  

The final stage of our argument consists of showing there is no constant s¢ which 

makes 2R - ~  + w'/w~ a function of a only for the elliptic potentials being considered. 
Take, for example [22], w~ = 1/sn(~.x, k). Here 

w~ % = / / d  l + k  2 k2~ w~ w'~ 
( d  + Zp) w~w~ wp ~, ~ + = 5  - -  , W~] W~,Wfl Wet 

and we cannot both have d constant and this expression depending only on ct unless 

k = O. For  k = O, which corresponds to the type I I I  degeneration, we find 
R - ~  = -- w'/w~, R ~ = 0 and 

~ ' (R  ~ - R -a) = c~wa. 

For  gl,, this has a solution R ~p = wa/2 when ft. e~ # 0, and zero otherwise. We have 
thus obtained the remainder of Avan and Talon's assumptions together with their 

solution [17]. We have therefore shown 

T H E O R E M  4.6. I f  n >~ 4 there are no momentum independent R-matrices for the 
nondegenerate type I V  potential and w~ = - w_~. 

When n = 2, 3 our consistency arguments do not arise. For  n = 2 there is only one 

root and n = 3 only one root triangle and solutions in both cases are possible. 

5. Inclusion of a Spectral Parameter 

Having shown there are no momentum independent R-matrices for L-operators with 
w~ = - w_~, several possibilities remain. We may for example relax the assumption 
of momentum independence and solve the full equations (6-8), or we may look at a 

broader  class of functions w~. We will adopt  the latter approach in this note and seek 
momentum independent R-matrices for the class of L-operators (introduced by 
Krichever) containing a spectral parameter. The generalisation of (1) to the situation 

with spectral parameter  is 

{L(u) ,@ L(v)} = [R(u, v), L(u) ® 1] - [R=(u, v), 1 ® L(v)]. (25) 

If R(u, v) = R~(u ,  v)X~, ® Xv then R~(u, v) is defined by R~(u, v) = RV~'(v, u)X~, ® X~. 
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We proceed in the same manner given earlier. The left-hand side of (25) is 

{L(u) ,Q L(v)} = i~(~jw'~(v)Hj ® E~ - ccjw'~(u)E, ® H j), 
j,e 

and in terms of our basis (25) takes the form 

{L,~(u), L~(v)} = R~(u, v)cfxL~(u) - R"(v,  u)c~La(v). (26) 

Again three equations arise, depending on the range of {/z, v}. (The new possibility 
(/z, v) --= (e, i) yields the same equation as (#, v) = (i, ~) with u and v interchanged.) 

Once again the assumption that R(u, v) is momentum independent greatly reduces 
the possible nonzero components of R(u, v). We find 

R~i(u, v) = O, R~-'(u, v) + R-~'(v, u) = 0 and 

R~e(u, v) = 0 if a ¢ _ ft. (27) 

The components to be determined are RiJ(u,v), Ri'(u,v), R~'(u,v) and R~-~(u,v). 
Again we may argue that RZJ(u, v) = ~l(U, v)6 ~j + U i, and we arrive at two equations 

- w',(v) = rl(U, v)w,(v) + R-'~(u,  v)w~(u) - R~(v, u)w_~(u) (28) 

and 

~. Rqu ,  v)w,(u) - B" R'(v, u)we(v) 

= G(R'~(v,  u)w,(v) - nee(u, v)w_,.(u)) + 

+ d_~(R- '~(v ,  u)w,(v) + R - ~ q u ,  v)w,(u)). 

These equations are the analogues of (14) and (11), respectively. 
At this stage we make the ansatz 

~r(u, v) = ~(v - u) + ~(u) - ~(v), 

and 

R~(v, u) = 0 

R - " ( u ,  v) = w,(v - u)e -~("-")-~(v~+¢("~)'. 

(29) 

(3o) 

(31) 

For any Lie algebra, this ansatz solves (28) and reduces (29) to the equation 

Re(u, v) R~(v, u) 
a:" fl - c~a. (32) 

we(v) w~(u) 

The consistency conditions exploited in the last section are implicit here in the 
structure constants Gp. Certainly, for the case of gl, we may solve (32) by setting 

Pi~(u, v) = ½w~(v), whenever e 'ei  ¢ 0 (33) 

and zero otherwise. The remainder of this section will be devoted to proving some of 
these assertions. 
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First let us show that (28) is satisfied. Now 

~ _ ~ ( u  - ~ ) G ( v ) ~ ( v  - u - ~) 
R - ~ ( u ,  v )  ~ ( u ) ~ ( v  - c~)~(~)~(v - u)  

= ~ ( - u )  + ~(v - ~)  + ~(c0 - ~(v - u). 

The exponential factors in our ansatz for R - ~ ( u ,  v) have been chosen so that there is 
cancellation leaving only the a factors in the middle term. The final equality makes 
use of the identity [-22] 

o-(x + y)~r(y + z)a(z + x) 
= ~(x)  + ~ ( y )  + ~(z)  - ~(x  + y + z) .  

~(x),~(y)a(z)~(x + y + z) 

Finally, upon making use of 

w'~(v)/w~(v) = ~(v) - ~(~) - ~(v - ~), 

we find (28) holds for our choice of i/. 
As for (29), first observe that 

R-~'(v,  u)w~+¢(v) + R-Pa(u, v)w~+p(u) 

= [ ~ ( u - v - ~ ) ~ r ( v - c ~ - f l ) ~ ( v - u - f l ) ~ r ( u - ~ - f l ) ] ~ r ( c ~ ) ~ ( v )  + ~ ( ~ - ~ )  x 

e~(U)~ + ~(v)fl 
× 

~(~ + fl)~(v - u) 

= w~(u)wAv ). 

To obtain the final equality, we have employed the 'three-term equation' of 
Weierstrass [22, §20-53], 

a ( x  - y ) a ( x  + y )a (z  - t)a(z + t) + o-(y - z)o-(y + z)~(x - t)~(x + t) + 

+ ~(z - x)a(z + x)a(y -- t)a(y + t) = O. 

This observation means that (29) reduces to (32). 

6. Discussion 

This paper has further investigated the R-matrix structure of the Calogero-Moser 
models under the assumption of momentum independence. We have shown that for 
the usual L-operator (L = Lt<*w~ = - w _ ~ )  and nondegenerate type IV potential, 
no momentum independent R-matrix exists whenever n 1> 4. Indeed our analysis 
showed that momentum independence actually gives the R-matrices of [17] for the 
type I-III  potentials when the otherwise arbitrary projection operator pij is chosen 
to vanish. For n---2 and 3, solutions may however be found for the type IV 
potential. 
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By enlarging the class of L-operators under consideration to the family considered 
by Krichever, we were able to construct an appropriate spectral parameter- 
dependent R-matrix. This was given by (30), (31), (33). We have worked throughout 
in terms of a basis of the Lie algebra. This has the merit of reducing the problem 
to the two equations (28), (29) and highlighting the implicit consistency condi- 
tions. The ansatz presented by (30), (31) is independent of the Lie algebra to which 
L is associated. While we can certainly find consistent solutions to the resulting 
equation (32) in the case of gl, we have not fully examined this equation in the 
general setting. 

We must conclude by mentioning the very recent, related work of Sklyanin [23] 
which also constructs R-matrices for the type IV Calogero-Moser model with 
spectral parameter. At first glance our solutions are different and we have delayed 
the written presentation of this work in order to clarify this point. Certainly 
Sklyanin's approach is very different from our own. We may easily verify that 
Sklyanin's ansatz satisfies our (30), (31) and so provides a solution. The differences 
between the solutions has its origin in our respective presentation of the L-operators. 
Sklya:nin in fact works with a conjugate of Krichever's L-operator, UL(u)U- 1 where 
Uij = e~")x'6ij. Once this is observed, our solutions are in fact in agreement, our 
works; providing independent proofs of this fact. 
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