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Solution Concepts in Two-Person Multicriteria Games 

D .  G H O S E  ~ A N D  U .  R. P R A S A D  2 

Communicated by W. E. Schmitendorf 

Abstract. In this paper, we propose new solution concepts for multi- 
criteria games and compare them with existing ones. The general setting 
is that of two-person finite games in normal form (matrix games) with 
pure and mixed strategy sets for the players. The notions of efficiency 
(Pareto optimality), security levels, and response strategies have all been 
used in defining solutions ranging from equilibrium points to Pareto 
saddle points. Methods for obtaining strategies that yield Pareto security 
levels to the players or Pareto saddle points to the game, when they 
exist, are presented. Finally, we study games with more than two 
qualitative outcomes such as combat games. Using the notion of guaran- 
teed outcomes, we obtain saddle-point solutions in mixed strategies for 
a number of cases. Examples illustrating the concepts, methods, and 
solutions are included. 

Key Wards. Game theory, vector-valued optimization, multicriteria 
games, combat games, Pareto optimality, equilibrium points, security 
levels, saddle points. 

1. Introduction 

Games  with multiple noncomparab l e  criteria are called multicriteria 
games or  games with vector  payoffs. Such games have attracted limited 
at tention in the game theory  literature, perhaps  due to a pauci ty o f  useful 
appl icat ions o f  such a theory.  Another  impor tan t  reason is that  many  o f  
the intuitively appeal ing  results in scalar criterion games seem to have no 
counterpar ts  in the existing theory  o f  multicriteria games. The limited results 
obta ined  to date for these games also do not seem to possess any straightfor- 
ward and logical game theoret ic interpretation. Recently certain generaliz- 
ations o f  the well-known theory  o f  pursu i t -evas ion  games (Ref. 1), called 
combat  games (Ref. 2), have been formulated  as zero-sum bicriterion 
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differential games (Ref. 3 and 4). Though these games are dynamic in nature, 
we hope to get some insight into these problems by first analyzing multi- 
criteria two-person zero-sum matrix games. 

Blackwell's (Ref. 5) was the first paper which dealt with multicriteria 
games as a generalization of the scalar criterion games. An asymptotic 
analog of the minmax theorem in scalar criterion games was established 
for repeated games with vector payoffs. The analysis is based upon an 
approachability-excludability theory to answer the question as to whether 
a player will be able to force his average payoff to approach or exclude a 
given subset in the payoff space, if the game is repeated a large number of 
times. Shapley (Ref. 6) defined the concept of equilibrium points in games 
with vector payoffs and proved that the solution of a certain scalarized 
nonzero-sum game (a bimatrix game) also gives the equilibrium solution 
in mixed strategies of the original game. More recently, Nieuwenhuis (Ref. 
7) presented a possible generalization of the notions of minmax, maxmin, 
and saddle points for vector-valued functions using the well-known concepts 
of efficiency or Pareto optimality. Corley (Ref. 8) used identical generaliz- 
ations in the case of matrix games with vector payoffs and indicated a way 
of obtaining the minmax, maxmin, and equilibrium (saddle) points. The 
approaches adopted in Refs. 6-8 are more or less the same. 

In the present paper, we use the notion of Pareto optimality (efficiency) 
and that of guaranteed security levels simultaneously to define solution 
concepts in multicriteria two-person zero-sum games; we show their relation- 
ships with the existing solution concepts in scalar and multicriteria games. 
This generalization is different from the generalizations presented in Refs. 
6-8. We have attempted to compare these different kinds of generalizations 
and point out their conceptual differences. Our main effort has been to 
show that, in multicriteria games, a single solution concept in terms of only 
equilibrium points is not sufficient. So, we propose and discuss various 
solution concepts associated with multicriteria games. 

Lastly, we abandon the usual representation of the payoff matrices in 
terms of numerical quantities and replace them with outcomes in a qualita- 
tive sense. Such matrices are then analyzed for the existence of saddle points 
under pure and mixed strategies based upon the preference order of the 
players. This approach is meaningful in the qualitative analysis of combat 
games. 

2. Some  Definit ions and Remarks  

Let @ C R ~ be a compact subset of the n-dimensional real space. Each 
element v ~ ~ is of the form (v~, . . . ,  v,)'. Let us define a preference cone 
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Z C R"  with its apex  coinciding with the origin. The  preference  cone Z is 
a s sumed  closed and convex  with n o n e m p t y  inter ior  and  has the p roper ty  
that  Z ~ ( - Z )  = {0}. The  inter ior  o f  Z is deno ted  by int Z and  its b o u n d a r y  
by  OZ. Let v 1, v2e D, v ~= ( v l , . . . ,  v~n), i =  1,2; and  let Z ° = Z \ { 0 } .  Then:  

v l = v  2, if  and  only if v ~ - v 2 = 0 ,  
vl>--v 2, if  and  only  if v ~ - v 2 e Z ,  
v ~ > v 2, i f  and  only  if v ~ - v z 6 Z °, 
v ~ ~ v 2, if  and  only if  v ~ - v2~ Z °. 

Definition 2.1. A vector  v e @ is said to be a Pareto m i n i m u m  in D 
with respect  to Z iff, for  all u e  9 ,  ( v - u ) e Z  implies  that  ( v - u ) = 0 ;  i.e., 
there exists no u e 9 ,  such that  (v - u) e Z °. Similarly,  a vector  v e 9 is said 
to be a Pareto  m a x i m u m  in 9 with respect  to Z iff, for  all u e D, (u - v) e Z 
implies (u - v) = 0; i.e., there  exists no u c @ such that  (u - v) e Z °. 

There  are o ther  ways o f  defining Pare to-op t imal  vectors.  For  details,  
see Ref. 9. In the r ema inde r  o f  the paper ,  we assume  that  Z = Z + ,  the 
posi t ive or than t  in R". Then,  we have our  usual  definit ion o f  Pareto  
m a x i m u m  and  Pareto m i n i m u m ,  which are deno ted  by Pmax  and Pmin 
respect ively  in this paper .  

Remark  2.1. For  n = 1, Pmax and Pmin b e c o m e  identical  to the usual  
definit ion o f  max  and min  in scalar  cri terion games.  Note  that  the relat ion 
/> is a part ial  order  on 9 C R"  for  n ->2, but  not  a total  order.  For  n = 1, "--- 
is not  only  a part ial  o rder  but  also a total  order.  The relat ions ~ and 
are not  par t ia l  orders  for  n -> 2. But for  n = 1, they are equivalent  to ~ and 
>-, respect ively  (and hence  total  orders) .  

Cons ide r  a matr ix  A = {a/j}, with p n u m b e r  o f  rows and  q n u m b e r  o f  
columns.  Each  e lement  aij of  the matr ix  is an n- tuple  ( a n ( I ) , . . . ,  a~(n)). 
We define individual  matr ices  o f  d imens ion  p × q as 

A(k )={%(k ) } ,  k =  1 , . . . ,  n. 

There  are two players,  P1 (the minimizer ,  who  chooses  rows) and  P2 (the 
maximizer ,  who chooses  columns) .  

The mixed  strategy spaces of  the players  P1 and  P2 are 

F I = {  y ' : i=~ Y ~ = I ; T I > - O ' i = I ' ' " ' P }  ' (1) 

F 2 =  y2: Z Y j = I ; Y ] - > 0 , j = I , - . - , q  , (2) 
j = l  

where  an e lement  y~ e F i, i = 1, 2, is o f  the fo rm 

~' = ( ~ I , . . . ,  ~ ) ' ,  (3) 
,),2 = ( y ~ , . . . ,  y~),. (4) 
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The pure strategy sets are denoted by F~ and F 2 and are the extreme points 
or vertices of F ~ and F 2, respectively. 

This implies that, when a player P; follows a strategy 7i, he chooses a 
row (or column) j with probability y~. The expected payoff of the game is 
denoted by 

j ( . y l  .y2) = ( j l( , .yl  .)/2) . . . .  , j n ( ~ / 1  .y2)), (5) 

where 

j(71, 72) = y,,Ay2, (6) 

Jk(Y', y2)= yVA(k)y2, k =  1 , . . . ,  n. (7) 

Thus, we have a two-person zero-sum n-criterion matrix game, 

3. Generalization with Pareto Optimality Concepts 

In this section, we shall briefly present the generalizations proposed 
by Shapley (Ref. 6), Nieuwenhuis (Ref. 7), and Corley (Ref. 8). An equi- 
librium point (or a saddle point) is said to exist, if there exists a strategy 
pair (y l . ,  y2.), y t , ~  F1, y2,~ F 2, such that 

j(.yla~, .y2)• j(,yl:g ,}/2*), V'y2~ F z, (8a) 

j ( y l ,  y2,) ~ j (7~ , ,  72,), V 7  t E F 1. (8b) 

Note that this reduces to the usual saddle-point definition for scalar games 
when n = 1. Generalizations of minmax and maxmin points can also be 
obtained. For given y l e  F1 and y2c F 2, we define sets of  vectors, 

j ( . y l  ]72) ~ y2~1.2 {j(~/1 ,y2)}, (9) 

s ( r  1, r 2) =~ ~ ,  {s(r ' ,  r2)}, (10) 
Tel" 

g(yl)  ~ {x e J ( y ' ,  F2): (x+Z°+)<J(y',F2)=Q}, y'cF', 

g(r ' )  -~ U yt~l'l 

Similarly, 

(11) 

g(7'). (12) 
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h(y2)&{x~J(r~, y2): (x_ZO+)c~j(F ~, y2)=Q},  y2er2 ,  (13) 

2 A h(r )= ~ h(~,2), (14) 
T ~F2 

G& Pmin Pmax j ( y l ,  y2) 
~1EI~I y2E['2 

= {x e g(rl):  (x - z  °) c~ g(V ~) = Q}, (15) 

H & Pmax Pmin J(y~, 2) 
~2~F2 TIfF I 

= {x e h (F2): (x + Z°+) c~ h (F 2) = O}. 16) 

One can use the same definitions with respect to the pure strategy sets by 
replacing F ~ and F 2 by F~ and F 2. The sets GCR" and HCR" are sets 
of  minmax and maxmin points as defined in Refs. 7 and 8. 

There is no apparent relationship between the minmax, maxmin, and 
saddle (equilibrium) points, except that a point which is both minmax and 
maxmin is obviously a saddle (equilibrium) point (Ref. 8). One main 
drawback of such a generalization is that the ordered interchangeability 
property among pairs of strategies does not hold. Thus, the achievement 
of  equilibrium depends on some amount of cooperation with the opponent. 
These characteristics are somewhat similar to those of the Nash equilibrium 
points in nonzero-sum scalar games. These equilibrium points, in general, 
do not offer the best security levels in terms of the individual criteria. 
Illustrative examples of these will be presented later. 

4. Generalizations Using Security Levels 

In scalar criterion games, the concepts of security levels and security 
strategies are inherent in the definition of maxmin and minmax points. We 
shall exploit some of these concepts in the following discussion related to 
multicriteria games. 

Associated with every strategy yi ~ Fi for Player Pi, there exist security 
levels in each of  its criteria J j , j  = 1 , . . . ,  n. They are denoted by J)(y~) and 
j~(y2) for players P1 and P2, respectively, and are defined as the payoff 
with respect to the j th  criterion when P~ plays Tic F ~ and his opponent 
does his best to minimize (or maximize, as the case may be) the j th  criterion. 
Hence, 

J)(y~)=maxJj(y', y2), j=l , . . . ,n ,  (17) 
y2~l "2 

j~(y2) = rain j j (yt ,  y2), j = 1 , . . . ,  n. (18) 
@~1 '1 
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The security levels are n-tuples of the form 

j l ( , )  = ( i ' ( y l ) , . . . , y ~ ( y l ) ) ,  

j 2 ( 2 )  = ( ~ ( ~ 2 ) , . . . ,  j~(~2)), 

which represent the guaranteed payoffs in each of  the criteria to the players 
P1 and P2, respectively. 

Definition 4.1. A strategy ~1~ F l is said to be a Pareto-optimal (or 
efficient) security strategy (POSS) for P1 iff, for all y i ~  Fi,  

.~1(~/1) ~..~1(,~1) implies j l ( y l )  = j l ( , ~ l ) .  

Similarly, a strategy ~2 ~ F 2 is said to be a POSS for P2 iff, for all 72 c F 2, 

! 2 (y  2) >- !2(~ 2) implies j2(72) = j2(~2). 

This way of defining Pareto optimality in multicriteria games is also 
used in Ref. 10. 

The set of Pareto-optimal security strategies for Player P; is defined as 

i i Fi: yi Fsp = {Y c is a POSS}, i = 1, 2. (19) 

The members of these sets are analogous to the security strategies in scalar 
2 2 criterion games. In fact, for n = 1, j~(yl)  and j2(y2) for yl ~ F~ v and y E F,p 

are precisely the upper and lower values of the game. But, unlike the scalar 
criterion games, where these values are unique, there could be multiple 
upper and lower values in multicriteria games. We can prove that the upper 
values of the game are never less than the lower values of the game. Hence, 
we have the following lemma. 

Lemma 4.1. For every yf ~ F~p and 7 2 ~ F 2 sp, 

_J~(z, ~) <_ Y'(~) .  (20) 

Proof. By definition, 

j2(,)/2) ~__ j ( , ) / l  ,)/2) ~ yl(~)/ l) ,  (21) 

which proves the lemma. [] 

This is analogous to a result in scalar criterion games which states that 
the loss ceiling is never less than the gain floor. In fact, I'~p are  analogous 
to the minmax and maxmin strategies in scalar games, but different from 
those defined in Section 3. 
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Definition 4.2. A strategy 331~ F t is said to be a Pareto-optimal (or 
efficient) response strategy (PORS) for P1 against a strategy 72~ F 2 of  P2 
iff, for all 71 ~ F ~, 

J(71, 72)~ J(331, 7 2) implies J ( 7  ~, 7 2) = j(33t, 72). 

Similarly, a strategy 332e F2 is a PORS for P2 against a strategy 7~e F ~ of  
P1 iff, for all 7 2 e F 2, 

J(7', 72)>-J(71, 332) implies J(7', 7 2) = J ( Y  1, 332). 

The set of Pareto-optimal response strategies for player P1 against an 
opponent 's  given strategy is defined as 

Frlp(7 2) = {71 E r t :  2/1 is PORS against a T 2 E ]7'2}, (22) 

F2p(7 ') = {y2e F2:72 is PORS against a y l e  FI}. (23) 

Based upon these definitions, we can define different solution concepts for 
multicriteria games. 

4.1. Efficiency in the Mutual Response Mode (Equilibrium Points). A 
pair of strategies (71., 72"), 7l*~ I q, 72"c F 2, is said to be an efficient pair 
of  strategies in the mutual response mode if 

Tl*eF~p(y2*) and 7 =*rp~,Y J- (24) 

This definition is equivalent to the definition of  equilibrium points in Section 
3, since 

7 I* ~ F~p(7 2.) 

¢:>3 no y~FI~J(7  ~, 72") < J (T  1., 7 2.) 

¢z>J(71 , 72*)~J(71. ,  72"), VTIEF  1. 

Similarly, 

7 2* ~ F ~ ( 7  ~*) 

,(=~j(71:~ 72)>j(.y.1,,  .72*), V72EF2 

which proves the equivalence. 

4.2. Equilibrium Points with Pareto-Optimal (Efficient) Security 
2 , ~ r 2  is said to be an Levels. A pair of strategies (y 1., 72"), 71. c F~p, y ~ ~p ,  

equilibrium point with Pareto-optimal (efficient) security levels if they also 
satisfy the equilibrium condition (24). Clearly, they also offer Pareto-optimal 
security levels. As we shall see later, such strategies may not always exist. 
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4.3. Pareto-Optimai (Efficient) Saddle Points. A strategy pair 
(3`1,, 3`2,), 3`1,~ F 1, 3`2,~ F 2, is said to be in Pareto-optimal saddle-point 
equilibrium if 

.TI(3`1.)  = j2 (3 `2~) .  (25 )  

Such a saddle point satisfies the conditions of the previous two solution 
concepts as well. It is the Pareto saddle-point concept for multicriteria 
games that is truly equivalent to the saddle.point condition in scalar games 
(i.e., minmax = maxmin). However, the existence of such a saddle point is 
rare even under mixed strategies. But if it exists, it has all the good properties 
of saddle points in scalar games (ordered interchangeability, equilib- 
rium, efficiency, security, etc.). 

Remark 4.1. All the three solution concepts described here reduce to 
the saddle-point condition in zero-sum scalar criterion games when n = 1. 
The existence of equilibrium points (as defined in Section 4.1) is guaranteed 
by Theorem 3.1 in Ref. 7. But the other two kinds of equilibrium points 
may not exist. In fact, the existence of equilibrium strategies which are also 
POSS can be easily determined by taking the intersection of the set of 
equilibrium strategies and the set of POSS for the same player. The existence 
of the Pareto-optimal saddle points can be checked by determining the 
security levels associated with the strategies in the POSS set and checking 
if Eq. (25) holds. In view of these observations, it is clear that the determina- 
tion of POSS is important to solve a game using the concepts proposed 
here. Sometimes POSS are found to be more useful than just equilibrium 
strategies without Pareto-optimal security associated with them. A good 
example is the combat game mentioned earlier (Ref. 4). 

Example 4.1. See Ref. 8. Consider the game matrix 

a=[ (o,o) (2,-1)], 
L(1,-2) (o,o) / 

' i ' 
T1+ 3`2= 1, 3,1,3/2>--0, i =  1,2. 

The equilibrium strategies (Section 4.1) are given by 

{(3` 1, 3,2). " O ~  3,11 < 1/3, 2/3 < 3 "̀ -< 1, 3'1 : 1 - 3,11; 

0 - <  1 / 3 ,  2 / 3  < 1 ,  3,1 = 1 - 

{(3` 1, 3,2): 1/3 --< 3,1 -< 2/3, 3,~ = 1 - 3,1; 3,~ = O, 3'~ = 1} 

t J {(3,1, ,)/2): 3'~ -~" 1, 3,~ : O; 1/3 -< 3,~ -< 2/3, 3'i : 1 - 3,~}, 

whereas the POSS sets are 

r~p = {3,1c r l :  1/3 _< 3,1 -< 2/3, 3,~ = 1 - 3,1}, 

F~p = ( 3̀  2 e F2:1/3 -< 3'12 -< 2/3, 3,~ = 1 - 3,~}. 
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Thus the set of equilibrium points with efficient security levels (Section 4.2) 
is empty. Of  course, each strategy in F~p and Fs2p offers security to each of 
the players individually, but do not form equilibrium pairs. Clearly, no 
Pareto saddle points (Section 4.3) exist for the game. 

Example 4.2. Consider the game matrix, 

a [ ( - 1 , 1 ) ( - 2 , 3 ) ]  

= L(1 , -1 )  (3,-2)_I" 

The equilibrium strategies are given by 

{("/, 3,2): 0-<--7~ < 1/3, 2/3 < ~,~-< 1, ",/~ = 1 - ' r~ ;  

0<712<1,  2 w = 1 - / }  

w{(yl ,  3,2): 1 / 3 ~  y I ~ 2 / 3 ,  72 ~= 1 - y l ;  3/12=0, y22= t}. 

The POSS sets are 

r~p = {y '~  F':  0 -  < Yl -< 1, y~ = 1 - Yl}, 

r%={v~r~:/= 1, v~=0} 
Then, the strategy pairs that yield efficient security levels to players and are 
in equilibrium form the set 

{(y,, y23: 0 ~  Yi < 1/3, 2/3 < y]--- 1, y~= 1 -  3/I; y 2= 1, y~=0}. 

This game also does not have a Pareto saddle point. 

Example 4.3. Consider the game matrix 

A =  [(2, 3 ) ( 3 , 2 ) ]  
L(4, 1) (213).1" 

The POSS sets are 

F]p= {y '~  F': 3,1 =2 /3 ,  9,~= 1/3}, 

r~o={v=~ r~: /= 1/3, y~=2/3}.  

These are also the equilibrium and Pareto-optimaI saddle point strategies 
for the game with 

Y'(v '* )  = _J~( v 2.)  = (8 /3 ,  7 /3) .  

4.4. Existence of Pareto Saddle Points. From the previous discussion, 
it is clear that the existence of  a Pareto saddle point, as defined in Section 
4.3, is desirable due to its excellent properties of  efficiency, security, and 
stability. But as we have seen, not all multicriteria zero-sum matrix games 
have this kind of  equilibrium point. It would be interesting to know the 
class of  matrices which has this property. In order to do so, we state and 
prove the following theorem. 
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Theorem 4.1. If there exists a pair of Pareto saddle-point strategies 
(y l , ,  3/2,), y t * c  F 1, y2*e F 2, then the following statements are equivalent: 

(i) j ( . y l ,  ~2)< j(3,x, ' T2,)___ j (Tl ,  T2,), T, EF1, .y2E 1.2; (26) 
(ii) (yl*, 9, 2.) are saddle-point strategies of scalar criterion game 

matrices A ( k ) ,  k = 1 , . . . ,  n; 
(iii) r" i ,  =~ lsP ' e L  ~/2. E Fs2p, and J~(y'*) = j2(y2,) .  (27) 

Proof. We shall first prove that ( i )~ ( i i ) .  From the inequality (26), 

sk(~'*, ~2)-< ak('/*, ~2")<- 4 ( r ' ,  r2*), 
k = 1 . . . .  , n, y~ e F 1, y2 e F2, (28) 

which implies that (~,**, ~/2,) is also an equilibrium pair of strategies for 
the matrix A (  k ), k = 1 . . . .  , n. 

Next, we prove that ( i i )~( i i i ) .  From (28), 

max Jk(y 1., ~//2)= j~(y l , ,  y2 , )=  min Jk('/*, ,)/2.). 
~z ¢ F 2 y~ ~ FI 

Thus, 

yl(~/,) = j 2 ( 2 , )  = j(~/ , ,  v:*). (29) 
In order to prove that 3 ,1. E F~p, assume that there exists ~1 ~ F ~ such that 

y~(~) < y~(rl,), 

which implies that 

s(~7', 7 2.) < s(~'*, "/*). 
This is a contradiction of (28). Thus no such ~ can exist and y~*e F~p. 
Similarly, y2, e F2p. 

Next, we prove that ( i i i )~( i ) .  For k = 1 . . . . .  n, 

min J k ( ' y  1, y 2 . )  < J k ( y l * ,  - 2,'~ <: max Jk(y ~*, 72). (30) 
V t~rt Y , ' - - y2  F2 

Using (27), the inequality signs in (30) can be replaced by equality signs. 
This implies that 

j k ( ~ / l * ,  ~ /2 )~  jk( , ) / l*  ' , ) /2 .)<:  jk( ,y1 ' ,)/2,), 

and therefore, 

J (T 1., y 2) -<J(T 1., T2*)~< J ( y  1, 3,2*). 

This completes the proof. [] 

Corollary 4.1. If a Pareto-optimal saddle point exists, then for all 
yl ~ F~p and for all y2 e Fzv, 

y l (y , )  __j2(y2). (31) 
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Proof. From Theorem 4.1, we know that there exists 3`l,~F~p and 
32, ~ Fs~, such that 

y l ( 3 1 * )  = j 2 ( 3 2 , )  = a (say). 

Let there be 91e F~p such that 

Y'(9')#a. 

But, since 9'e F~p, by Lemma 4.1, 

7 ' (9 ' )  > J2(3`2*)~Y'(9')  > Y'(3`'*), 

which implies that 91~ lP~p. This is a contradiction. Thus, no such 331 can 
exist in r~p. A similar proof  can be constructed for 9 2 e F2p. [] 

The corollary shows that, when a Pareto saddle point exists, all POSS 
are also Pareto saddle-point strategies and vice versa. The properties of 
ordered interchangeability and best security levels are also satisfied. The 
game has a unique value. 

5. Determination of  P O S S  

The importance of  POSS as a solution concept has been discussed 
earlier. The sets of POSS for the players must be obtained in order to check 
for the existence of  solutions based upon the idea of security levels (Sections 
4.2 and 4.3). For this, we define two scalar criterion games, one for each 
player, and prove that the minmax (or maxmin, as the case may be) solutions 
of  these games are also POSS for the corresponding player. Similar sufficient 
conditions were proved for dynamic games in Ref. 11. Here, we also prove 
a necessary condition for matrix games. The following discussion relates 
to the strategies of Player P1. Identical arguments hold for P2, for which 
similar results can be obtained by suitable modifications. 

5.1. P1 Game. In this game, P1 has a strategy 3` lE 1-" 1, but P2 has n 
strategies 3 2 ~ . . . ,  3`2n c F 2. The payoff function for the game is defined as 

j,(3`,, 3, 2) = oq j ,(7~, 3 ,2 , )+ . . .  + ~,j,,(3`~, 72~), (32) 

where 

3`2 = (3`21, . . . , 3`2n) E F 2 = I~ F2,  
k=l  

Jk(Y', y2k) = y,'A(k)y2k, k= 1 , . . . ,  n, 

and a t ,  • • . ,  a ,  are scalar real numbers. 

(33) 

(34) 
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This is a scalar criterion game in which P1 tries to minimize s l and 
P2 tries to maximize s 1. Since P2 has n strategies, it can obviously devote 
each of its strategies for the individual maximization of Jk, k = 1 . . . .  , n. 
One may construct a P2 game in a similar fashion. 

Definition 5.1. A strategy y~*e F ~ is said to be a minmax strategy for 
P1 in the P1 game if, for all T i e  F ~, 

A ~x 1 
max j~ (y l . ,  _y2)_ max j (yl ,  72). (35) 
y~ e !~ 2 2/2 • F2 

Theorem 5.1. A strategy y ~* 6 F 1 is a Pareto-optimal security strategy 
for P1 in the original game (i.e., ~,l*e I up), if 71. is a minmax strategy for 
P1 in a Pl  game with ak > 0, k = 1 , . . . ,  n, al +" • • + a ,  = 1. 

Proof. Since ,y2k affects only Jk(y ~, y2k), we have 

max ]1(7' ,  3, 2) = ~ ak max Jk(Y', yz). (36) 
~ r 2  - k=l ~ r  2 

Then from (35), we have, for all y 1 e r 1, 

ak max Jk(y'*,  y2)< i a k  max Jk(y 1, 2 ) .  (37) 
k = l  3,2~r 2 k = l  y2~F2 

This is enough to prove that y~*er~p (Ref. 11). [] 

Theorem 5.1 proves only a sufficiency condition for POSS. Below, we 
shall also obtain a necessary condition. In order to do this, we use the 
following theorem, which is a weaker version of Theorem 4.2 given by Lin 
(ReL 12), and therefore can be proved similarly. 

Theorem 5.2. If  a set LC_R" is closed and convex, and if z ° ~ L  
is a noninferior point in L (Pareto minimum, in the sense of Defini- 
tion 2.1), then there exists scalars a = ( a ~ , . . . ,  a,) ,  ak>--O, k =  1 , . . . ,  n, 
a , + .  •-+c¢, = 1, such that a'z,  z~  L, reaches its minimum at z °. 

In Section 4, we defined security levels f~(y~) for each yl ~F ' .  Let 
S C_R" be defined as the set of all security levels associated with Pl 's  
strategies 

S = {Y'(yl): y '  e r '} .  (38) 

We define an extension of  the set S, denoted by S E, as follows: 

SE = { x e R " : B y e S  ~ y<-x}. (39) 

Obviously, S C  S E, and S E is a closed set, since R" is closed and S itself 
is closed by its very definition. 
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Theorem 5.3. The set S e is convex. 

ProoL 

c =  ,~a+(1 - ,~  )b. 

Since a ~ S E, there exists Y~a ~ F ~ such that 

] ' ( y ~ )  -< a. 

Similarly, there exists 7~ ~ F1 such that 

7'(~/~)_< b. 

Therefore,  

hY'(y'~) + (1 - h ) ] ' ( y ~ )  ~ Aa +(1  - A ) b .  

Let 

Let a ~ S E and  b ~ S z. Then, for an arbitrary 3. ~ [0, t ], define 

(40) 

(41) 

(42) 

(43) 

1 A y ~ + ( 1 - A ) y ~ .  (44) 

Obviously,  y l  c F 1. So, 

]~(9'~) ~ S. (45) 

Cons ider  

--1 1 J~(avo+(1-a)v~) 

= max (ay~ + (1 - A ) y ~ ) '  A ( k ) T  2 (46) 
y2~I'2 

_<- max (Ay~)' A ( k ) y 2 +  max ((1 - A)y~) '  A ( k ) y  2 
y2 e I'2 7 2 E F2 

= hY~(y~) + ( t  - A)]~(7~).  (47) 

This is true for  all k = 1 . . . . .  n. From (44) and (46), we have 

]l(ylc) <- c; (48) 

and, since (45) is true, it proves that c E S E. Thus,  S E is a convex set. [] 

Theorem 5.4. I f  y l * ~  F 1 is a POSS for P1 (i.e., y l , ~  F~p), then there 
exists ce = ( a l , . . . ,  ~x,), an->0,  k = 1 , . . . ,  n, a~ +" • . + a ,  = 1, such that y 1. 
is a minmax solut ion o f  the P1 game with this a. 
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Proof. The set S E is closed and convex. The vector Yl(y l*)c  S E and 
is a noninferior point. Therefore, from Theorem 5.2, there exists a = 
(a~ . . . .  ,a,), ak~O, k---l , . . . ,n,  oq+.. " + a n = l ,  such that a 'z ,  z c S  E, 
attains its minimum at J~(7~*), which implies that 

O~'Jl(`/l*) ~ OCtZ, for all zES E. (49) 

Since for all y* c F l, y l ( y l )  ~ SE, we have 

a']l(y 1.) ~ a'Yl(y~), for all y~ ~ F ~. (50) 

from which we get, for all y~ ~ F ~, 

al  max Jll(`/l*, , / 2 ) + . . .  + a~ max j~(, /1, ,  ,/2) 

-< a~ max Jl(,/~, ,/2) + . . .  + a ,  max j l  (`/1, ,/2). (51) 
T2~ F 2 2/2c F 2 

T h u s ,  

max j , ( y l , ,  7z)<_maxJ,(y~, y2), for all `/1 E r l .  (52) 
~.2~r2 ~zci22 - 

Therefore, by Definition 5.1, y ~* is a minmax strategy for the Pt game. This 
proves the theorem. [] 

Remark 5.1. We proved a sufficiency condition and a necessary condi- 
tion above for POSS. According to a theorem by Arrow, Barankin, and 
Blackwell (Ref. 13), the set of all Pareto-optimal points in S E is the closure 
of the set of  points obtained by scalarization with strictly positive weights, 
and thus we obtain almost all the Pareto-optimal strategies. Further, if the 
set S E were polyhedral, then strictly positive scalarization would have been 
both a necessary and a sufficient condition. Then, only a finite number of  
such scalarizations would have been sufficient to obtain all the Pareto- 
optimal security strategies. But the polyhedrality of  S E is not proved here. 

The above theorems and results can also be proved for player P2 with 
suitable modifications. 

5.2. Solution Method. We have shown that the POSS for player P1 
can be obtained by solving the P1 game. Here, we outline a method by 
which the P1 game can be first transformed into a zero-sum matrix game 
and then solved by the usual linear programming technique. 

Let B be a matrix with p rows and q~ columns. Each column j is 
identified by an n-tuple ( s ~ , . . . ,  s~), s; c { 1 , . . . ,  q}, and each element b 0 is 
defined as 

bo= i akai,,~(k), (53) 
k=l 



JOTA: VOL. 63, NO. 2, NOVEMBER 1989 181 

for a given set of  ( O / 1 , . . .  , a n ) .  Here, a~.,k(k ) is the element in the ith row 
and s~th column of the matrix A(k). Actually, b• is precisely the payoff in 
the P1 game when P1 chooses the ith row and P2 chooses the skth column 
in the matrix A(k). 

Thus, solving the zero-sum game with matrix B will give the solution 
to the P1 game. Since the former has a saddle-point solution, the P1 game 
will also have a saddle-point solution with minmax equal to maxmin value. 
The zero-sum game with matrix B can be solved by the usual linear 
programming technique for player P1 only. The solution to the P2 game 
can be obtained by following a similar line of  reasoning. 

6. Solution Concept Based on Outcome Maps 

The operation of  minimization and maximization in a multicriteria 
game imposes a preference structure on the payoff space which is not 
particularly well defined, the main reason being the absence of a total order 
relationship between the various outcomes. A special situation, in which 
this preference ordering can be expressed as a total order, can be constructed 
by partitioning the payoff space itself into a finite number  of  disjoint sets 
and associating a well-defined outcome, in a qualitative sense, to each of 
these sets. Here, we use the concept of  ordinal utility function (Ref. 14) 
and define outcomes in terms of  specific set of  values of  the performance 
index. It is a general concept which can be applied to both scalar and 
multicriteria games. 

Let the payoff space ~ be partit ioned into m subsets, denoted by 
~ ,  i --  1 , . . . ,  m, such that 

~=~_J ~,, ~c~@:=Q,i#j. (54) 
i= l  

Associated with each ~i is an outcome Oi. Thus, we have a set of  outcomes 
{ O 1 , . . . ,  Ore}. Each player will rank these outcomes differently depending 
upon their preference. Let us denote the preference relation for player Pi 
as ~i .  I f  Ok -~; Or, then Pi prefers Ok at least as much as O1. The relation 
>~ indicates a strict preference of  one outcome over another by player Pi. 
We assume that ~i  is a total order as well on the outcome set. To reflect 
the preferences of  the players, we define two sets of  preference orderings 
PO1 and PO2 for Players P1 and P2, such that each set is an ordered set 
with elements as the outcomes O~, i = 1 , . . . ,  m, ordered with respect to the 
relations ~ and ~ ,  respectively. In these sets, the first element is the most 
preferred outcome and the last element is the least preferred. Note that, if 
the set PO1 had been the reverse of  the set PO2, then the game would have 
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been a perfectly antagonistic one with no element of cooperation possible 
between players. Otherwise, for some outcomes, the preferences of both 
the players may match and some element of cooperation is possible. The 
former is similar to a zero-sum scalar criterion game, and the latter to a 
nonzero-sum one. 

6.1. Pure Strategy Solutions. Consider the situation in which the 
players use pure strategies only. The pair of strategies (7~, 72), 7pCFp,l 1 7p E2 
F~, is such that 7p corresponds to the ith row and 72 to the j th  column of 
the matrix A. Then, 

7p) = aij = (a o ( 1 ) , . . . ,  a0 (n)). (55) 

Obviously, a u m 9,  and so there exists 9k c 9,  such that aij m 9k. Let Ok be 
the outcome associated with the subset 9k. Then, the outcome resulting 
from the choice of the pair of strategies (71v, 72) is denoted by O(7~, 7~) 
and is 

O(7~p, 72)= O(i , j )= Ok, (56) 

where O is a function from the pure strategy space F~ × F 2 into the set of 
outcomes. 

Definition 6.1. An outcome m a p  O(A)pxq for a payoff matrix Ap×q is 
defined as a matrix with elements from the set of outcomes { O 1 , . . . ,  Ore} 
such that, if a 0 ~ 9k, then the ( i , j ) th element of O(A) is Ok. 

Now, the equilibrium strategies may be defined similarly to the Nash 
(7p , 72") is said to be in equilibrium concept. A pair of pure strategies l .  

equilibrium if 

O(7~,*, 2, , 2, ' r ~ (57) 7p ) ~-10(Tv, 7v ), VTp~ p, 

0 ( 7 ' 2 ,  2. 2 2 r 2 (58) 7p ) >-2 7p), vT.  

If the ordered set PO1 had been the reverse of  P02,  then it would have 
implied that ->1 and >--2 are the opposite of each other, and a pair of strategies 
(71p *, 72.) would be in equilibrium if 

2# O(71p # , 72) ~-~l 0(71p # , 72p #) ~10(71p ,  7p ), 

Vy'p m V'p, 72 c V 2 . (59) 

This is analogous to the definition of saddle points in pure strategies for 
zero-sum scalar criterion games. Clearly, there could be outcome maps for 
which no Nash (or saddle point) equilibrium strategies may exist. 

In zero-sum games, the concept of security was brought in through the 
minmax and maxmin solutions of the game. Similar notions also exist in 
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nonzero-sum games. One can extend these results to the present context 
quite easily. Let 

W ' =  U W'(7;) ,  (60) 

where Wi(Tp) is the worst outcome that Pi can expect if he chooses 7; .  
For an outcome Ok c W i, define 

r•(ok) = {7; E rp: w ' ( 7 ; ) :  Ok}. (61) 

If  W ~ is ordered according to the relation >-i, then the first element 0%( W ~) 
is the best outcome (security level) that Pi can expect for his choice of 
strategies restricted to F~. The corresponding set of security strategies will 
be Fip(0%(Wi)). The security level of each player is unique, and there exists 
at least one security strategy for each player. 

Lemma 6.1. 0%(W2) -->1 0%(Wl) and 0%( W l) >-2 0%(W2). (62) 

Proof. Let 0%(W1)=PO1(k). Then, P2 can never guarantee an out- 
come lying in the set {POl (k+  1 ) , . . . ,  POl(m)}. Thus, 

0%( W 2) e { P O I ( I ) , . . . ,  P O l ( k ) } ~  0%( W 2) >-1 0%(W1). 

Using exactly similar arguments, it can be proved that 

O~(wl) >-2 °~(W2) • 

This lemma is similar to a result in scalar-criterion zero-sum games, 
which says that the minmax value is never lower than the maxmin value. 
Only, in this case, the notions of minmax and maxmin have been replaced 
by the notions of assured or guaranteed outcomes based upon the preference 
structures imposed upon the payoff space by the individual preference 
orders PO1 and PO2. 

Let 

0%(W') = PO1 (r), 0%( W 2) = PO2(s). 

Then, 

POl(r)  c {P02(1 ) , . . . ,  PO2(s)}, 

PO2(s) ~ {P01(1 ) , . . . ,  POl(r)}. 

If  the players decide to use only their security strategies, then the outcomes 
that are possible must belong to the set 

{PO2(1) , . . . ,  PO2(s )}m{POl(1) , . . . ,  POl(r)}. 

This set is nonempty, since both POl(r) and PO2(s) belong to it. 
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6.2. Extension to Mixed Strategies. Extensions of the concepts given 
above to mixed strategies are not as straightforward as in other cases. The 
reason is that we are classifying the payoffs in terms of outcomes which 
are not really quantified, but are only a qualitative description of payoffs 
in the game. As a result, the averaging effect brought about by expanding 
the strategy set to include mixed strategies becomes meaningless. Note that 
the mixed strategies that we are employing are with respect to the outcome 
matrix O(A) and not the original payoff matrix A. Thus, when mixed 
strategies are used, one can only determine the probability of  occurrence 
of  a particular outcome. We define m p x q matrices M 1 , . . . ,  Mm such that 

Mk(i,j) -= 1, if O(A)(i,j)  = Ok, (63a) 

Mk(i,j) =0,  otherwise. (63b) 

If  the players use mixed strategies yl ~ F 1 and 3/2 ~ I "2, then the probability 
of  occurrence of  an outcome Ok is 

P( Ok, (3 '1, y2) ) = yl' Mk y2 ' (64) 

where P is a function from the set of outcomes and the mixed strategy 
spaces F 1 x I "2 of  the players to the segment of  the real line [0, 1]. Obviously, 

P(Ok, (y' ,  3'2)) : ~ yl'Mkye= 1. (65) 
k~l  k~l  

Even with this interpretation, in general, it is not possible to define an 
equilibrium point except for some special cases. 

6.3. Combat Game in Matrix Form. Combat  games are generalizations 
of  pursuit-evasion problems in differential games (Ref. 2). They can be 
modelled as bicriterion dynamic games (Refs. 3 and 4). Here, we define a 
bicriterion matrix game with outcomes similar to combat games. The four 
outcomes in the JiJ2-space are defined as follows: 

91: Jl<<-O, J2<O(Ol,win for P1), (66a) 

92: Jl > O, 3"2->0 (02, win for P2), (66b) 

93:J1 > O, J2 < 0 (03,  draw), (66c) 

94: Jl -< O, 3"2 >-- 0 (04,  mutual kill). (66d) 

Obviously, the preference ordering for the two players is 

PO1 = { 0 1 , 0 3 ,  04, 02}, (67) 

P02  = {02, 03, 04, 01}. (68) 
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Note that the game is not perfectly antagonistic in this formulation. Using 
the ideas of  security levels in individual criteria, as presented in Section 4, 
and the concept of  preference orderings on the outcomes, one can obtain 
some useful results in certain special cases. 

From here onwards, we shall denote the subset of  the payoff space, 
and the outcome associated with it, with the same symbol Oi. 

Case 1. See Fig. 1. Let the player P1 be assured of  a guaranteed 
payoff j ~ ( y l ) ¢  03 (draw), for some y~c F~p. In addition, there exists no 
~1 e F 1 such that J1(3;I) e O1. On the other hand, P2 is only assured of a 
guaranteed payoff !2 (72)e  O1 (win for P1) for some y2eFs2p, and there 
exists no other 3;2 e F 2 such that _J2(3~2) ~ 02 w 03 w' 04. This implies that the 
best outcome that P1 can guarantee is 03 (draw), but that the best that P2 
can guarantee is O1 (win for P1) in the outcome map analysis. In fact, the 
converse is also true here. 

In the outcome map O(A),  there will be at least one row containing 
only O1 or 03, or only 03. Each column will contain at least one O~. These 
outcomes are the security levels corresponding to the pure security strategies 

j2 

0 4(Mutual kill) 

1 

i Case 

1_ 
01 (Win for P1) t-- 

J_2(V2) 

0 2 (Win for P2) 

0 3 (Draw) 

-1  j (~,~) 

Case I l 
1 

Fig. 1. Security levels in Cases 1 and 2. 
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of P1 and P2, respectively. It is reasonable to expect that P1 will mix only 
among his security strategies in order to improve his probability of win 
(O~) without any risk of  being destroyed. He might improve his probability 
of win further by expanding his strategy set beyond his security strategies, 
but only at the risk of occurrence of outcomes 02 and 04. Player P2 has 
no choice and will mix among all his available strategies to increase the 
chances of draw (03). Using only security strategies, we have a reduced 
outcome map O(A), made up of elements from the set {O~, 03} only. 

In this reduced matrix, a pair of mixed strategies (y~*, 3'2.) is said to 
be in saddle-point equilibrium iff 

p(ol, (¢*, ¢)) - P(o., (¢*, ¢*)) -> P(o., (31, ¢.)) 

¢=> P( O3, (3'1:t¢, 3 ' 2 ) )  ~ P( 03, ( y'*, y 2,) ) < P( 03 ' (31, 32 , ) ) .  

The equilibrium pair of strategies can be found by considering a matrix ~/1 
derived from O(A) using (63), and finding its saddle-point solution with 
P1 as the maximizing player and P2 as the minimizing player, or by finding 
the saddle point of the matrix 5)/3, with P1 as the minimizer and P2 as the 
maximizer. 

Remark 6.1. Exactly similar arguments can be used to obtain saddle- 
point solutions when the best outcome that P2 can assure is 03 and the 
best outcome that P1 can assure is 02. 

Case 2. See Fig. 1. Let the player P1 be assured of a guaranteed 
payoff J~(y~) E 04 (mutual kill), for some yl ~ F~p. In addition, there exists 
no -71 ~ F t such that J1(-7!) ~ O1 w O3. On the other hand, player P2 is assured 

2 2 only of a guaranteed payoff ]2(3"2) ~ 01 (win for P1) for some 3' cF~p, and 
there exists no other -~c  F 2 such that ]2(332)c 02w 03 w 04. This implies 
that the best outcome that P1 can guarantee is 04 (mutual kill), but that 
the best that P2 can guarantee is O~ (win for P1) in the outcome map 
analysis. Unlike Case 1, the converse is not true here, since the reduced 
outcome matrix may also contain 03 when we use the assured outcomes; 
but, when we use assured security levels, 03 cannot occur, and only O1 and 
04 will occur. 

The outcome map O(A) will contain at least one row with elements 
O~ and 04 only, or only 04, and each column will contain at least one O~. A 
Exactly as in Case 1, the reduced outcome map O(A), containing O1 and 
04 only, is obtained by using security strategies, and the saddle point is 
determined through M1 and M 4. 

Remark 6.2. Again, similar arguments can be used to obtain saddle- 
point solutions when ]1(3'~)~ 02 and _j2(3'2)~ 04, for some 3,1 c F~p and 
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T2C FZp, are the best security levels that P1 and P2 can guarantee, respec- 
tively. 

Remark 6.3. Whenever the outcome matrix can be reduced, using 
security strategies, to a matrix with only two outcomes as its elements such 
that one of  the outcomes is favored by P1 and the other by P2, we can find 
a saddle-point solution. In other cases, one can only speak of the highest 
probability of occurrence of one or a collection of outcomes. 

Example 6.1. Consider a game matrix A as follows: 

l ( - 2 , - 3 )  ( - 1 , - 2 )  (1,2) 1 
A =  (2 , -1)  ( - 1 , - 1 )  ( - 2 , - 1 )  . 

( -3 ,  -1)  (1, -2)  ( -2 ,  -2)  

The corresponding outcome map O(A) is given as 

O(A)= 03 0t  Ol • 

01 03 Ot 

Security strategies for P1 are the rows 2 and 3, whereas security strategies 
for P2 are columns 1, 2, and 3. The reduced outcome map is 

6 (A)  = [ O 3 0 ~  O17 
O1 03 O l j '  

corresponding to which we have 

The saddle-point strategies for these two games will be (1/2, 1/2) for P1 
and (1/2, 1/2, 0) for P2. This will yield the saddle-point probabilities of 
win and draw for player P1 as 1/2 and 1/2, respectively. 

Suppose that P1 uses all his strategies in a bid to maximize his probabil- 
ity of win and P2 uses his strategies to maximize his own chances of win 
(02) or draw (O3). Then, we have 

1 t 0 

M~= 1 , 

0 

which P1 maximizes and P2 minimizes. The saddle-point strategies for both 
players are (1/3, 1/3, 1/3). The probability of win for P1 (Ol) for this set 
of strategies is 2/3. But P1 runs the risk of P2 winning (O2) with a probability 
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1/9. The probability of  draw is 2/9 here. This was the situation described 
in Case 1. 

7. Conclusions 

In earlier works, the concept of  equilibrium points in a two-person 
multicriteria game has mainly been defined using Pareto-optimal (efficient) 
equilibrium strategies which do not, in general, satisfy the conditions of  
Pareto-optimal security levels. A combination of  these two notions gives 
rise to equilibrium points with efficient security levels. Also, a particularly 
desirable solution is the Pareto saddle point, which ensures the equality of  
the security levels of  both the players. But these solutions do not exist for 
all cases. In this paper, conditions for their existence and methods for their 
determination are presented. 

This notion of security levels is also extended to games with qualitative 
outcomes, and some solution concepts are proposed, An attempt is being 
made at present to obtain more general results for these games. 

We hope that this contribution will stimulate further research into the 
conceptual framework, theory, and computational methods for the solution 
of two-person multicriteria games. 
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