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Abstract. We consider infinite-dimensional optimization problems 
involving entropy-type functionals in the objective function as well as 
as in the constraints. A duality theory is developed for such problems 
and applied to the reliability rate function problem in information 
theory. 
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1. Introduction 

Extremum problems involving entropy-type functionals appear in a 
diversity of applications. To mention just a few: statistical estimation and 
hypothesis testing [Kullback-Leibler (Ref. 1), Kullback (Ref. 2), Akaike 
(Ref. 3)], traffic engineering [Charnes et  al. (Ref. 4)], marketing [Charnes 
et al. (Ref. 5)], accounting [Charnes and Cooper (Refs. 6, 7)], information 
theory [Shannon (Ref. 8)]. 

In the majority of these applications, the extremum problems involved 
are studied only for the case of finite distributions. Extensions to arbitrary 
distributions were derived recently by Ben-Tal and Charnes (Ref. 9). The 
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extremum problem is set up as an infinite-dimensional convex program 
with linear equality constraints, namely: 

(A) inf l  f f(t)log[f(t)/g(t)] dt: 
feOl. J r 

Irf(t)a,(t)dt=Oi, i=l,. . . ,m}, 

where D is the convex subset of density functions with support T and g(- ) 
is a given density in D. 

It is shown in Ref. 9 that the dual problem is the unconstrained 
finite-dimensional concave program: 

(B) sup{yt0-1og fr g(t)exp[i~, yia~(t)]dt}. 

The dual pair (A), (B) has a very interesting statistical interpretation. 
Let {0i}~=1 be parameters of the distribution, estimated in terms of a sample 
x = ( x l , . . . , x , )  by 

Oi(x) = O'~i(Xl,..., Xn) = (1/n)(ai(xl)+" " " + a,(x,)), 
and let these estimates replace Oi in the constraints of (A). Consider now 
the problem of finding the maximum likelihood estimator ~r*(x) of the 
parameter vector 7r = (~1, -- . ,  ~rm) t in the exponential family generated by 
the (fixed) density g(t), i.e., 

f(t[Tr)=g(t)c(~r)exp[~=l 7riai(t) ] ,  

where c(~r) is a normalizing constant, i.e., 

c(~r) -~= g(t) exp 7ria~(t dt. 
i 1 

The likelihood function is 

j~__lf(xj'Tr)={j=~g(xj)}'c('h')nexp[~j ~i "lriai(xJ)]; 

hence, 

( l /n)  log(likelihood) = const + log c(Tr) exp[~. 1r~0~(x)]; 

therefore, the maximum likelihood estimator 7r*(x) is obtained by solving 
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max{E ~r,O~(x) -log c-'(~')} 

= max ~ Irfl~(x)-log g(t) exp =~ lr~a~(t) dt . 
7rERm~i=l i 1 

The latter is precisely the dual problem (B). Thus, for the exponential 
family, statistical information theory and maximum likelihood approach 
are dual principles. 

Many problems in information theory, however, cannot be stated just 
with linear constraints as in problem (A); they contain also (nonlinear) 
entropy-type inequality constraints. It is the purpose of this paper to derive 
duality results for such problems and to demonstrate their power and 
elegance in treating such problems. 

As a motivation we begin by describing the channel capacity problem 
of information theory. Consider a communication channel described by an 
input alphabet A = {1 , . . . ,  n}, an output alphabet B = { 1 , . . . ,  m}, and a 
probability transition matrix Q = {O(klj)}, where O(klj) is the probability 
of receiving the output letter k ~ B when input letter j ~ A is transmitted. 

The capacity of the channel is defined as 

C = max I (p, Q) 
p ~ p "  

[ / ] Amax ~ ~ pjO(klj)log Q(klj ) ~ ptO(kll ) , (1) 
P cPn k=l j = l  l 1 

where 

11 j= l  

is the set of all probability distributions on the channel input and I(p, Q) 
is known as the average mutual information between the channel input and 
channel output. Channel capacity is the basic concept of Shannon's mathe- 
matical theory of communication (later called information theory). For 
more details on the notion of capacity and its significance, the reader is 
referred to Shannon (Ref. 8), Gallager (Ref. 10), and Jelineck (Ref. 11). 

Roughly speaking, the basic theorem of information theory, the so- 
called noisy channel coding theorem, states that, if the channel has capacity 
C, it is possible to transmit over this channel messages of sufficiently large 
length at rate R < C and still be able to decode them with a probability of 
error as small as desired. The upper bound on the probability of error is 
given in terms of an exponential decreasing function of the so-called 
reliability rate function E(R). In the classical proof of the coding theorem, 
the function E(R) is derived via a sequence of mathematical manipulations; 
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see, e.g., Gallager (Ref. 12) and Csiszar (Ref. 13). Blahut (Ref. 14) has 
enlightened many basic problems of coding theory be defining E(R) as a 
saddle function problem, involving the Kullback-Leibler relative entropy 
functional, namely, for a given channel matrix P(k[j), 

E ( R ) = m a x  min ~ Y, piQ(klj)log[Q(klj)/P(klj)], (3) p~P" Qc.9.(R) k = l  j = l  

where 

~(R)  ={Q: I(p, Q)<~R}, R a positive scalar. 

Starting from this definition, Blahut (Ref. 14) proved that E(R) can 
be expressed by the conventional parametric form originally proposed by 
Gallager (Ref. 12), namely, 

I m{nlPJP(klj)l/(l+~)}l+~ E(R) = max max -SR - log  k~__l (4) 
,~>0 P ~ P " l  = 

t 

A new proof of this result is given here in Section 3, via the duality theory 
developed in Section 2. The duality framework can be applied to a variety 
of other extremum problems of information theory; see, e.g., Blahut (Ref. 
14), Table I, p. 417. 

In particular, more than one entropy-type constraint can be easily dealt 
with, and the general (not necessarily discrete) distribution case can be 
considered. 

2. Duality Theory for Linear and Entropy Constrained Programs 

Let dt be a or-finite additive measure defined on a ~-field of the subsets 
of a measurable space T, and let L ~ & Ll( T, dt) be the usual Lebesgue space 
of measurable, real-valued functions x on T so that 

IIxH ~ f lx(t)t dt < oo. 
37" 

Let 

D={xc L~: x(t)>~O, a.e., frx(t) dt= l ) 

be the convex subset of L 1, i.e., D is the set of all probability densities x(. ) 
on T. 

Consider the infinite-dimensional optimization problem: 

(P) inf / x(t) log[x(t)/co(t)] dt, 
Jr 
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subject to 

r a ~ ( t ) x ( t ) d t ~ b i ,  i ~ I a = { 1 , . . . , m } ,  (5) 

r x ( t )  log[x(t)/ck(t)]<~ek, k c K  a={1,.. . ,p}, (6) 

and x(t) c • C L 1, where Ck : T-~ R, k c {0) u K are given summable positive 
functions, ai: T ~  ~ are given continuous functions, and {bi}icl, {ek}kcK a r e  

given real numbers. 
Here and henceforth, 

0log 0=  l i ~  t log t=0 .  

A dual representation of Problem (P) will be derived via Lagrangian duality. 
Recall that, for a convex optimization problem, 

(A) inf{f(x): g(x)<~O, xE C CX}, 

where f :  C -~ R, g : C ~ R m are convex functions defined on a convex subset 
C of a linear space X, the Lagrangian for problem (A) is defined as 
L: C x R ~ R ,  given by 

L(x, y) = f ( x )  + ytg(x). 

The dual objective function is 

h(y)--  inf L(x, y), 
x E C  

and then the dual problem (B) associated with (A) is defined as 

(B) sup h(y). 
y~0 

The main result concerning the dual pair (A) and (B) is the existence of a 
saddle point (x*, y*) for L or, equivalently, the validity of a strong dualilty 
result, 5 

inf(A) = max(B). 

Under the familiar Slater regularity condition, 

(S) 3 x ~ C : g ( x ) < 0 ,  

the strong duality relation is guaranteed. More precisely, we have the 
following theorem [see, e.g., Rockafeller (Refs. 15, 16), Laurent (Ref. 17), 
and Poinstein (Ref. 18)]. 

5 We follow the convention of  writing min (max) if the infinum (supremum) is attained. 
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Theorem 2.1. Assume that inf(A) < ~ and that the regularity assump- 
tion (S) holds. Then, 

inf(A) = max(B). 

Remark 2.1. The regularity condition (S) is, in fact, related to the 
notion of a stably set problem. More details are available in Rockafeller 
(Ref. 15) and Laurent (Ref. 17. especially Theorem 7.6.1, p. 403). 

Remark 2.2. A result of the type of Theorem 2.1 has typically a 
symmetric version; i.e., if (B) is assumed stably set, then min(A) = sup(B); 
see Rockafeller (Ref. 15, Theorem 4, p. 179). 

We now return to the primal entropy problem (P). The derivation of 
its dual objective function is based on the following simple result. 

Lemma 2.1. Let s(t) be a given positive summable function, 

r s( t) dt= S < oo. 

Then, 

m i n [  x(t) log[x(t)/s(t)] dt = - log  S, 
x E D  dr 

where the optimal probability density is 

x*(t) = s(t)/S, a.e. 

Proof. Define h(t)= s(t)/S. Then, h(t)E D; hence, by Theorem 3.1, 
p. 14, Ref. 2, we have 

inf f x(t) log[x(t)/h(t)] dt = 0, 
x E D  dr 

where the infimum is attained for 

x*(t) --- h(t) = s(t)/S. 

Then, using the identity 

f r f ( t )  log[f(t)/s(t)] dt= f r f ( t )  log[f( t) /h(t)]- log f r s ( t )  dt, 

the result follows. [] 
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(D) suplytb-Ate-p 
ycn~. 
A~R+ p 

The Lagrangian for problem (P) is L: D x R~' x R~ ~ R, 

L(x, y, A)= bty-eth 

+I { l°g[x(t)/c°(t)]-~ yiai(t)+ ~ r  ,~, k~Khklog[x(t)/ck(t)]}x(t'dt" 

(7) 
and thus the dual problem (D) associated with (P) is defined as 

sup{ inf L(x, y, A): y ~ ~ ,  h ~ RP}. 
x E D  

The next result shows that the dual problem (D) can be expressed simply 
as a finite-dimensional concave program involving only nonnegative con- 
straints. 

Theorem 2.2. The dual problem of (P) is given by 

log d[r Co(t) exp[( 1/p)A 'B(t) + y'A( t)] dt~,j 

where 

P 
p = l + ~  Ak, 

k=l 

A(t) = (al(t), . . . , am(t))t, 
n ( t ) = ( n a ( t ) , . . .  , n p ( t ) )  t, 

Bk(t)=log[ck(t)/Co(t)], VkcK={1,...,p}. 
Proof. The Lagrangian defined in (7) can be written, after some 

algebraic manipulations, as 

L(x, y, h) = -y'b -Ate 

+ frx(t) log{x(t)El+E~=Okl/[kOoCk(t)Ak" exp[ytA(t)]) dt. 

Then, defining 

P 
p = l +  ~ Ak, 

k=l 

Bk( t) = log[ck( t)/ Co( t) ], 
a little algebra shows that the dual objective function can be expressed as 

h(y, A) =ytb--Ate 

+ p  i n f /  x(t)log{x(t)/Co(t) exp[(1/p)(htB(t)+ytA(t)]} dt. 
xED ,]  T 
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Now, applying Lemma 2.1 with 

s(t) = Co(t) exp[(1/p)(h  tB(t) + y 'A(t)] ,  

we get the desired result. [] 

Duality results for the pair of problems (P)-(D) will now follow by 
setting problem (P) as a convex program of the type (A) and then applying 
Theorem 2.1. 

Theorem 2.3. (a) If  (P) is feasible, then inf(P) is attained and min(P) = 
sup(D). Moreover, if there exists x c D satisfying the constraints (5), (6) 
strictly, then sup(D) is attained and min(P)= max(D). 

(b) I f x * ~ D  solves (P) and y * ~ R ~ ,  h * ~ R  p solves (D), then 

c0(t) exp[ ( l / p )  (h *'B(t) + y*'A(t))] x*(t) = , a.e. 

fTCO(t) exp[(1/p)(A *'B(t)+ y*tA(t))] dt 

Proof. In order to apply Theorem 2.1, we need to set problem (P) in 
the format of the convex program (A). Thus, consider the linear operator 
A: L 1--~ R m, given by 

X~ al(t)x(t), dt] 

am(t)x(t) dt 

and, for k ~ {0} • Jr(, define the integral functionals 

ik(X)=I! x(t)log[x(t)/ck(t)]dt , if XCD, 

otherwise. 

Then problem (P) can be written as a convex eptimization problem, 

(P) inf{Io(x): Ax >I b, Ik(X) <~ ek, k c K, x ~ D}. 
Note that (P) corresponds to (A) with 

X := L 1, C := [~, f(x) := Io(x), 

b - Ax 
I t (x)  - el 

g(x) :  = 

.Ip(x)-ep 

, 
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and then the results follow from Theorem 2.1. In fact, since the dual (D), 
given in Theorem 2.2, has only nonnegative constraints y i> 0, ,~ ~< 0, it 
satisfies the strongest constraint qualification, implying by Remark 2.2 lack 
of duality gap and attainment of the primal infimum. Thus, the first part 
of conclusion (a) follows. The second part follows directly from Theorem 
2.1 itself. Moreover, part (a) implies the existence of a saddle point 
(x*(t), y*, A*) c D × R+ x ~P+, so 

min L(x, y*, A*) = L(x*, y*, A*), 
x ~ D  

and the expression for x* given in (b) follows from the last part of 
Lemma 2.1. [] 

3. An Application in Information Theory 

In this section, we apply the duality relation for problem (P) to treat 
in a unified simple way the reliability rate function problem described in 
the introduction. While the results developed in Section 2 are applicable 
to the case of general probability distributions, we restrict ourselves here 
to the case of finite discrete probability distributions, since they include 
most of the interesting problems appearing in information theory. We begin 
with some further notations and definitions, following closely the termi- 
nology of Ref. 14. 

The relative entropy or discrimination between two discrete (finite) 
distributions p, q playing a fundamental role in statistical information theory 
is a function J :  P" x P" ~ E, defined by 

J(p, q) = ~ pg log(pk/qk). (8) 
g=l 

It is well known that J is convex in each of its arguments, nonnegative, 
and equal to zero if and only if Pk = qk,  V k ;  see, e.g., Ref. 2. 

Similarly, one defines the average discrimination by 

J(Q, P)= ~ ~ p~Q(klj)log[Q(klj)/P(klj)], (9) 
j = l  k = l  

where p, Q, P are as defined in the introduction. 
In the rest of this paper, we simplify the notations: probability transition 

matrices, like P(klj), are denoted Pk~ and summation indices are dropped. 
An error exponent function is defined in Blahut (Ref. 14) as the 

following (single) entropy-constrained program: 

(E) e(r) = min{J(q, q2): q ~ P(r)}, 
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where 

P(r) = {q ~ •": J(q, ql) <~ r}. 

r is a given positive scalar and ql, q2 are given distributions in P". Problem 
(E) just defined is a special case of problem (P), described in Section 2, 
with I = Q (i.e., no linear constraints), K = {1}, and Co(t), c~(t) correspond- 
ing here to the discrete finite distributions q2, ql respectively. Moreover, 
since problem (E) consists of minimizing continuous functions over the 
compact set P(r), the minimum is attained; we know also from Theorem 
2.2 that the dual problem (H) corresponding to (E) inolves only nonnegative 
constraints, hence satisfying the strongest constraint qualifications. 

According to Theorem 2.2 and Theorem 2.3, by setting 

p = l + A a = l + 6 ,  el=r, 

we get the following theorem. 

Theorem 3.1. A dual representation of (E) is the program 

(U) e(r) = m a x { - & - l o g [ Y  ~8/(1+~)~/<1+~)11+~l t l l k  t t 2 k  d J .  
6 ~ 0  

Moreover, if q*~ P" solves (E) and 6 " ~  > 0 solves (H), then 

qS/(1+•) ~U(l+~) 
l k  t l2k 

q*-Y ,  tllk ~'12k 
,~/(1+6) ~1/(1+6)  " 

We recover here a result obtained in Ref. 14, Theorem 7. 
We now derive the dual representation of E ( R )  by reference to the 

error exponent function e(r). Recalling the definition of the reliability rate 
function given in the introduction [see Eq. (3)] and using our notations, 
we have 

where 

E ( R ) = m a x  min J (Q ,P ) ,  (10) 
pEP" Q ~ ( R )  

~(R) = {Q: Z(p, Q)~R}. 

A useful identity for the average mutual information is 

I(p,  Q) = rain J( Q, q), 

where 

J(Q, q):= ~ ~ PjQ(klj)log[Q(klj)/qk]. 
k = l  j = l  

(11) 
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This can be verified by observing that the minimum is achieved for 

q*k = ~ PjQkj. 
J 

Using (11), problem (10) can be reformulated as 

E(R) = max min P): min J(Q, q) <~ R}. (12) p o  o o~a(n) {J(Q' q~p- 

Now, it is an easy exercise to show that any optimization problem of the form 

rain{f (x): rain g(x, y) <~ r} 
x y 

is equivalent to 

rain{f (x): g(x, y)<~ r}; 
x,y 

hence, (12) becomes 

E(R) = max min min{J(Q, P): J(Q, q) ~< R}. (13) 
P q Q 

The inner minimum in (13) is of the form of e(r) in problem (E) and is 
appropriately denoted by e(R, q). Then, by Theorem 3.1, a dual representa- 
tion of it is easily shown to be 

{ / )1+8, 
D 1 / ( i + 8 ) ~ 8 / ( l + 6 ) k  [ e ( R , q ) = m a x  - S R - l o g  ZZvj-kj Uk j j .  (14) 

k k j  

Substituting the latter representation in (13), we get 

E(R) = max min max{g(q, 8) - 8R}, (15) 
p q t ~ 0  

where 

I "11+~ 
ol/O+a)~a/O+8)t g(q, 8):=-log ~,~,V~--kj ~k j . (16) 

I. k j  

We shall prove that the min-max appearing in (15) can be reversed. Before 
that, we need an auxiliary result. 

Lemma 3.1. The function g(q, 6) defined in (16) is 

(a) concave in 6, for any q s P", 
(b) convex in q, for any 6/> 0. 

Proof. (a) It is well known that the Lagrangian dual function is 
always concave in the dual variables; hence, (a) follows. 
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(b) Let f : R ~ R  be a convex decreasing function, and let g : R n - R  
be a concave function. Then, it is easy to verify that h(x) =f(g(x)) is convex. 
Take 

f ( t )  = - log  t 

(convex decreasing), 

g(q) =~ akq~/(1+8) , t~ .--'--vC~ l..tj,t kj--D~5/(l+6)"~l" 0 
k j 

(concave for 6 >I 0). Then, clearly, 

g(q, 8) = (1 + 6)f(g(q)), 

and (b) is proved. [] 

The rain-max theorem related to (15) now follows. 

Theorem 3.2. Let K(q, 6 ) =  g(q, 6)-6R. Then, we have 

rain max K(q, 6) = max rain K(q, 6). (17) 
q ~ 0  6 ~ 0  q 

Proof. By Lemma 3.1, K(q, 6) is a convex-concave saddle function 
for every q c •" and every 6/> 0. By a result of Rockafeller (Ref. 19), a 
sufficient condition for the validity of (17) for a general convex-concave 
saddle function is that 

dK 
36o>~0, such that 6o-d-~-(q, 6)>~0, q ~ P " ,  6 > 0 .  

This is certainly satisfied if 

dK 
3q, 36 > 0, such that ~ (q, 6) < 0, 

i.e., 

d 
3q, 3 6 > 0 ,  such that g'(q, 6) =~-~ g(q, 6)<R. (18) 

Since R > 0, it suffices to prove that 

inf  g'(q, 6) ~ 0. (19) 
6 ~ 0  

But g'(q, 6) is a derivative of  a concave function and thus is decreasing; 
hence, 

inf g'(q, 6) = lim g'(q, t$). (20) 
~ > 0  ~-~cx~ 
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Moreover, the gradient inequality for the concave function g(q , .  ) implies 

0 = g(q, O) <~ g(q,  6) - 6g'(q, 6), 

hence 

g'(q, 3) <~ g(q, 3)/3. 

Thus, to prove (19), it suffices to show that 

lira g(q, 6)/6<~0. 
8-~oo 

Indeed, straightforward computation shows that 

lim g(q, 3 ) / 3  =0.  [] 

The last theorem permits us to write E ( R )  [see, Eq. (15)] as 

E ( R )  = max max min K(q ,  3). 
p s~>0 q 

However, the next result will show that the inner minimum can be computed, 
and thus E ( R )  can be expressed simply as a double maximum problem. 

Lemma 3.2. We have 

max log[~ xT/(~+'~)yi] 1+, = log Y~ y~+'~, ~ > 0, 
x ~ X  

where 

x (x °nxk 0 1} 
Proof. From the H61der inequality, we get 

[Y x~/('+°~y~] 1+° ~< (Y x~F(Y y~+°). 

Taking logarithms of  both expressions and using the fact that ~ Xk = I, we 
get 

sup log[Y~ X'~/(a+'~)yk]~+" <<- log Z a+~ Yk , 
x c X  

and the sup is attained for 

x* = y1+'~/2 y~k +'~ . [] 

Now, since 

rain K(q ,  3) = - 6 R  - m a x  g(6, q), 
q q 
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using Lemma 3.2 with 

Xk := qk, Yk := ~ Fj~ kj , 
J 

a final expression for the reliability rate function E ( R )  is as follows: 

E(R)= max maxl-SR-log~ [r-v~/(~+~)] ~+~} L/_.Fytkj / . (21) 
peep"  8~0  [ k j ..I 

This result coincides with Theorem 18 given in Ref. 14. The second term 
in (21) is the so-called Gallager function. The dual representation (21) is 
useful for deriving efficient computat ional  algorithms; see, e.g., Ref. 20. 
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