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New General Guidance Method in 
Constrained Optimal Control, 

Part 2: Application to Space Shuttle Guidance 1'2 
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Communicated by D. G. Hull 

Abstract. The application and the performance of the neighboring 
optimal feedback scheme presented in Part 1 of this paper is demon- 
strated for the heating-constrained cross-range maximization problem 
of a space-shuttle-orbiter-type vehicle. This problem contains five state 
variables, two control variables, and a state variable inequality constraint 
of order zero. 
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1. Introduction 

In Par t  1 o f  this pape r ,  a numer ica l  m e t h o d  for the rea l - t ime compu ta -  
t ion o f  ne ighbo r ing  o p t i m u m  feedback  cont ro ls  is deve loped .  In o rde r  to 
d e m o n s t r a t e  the p rac t ica l  app l i cab i l i t y  and  efficiency o f  this f e e d b a c k  
scheme,  we a p p l y  our  m e t h o d  to a space  flight op t imiza t ion  p r o b l e m  which 
descr ibes  the  c ross - range  m a x i m a l  reent ry  o f  a space-shu t t l e - type  vehicle  
u n d e r  a re rad ia t ive  hea t ing  const ra in t .  We have chosen  this p rob l em,  since 
it served for  m a n y  years  as one  o f  the most  d e m a n d i n g  real- l i fe  app l i ca t i ons  
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during the deve lopment  o f  the multiple shoot ing code (Refs. 1, 2, 3, and 
4). The model  itself goes back to a paper  o f  Dickmanns  (Ref. 5), who also 
obta ined  a rather  crude approximat ion  for the solution o f  the unconst ra ined  
problem. The heat ing-const ra ined problem was completely  solved by means 
o f  multiple shoot ing (see Refs. 6, 7, and 8). The accompany ing  flight path 
correct ion problem was treated in Ref. 9 for  the unconst ra ined  case. 

2. Mathematical Model 

Increased range capaci ty  for a space-shutt le-orbiter- type vehicle allows 
more  frequent  returns f rom the orbit. Therefore,  the funct ional  chosen to 
be maximized is the cross-range angle 

rain I[u]  = r a i n -  A(ts) , (1) 

subject to the equat ions o f  mot ion  (state variables: Xl = V ~ velocity, x2 = 
X g heading angle, x3 = 3' ~ flight path angle, x 4 = A ~ cross-range angle, 
x5 = h ~ altitude, the down-range  angle O is decoupled;  control  variables: 
ul --/x ~ bank  angle, u2 = CL ~ lift coefficient) 5 

f ' =  - ( C o o + C ~ ) ( F p o / 2 m )  e x p ( - / 3 h ) V 2 - g o [ R / ( R + h ) ]  2 sin % (2a) 

f( = CL(Fpo/2m)  e x p ( - / 3 h ) V ( s i n / x / c o s  3,) 

- [ V / ( R  + h)] cos 3' cos X tan A, (2b) 

"~ = CL( Fpo/ 2rn ) exp( - /3h)  V cos /z  

-((go/V)[R/(R + h)] 2 -  V / ( n  + h)} cos 3,, (2c) 

A = [ V / ( R  + h)] cos 7 sin X, (2d) 

/~ = V sin % (2e) 

with the constants  

Coo = 0.04, n = 1.86, R = 6371.2 km, 

Fpo/2m = 3.08 km -1, /3 = 0.145 km -1, 

go = 9.80665E - 03 km sec -2. 

The b o u n d a r y  condit ions are 

V(0) = 7.85 km sec -~, 

y(0) = -1 .25~-/180,  

V((r) = 1.116 km sec -I ,  

x(O) = o, 

A(0)  = 0, h (0)  = 95 km,  

3,(tf) = - 2 . 7 7 r / 1 8 0 ,  h ( t r )  = 30 km,  

We hope that the customary notation in flight path engineering, which conflicts with the 
customary notation in optimal control theory (see Part I of this paper), does not lead to any 
confusion, especially w.r.t. /z, A, n, T, and or. 
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where b is unspecified. The somewhat unusual value of n in the induced 
drag model fits the real drag coefficient of the shuttle model better than a 
quadratic drag polar (cf. Ref. 5). 

Moreover, the following zeroth-order state constraint has to be taken 
into account, which limits the skin temperature of the vehicle: 

C L - G , , (  V, h)-±CL,-, <-0, (3) 

where 

and 

5 4 
CLH = Y~ BiHi, Bi = Y~ g~h i~'!, 

~=l j= l  

H~ = b2h2/V 2, 

142 = b h / V - H , ,  

83 = 1 - b h / V - H 2 ,  

//4 = V / ( b h ) - 2 + b h / V - H 3 ,  

H s = V 2 / ( b h ) 2 - 3 V / ( b h ) + 3 - b h / V - H 4 ,  

~= h/5o-1, 

b = 0.095, 

and the coefficient matrix 

0.110717 0.834519 
-0.672677 2.734170 

g~j= 0 .812241 2.337815 
-3.151267 -13.621310 

2.368095 19.073400 

1.213679 -1.060833 i 
-0.864369 -12.100000[ 
10.316280 22.974860| 

-40.485500 -57.833330[ 
69.869050 t27.777778J 

Different levels of limit skin temperature T are indicated by the parameter 
&CLH via 

T = 1093 + 3704& CLH (°C). 

The parameter ACLH plays an important role for the computation of 
the optimal trajectories. Starting with a value of &CLH-~0.12, the heating 
constraint is not active (see Fig. 1). Then, by homotopy (i.e., by decreasing 
the value of ACLH in sufficiently small steps), a family of optimal control 
problems is constructed. The solution of each problem of this so-called 
homotopy chain serves as an initial guess for the subsequent problem, 
Notice that the multiple shooting algorithm is essentially a Newton iteration 
and requires a good starting trajectory. This procedure enables the computa- 
tion of the constrained problem when the switching structure depends 
sensitively upon the tightness of the constraint. Details for speeding up this 
homotopy procedure can be found in Ref. 8. 
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Fig. 1. History of the lift coefficient for ACLH =0.12 (unconstrained case), 

To avoid blowing up the paper, the discussion of the necessary condi- 
tions of  optimal control theory is restricted to the expressions for the optimal 
control variables in terms of  the state and adjoint variables. They are 
obtained from the first and second variation. The following relations hold: 

sin/z = - h j ( w  cos y), (4a) 

cos tz = -A t /w ,  (4b) 

where 

and 

W = [(~x/COS ~)2q_ ~2]1/2 

{ c~free=[-w/(Vhvnk)]~/<"-'~,  on unconstrained arcs, 
"~L (5) 

C L =  C~ °und= C L H ( V ,  h ) + A C L H ,  on cons t r a ined  arcs. 

Now, we discuss in brevity the effect of the limitation of the skin 
temperature. The oscillatory behavior typical for trajectories under entry 
conditions not corresponding to quasi-steady glide is smoothed with an 
increasing tightness of  the constraint, i.e., a decreasing homotopy parameter 
ACLH (see Fig. 2) as long as the range of  ACLH is physically significant. 
The utmost value of  ACLH ~--0.04566259 represents the end of  the 
homotopy chain corresponding to a temperature T~-924°C. Beyond this 
point, optimal solutions do not exist, since C~ e~ becomes undefined for 
nonnegative values of Av. Figures 1, 3, and 4 show the time histories of the 
lift coefficient for different levels of the temperature. Each graph contains 
two curves--a  solid one for the active control, which equals C~ ~ on 

f-~bound unconstrained arcs and ,~L on constrained arcs, and a dashed one for 



JOTA: VOL. 67, NO. 3, DECEMBER 1990 441 

~, [°] 

0 

-I 

-2 

-3 

...... /~ 
. . . . . . . . .  • "' l \  : - 

~ c L . =  o12 \ \ i 
. . . . . .  ~ c , . _ -  000 / i ~  
. . . . . . .  ACLH ~ --0.04566259 ~ " 

500 1000 1500 2000 t [sec] 

Fig. 2, History of the flight path angle for ACLH = 0.12, 0.0O, --0.04566. 
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Fig. 3. History of the lift coefficient for ACL~ = 0.00 (most interesting case). 
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Fig. 4. History of the lift coefficient for &CLH ~ --0.04566259 (end of homotopy). 
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the competitive control which is determined vice versa. Figure 1 shows that 
a considerably changing switching structure has to be expected when 
decreasing the parameter ACLH. Indeed, the optimal solutions have one to 
four constrained subarcs. A fifth subarc which might be expected does not 
occur, since the fifth local minimum is smoothed out during the homotopy. 
As indicated in Fig. 3, the last two subarcs always merge together (see 
Ref. 6). 

3. Application of  the Guidance Method 

Now, we give the explicit expressions for the matrices representing the 
linear multipoint boundary value problem of Section 3 of Part 1 of this 
paper, in order to establish the feedback scheme• 

We find that 

where 

and 

5 5 3 1 

B =  s I - P  ho ) , 
• t T -,~o(fo) :~o(tJ  o 

1 0 0 0  ! ]  

I = 0 0 1 0  , 

0 0 0 0 

5 5 1 

c ,  = 5 [ Wx, w~,  9¢11,=,, o, 

with i denoting the number of the switching point and q = O, and 

10 1 

D1 = 10 [/, 0]. 

The switching function W is defined by 

¢~ free f ~ b o u n d  
W ~--~- I - ' L  ' ~ ' L  • 

Furthermore, the rows of B with numbers 4, 6, and 8 can be cancelled, i.e., 
the parameters dv are redundant according to the prescribed terminal 
conditions. 

The performance of the guidance method for this optimal control 
problem can now be characterized by the size of a multi-dimensional tube 
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around the optimal trajectory, the so-called controllability tube. Cross 
sections of this tube are associated with the so-called controllability regions 
indicating the deviations of  a single state variable, either in the positive or 
in the negative direction which can be successfully compensated for, if all 
other state variables are assumed to be undisturbed. Of course, this rep- 
resentation by means of  controllability regions does not imply that simul- 
taneous disturbances of  different state variables cannot be damped out. The 
boundaries of  these regions are obtained by an a posteriori check which 
accepts the actual trajectory if the final conditions and the heating constraint 
are not violated beyond a prescribed tolerance. The tolerances are given by 
the values of the admissible maximum deviations from the prescribed final 
conditions: 

A l(~ = 0.005 kmsec  -I, hyf  = 0.03~r/180, zXhr = 1 kin. 

The heating constraint was considered to be unsatisfied if 

W ( x ,  A ) / ( C L ,  + A C L , ) >  0.01. 

Figures 5 and 6 project the controllability regions w.r.t, velocity and flight 
path angle due to a slightly constrained subproblem with two switching 
points and a more severely constrained one with the maximum number of 
eight switching points. The boundaries have the complicated shape typical 
for the domain of convergence of iteration methods. All controllability 
regions first grow and then shrink, which is explained as follows. In the 
first half of  the flight maneuver, the vehicle flies at supersonic speed of 
more than 5 km/sec, preventing the successful compensation of  large devi- 
ations. The controllability regions swell when the velocity decreases faster, 
and then shrink at the end of  the flight, because the prescribed final 

8V [kmsec -1] 0,ol 
0 . 0 0  " ~ 

-°-=I !I 
o,ot --2;:1i]  - " t . . . . . .  &CLH =0.t0 ~! 

Fig. 5, Controllability regions of velocity for ACLH =0.10, 0.05. 
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Fig. 6. Controllability regions of flight path angle for ACLH = 0.10, 0.05. 

conditions force the nonnegative and nonpositive controllability boundaries 
to merge. The contractions of the controllability tube are related to the 
location of the constrained subarcs. The sawtoothed behavior of the bound- 
aries beyond the constrained subarcs might be influenced by the oscillations 
at lower speeds. The same behavior can be found in the numerical results 
of  Refs. 9 and 10. Figures 7 and 8 show comparisons between actual and 
nominal flight path angle and lift coefficient for a deviation of  3h (300 sec) = 
4 km. 

If perturbed terminal conditions are considered (e.g., for the uncon- 
strained reentry problem), the changes of  the end conditions can be com- 
pensated successfully for almost all to < t~ if they stay within the following 
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Fig. 7. History of actual and nominal flight path angle for ACLH = 0A0 for the deviation 
6h (300 sec) = 4 km. 
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Fig, 8. History of  actual and nominai  lift coefficient for ACLH =0A0  for the deviation 
6h (300 sec) = 4 kin. 

bounds: 

-25 m/sec_< dVf<_4.5 m/sec, ]dyft ~ 0.025 7r/180, 

-600 m -  < dhj .< - 100 m. 

Here, dVi,  dyf,  and dh r denote the prescribed changes of the terminal values 
for the velocity, the flight path angle, and the altitude, respectively. 

The region of a good approximation of the optimal control probtem 
by the accessory minimum problem is very limited in this case. This is 
caused by the high sensitivity of the solution w.r.t, changes of the terminal 
conditions. Notice that this type of perturbation forces the neighboring 
extremals to move away from the nominal extremal in the entire time 
interval. Therefore, this laced controllability tube w.r.t, perturbed terminal 
conditions may also occur when other guidance schemes are used if these 
are based on information from a reference trajectory. This also includes all 
boundary-value-problem solvers using an initial guess for the solution which 
is then iteratively improved. Even the efficient multiple shooting method 
has a comparably small domain of convergence if the boundary conditions 
are perturbed. As a remedy, it is recommended to store several trajectories 
together with their accompanying feedback schemes. 

4. Conclusions 

The numerical results for the cross-range maximization problem of a 
space-shuttle glider under a reradiative heating constraint show that, even 
for this extremely sensitive problem, the range of controllability is large 
enough for practical applications. 
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The range of controllability for terminal perturbations is considerably 
smaller, since it may be inherent for all feedback schemes that use some 
information from a reference trajectory. 

Together with the more costly repeated correction method, two variants 
of  a multiple shooting based guidance method are available which are 
numerically stable and nearly optimal. These can be applied either to 
guidance problems requiring extremely fast correct ions-- the  observance of  
the constraints can only be guaranteed to the first order in this ca se - -o r  to 
problems that allow more expensive computa t ions - - in  which case all the 
constraints are checked and even a limited absence of  measurement  data 
is not disastrous. 
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