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Discrete Approximation of Relaxed Optimal 
Control Problems 

I. C H R Y S S O V E R G H I  l A N D  A .  B A C O P O U L O S  2 

Communicated by D. Q. Mayne 

Abstract. We consider a general nonlinear optimal control problem 
for systems governed by ordinary differential equations with terminal 
state constraints. No convexity assumptions are made. The problem, in 
its so-called relaxed form, is discretized and necessary conditions for 
discrete relaxed optimality are derived. We then prove that discrete 
optimality [resp., extremality] in the limit carries over to continuous 
optimality [resp., extremality]. Finally, we prove that limits of sequences 
of Gamkrelidze discrete relaxed controls can be approximated by 
classical controls. 

Key Words. Optimal control, nonlinear systems, discretization, non- 
convexity, relaxed controls, approximation. 

1. Introduction 

It is well known that optimal control problems, without any convexity 
assumptions,  generally do not have classical solutions. Generalized or 
relaxed controls have been used by several authors (Refs. 1-4) to prove 
existence theorems and derive necessary conditions for optimality for non- 
convex problems. Moreover,  iterative methods have been developed for 
these problems,  which use relaxed controls (Refs. 3 and 5). One must, of  
course, discretize the optimal control problems to implement the numerical 
methods on a computer  (Ref. 6). Accordingly, we study in this paper  
properties of  discrete relaxed optimality and extremality and their behavior  
in the limit, as well as the approximat ion of  relaxed controls by classical ones. 
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2. Continuous Relaxed Optimal Control Problem 

We state in this section some background information regarding the 
continuous problem which is seen in Section 4 to be the limit of the discrete 
analogue. For the relevant theory, see Ref. 2. 

Consider the following optimal control problem. The state equations are 

x ' ( t )=f( t ,x ( t ) ,u( t ) ) ,  0<~t~ T<oo,  (la) 

x(O) = Xo, (lb) 

where x = x  ~, x ( t )~R p, and u(t)~ U C ~  q. 
We may have also state constraints of the form 

The cost 

at(u) := g,(x(7")) = 0, 

G2( u ) := g2( x( T) ) <<. O, 

functional is given by 

Oo(U)  : =  go(X(r)). 

g, : ~P ~ R"',  (2a) 

g~: NP ~ N "~. (2b) 

(3) 

The classical optimal control problem is to minimize Go(u) subject to the 
above constraints. 

We suppose that U is a compact (not necessarily convex) subset of 
~q. We set 1:= [0, T], and define the set of classical controls by 

C := {u: t ~ u ( t ) l  u-measurable from I to U}. 

We then define the set of relaxed controls by 

R :={t~r(t)] r measurable from I to the 
set of probability measures M~(U) on U}. 

M~ (U) is a closed subset of M(U) ,  the space of finite regular Borel measures 
on U, which is the dual C°(U)* of the space of continuous functions, with 
the weak-star topology. R is a closed subset of B(I  x U)*, where B(I  × U) 
is the space of Caratheodory functions on I x U. A sequence {rk} in R 
converges to r if 

l i m f  F(t~u)rk( t ) (du)dt=f  F(t,u)r(t)(du)dt,  
k - ~  I × U  f x U  

for every F ~ B( I x U) or F ~ C°( I × U). For simplicity of notation, we write 

F(t, r(t)):= f F(t, u)r(t)(du). 
J U 

The sets M~(U) and R are metrizable, convex, and compact. We also 
identify every classical control u(t) with its associated Dirac relaxed control 
6u(,). Thus, we have C C R. 
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The continuous relaxed optimal control problem (CRP) may now be 
formulated as follows. We replace Eq. (1) by 

x'(t) =f(t, x(t), r(t)), on I, (4a) 

x(0) = xo, (4b) 

where r ~ R, x = x', the constraints (2) by 

Gl(r) := gl(X(T)) = 0, (5a) 

G2(r) := g2(x(T)) ~< 0, (5b) 

and the cost (3) by 

Go(r) := go(x( T) ). (6) 

The continuous relaxed problem (CRP) is to minimize Go(r) subject to the 
above constraints. 

The following are relatively weak assumptions concerning general 
nonlinear control problems, including the discretization which follows. 

Assumption A1. The function f is continuous on the set 

D:=  {(t, x, u)lO~< t ~  a, ilx-x0[I ~ b, u ~ U}, 

where a, b > 0 and 

O< T~< rain(a, b/M),  
where 

M := maxIIf( t , x, u)t I. 
O 

Proposition 2.1. Under Assumption A1, for every r~ R, there exists 
an absolutely continuous solution x of Eqs. (4) which satisfies 

tlX-XotJ   c:= Mr.  

I f f  is also Lipschitzian w.r.t, x on D, then Eqs. (4) have a unique solution. 

Assumption A2. Equations (4) have a unique solution x = x', for every 
r6R. 

Assumption A3. There exists an admissible control r ~ R, i.e., which 
satisfies the constraints (5). 

Assumption A4. The functions go, gl,  g2 are continuous for Ilxll <~ c. 

Theorem 2.1. Under Assumptions A1 and A2, the mapping r~--~x ~, 
from R to C°(I), is continuous. Under Assumptions A1-A4, there exists 
an optimal control for the CRP. 

Now, define the following set, for given c': 

D':={(t,x, u) l t~I ,  ilx-xoll<-c ', u). 
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Assumption A5. There exists c ' >  c such that f and f i  are continuous 
on D '  and go, gl ,  g2 are differentiable for Ilx[[ < c. 

Theorem 2.2. Continuous Relaxed Pontryagin Minimum Principle. 
Under Assumptions A1-AS, if r is optimal for the CRP, then r is extremal, 
i.e., there exist multipliers AoSR, A ~ R  '~,, A2~R'~2, Ao~>0, A2~>0, with 
Ao+ [IA~If + ltA2[I--i, such that 

z(t)  " f ( t , x ( t ) ,  r( t))=minvz(t  ) . f ( t , x ( t ) ,  u), a.e. i n / ,  (7) 

where x = x r and the adjoint state z is given by the equations 

z'(t) = - z ( t ) .  fx(t, x(t) ,  r(t)) ,  (8a) 

2 

z (T)  = 2 h,. g,x(x(T)), (8b) 
z=o 

and is such that the following transversality condition holds: 

A2 " g2(x( T)) = O. (9) 

3. Discrete Relaxed Optimal Control Problem 

We now discretize the continuous relaxed problem CRP. For each 
n ~N, choose an integer k = k(n),  k +  1 points in I := [0, T] with 

0 =  t .o< t . l < "  • • < t.k = T, 

and set 

hm := t.,i+l - t n i ,  i = 0 , . . . ,  k - 1, 

hn := max h~,~, 
i 

Im:=[tm, t.,i÷l) , i = O , . . . , k - 2 ,  

l..k-~ := [t. .k-~, t.k]. 

Let R.  be the set of  piecewise constant relaxed controls relative to the 
{I.,},=o, partition k-~ 

R . : = { r . ~ R [ r . ( t ) = r . i E M l ( U ) ,  on l.i, i = O , . . . , k - 1 } ;  

let C. be the set of  piecewise constant classical controls 

C.:={u .  e C [ u . ( t ) = u . i ,  on l.i, Unie U}; 
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and let R ~  be the set of  piecewise constant Gamkrelidze controls 

e.C:= ~ . E R l f . ( t ) = r ~ . =  Y~ a.o6.,,,j, on I~, 
j = 0  

w i t h u ,  o e U, }~ a .  U= l, a.o >-0 . 
j = 0  

Clearly, C. C R ~ C R .  CR,  for every n. R.  is convex and compact  for the 
weak-star topology of [M~(U)]  k, However, note that C. and R~ are not 
compact.  

The discrete relaxed optimal control problem (DRP. )  is now formu- 
lated as follows. The state equations are given by the Euler scheme (for 
simplicity) 

x.a+l = x.i + h.~f( t.~, x.i,  r,,~), 

X.o=Xo, 

for r. e R~, the state constraints by 

O l n ( r n )  := g l ( x n k )  = E l .  , 

a2 .  ( r . ) :=  g2(x.k)< e2., 

i = 0 . . . . ,  k - l ,  (lOa) 

(lOb) 

( l l a )  

( l l b )  

where e~. ~ ~ F~'/I , I~2R ~ ~ t'l~12, ~2R ) 0, are chosen vectors, and the cost by 

Go.(r . )  := go(X.k) = rain. (12) 

Theorem 3.1. Under  Assumption A1, the mapping r.~-~x, is con- 
tinuous from R. = [ M ~ ( U ) ]  k to R p(k+~). Under Assumptions A1 and A4, 
and if there exists an admissible control for the DRP. ,  then there exists an 
optimal control: 

m - m . ~  ProoL Let r .  ~ r. in R..  By induction on i, if  x.~ x.~, then 

m tim m m m r.,)] [ x . i +  h . J (  t.i, x . i ,  lira Xn,i+ 1 = 
m ~ o o  tel -~-~ 

= x.i + h.lf(t~i, x.i,  r.i) = x..i+l. 

Since x~,"o = X.o = Xo, it follows that x~ ~ x..  Therefore, r. ~--~ x. is sequentially 
continuous, hence continuous. Clearly, [Ix.k [I ~< M T  = e, for all r. s R.. Since 
R.  is compact  and go, g~, g2 are continuous for ][x[[ <~ c, Goo(r.):= go(x.k) 
attains its minimum on the nonempty compact  set 

(r. ~ R. I IIx.kll < c, gl(x~k)= el . ,  g2(X.k) <~ e2.). [] 
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Theorem 3.2. Discrete Relaxed Minimum Principle. Under Assump- 
tions A1, A4, A5, if r. is optimal for the DRP~, then r~ is extremal, i.e., 
there exists multipliers ho. ~ R, h~. c R", h2. c R", ho. >~ O, h2n ~ O, with 

+ II II + II a=. II = 1, such that 

z.,i+, " f (  t.i, x.~, r.i) 

=minz. ,~+~,f(t .~,x.~,u),  i = 0 , . . ,  k - l ,  (13) 
uEO 

where x, is given by (10) and the adjoint discrete state is described by 

z.i = z.,i+l+h.iz,,a~l "f~(t.i, x.i, rni), i = 0 , . . . ,  k -  1, (14a) 

2 
gnk = ~ hln" gtx(Xnk), (14b) 

/=0 

and is such that 

A2n" [g2(Xnk) --  82n] = 0. (15 )  

Proof. By the general multiplier theorem (Ref. 2, p. 303), if r~ is 
optimal, there exist multipliers )tt~ such that 

2 
At." DGt.(rn, r ' - r n ) ~ O ,  V r ' . e R . ,  

l=o 

where DGt. is the directional derivative of G~., or after some calculations 

tl--I 

E hniZn,i+l'f(tni, xm, rrni--rni) ~0 ,  V r ' ~ R . ,  
i=0 

which is equivalent to the discrete pointwise minimum principle (13). 
Equality (15) is the transversality condition. [] 

4. Convergence 

From now on, we suppose that the partitions {I.i} are chosen such that 
hn := max~ hni - 0, as n ~ co. 

The following lemma shows that the sets C., hence R . ,  R.,  approxi- 
mate R, as n--> oo. 

Lemma 4.1. Given r ~ R, there exists a sequence {u. ~ C.} such that 
u . ~  r in R. 

Proof. It is proved in Ref. 2, pp. 275-276, that given r e R, there exists 
a sequence {~,,} of piecewise constant classical controls such that tTm -* r 
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in R. Let q~ 6 C°(I), 0 ~ C°(U), and let e > 0 be given. Let {era} be a sequence 
of positive numbers such that e~ ~ 0. For each m, define the sequence of 
controls {u~, ~ C,} by 

u~(t)=a~(t.,) on I,~, i = O , . . . , k - 1 .  

It follows easily that, for every fixed m, there exists N(m) such that 

]1~1]~ f Iqt(u~,(t))-tP(a~(t))[ dt<~e,., for n>~ N(m), 
d I 

and we can suppose that N(m)< N(m + 1), for all m. Now, set 

u,(t):=u~,(t), for N(m)<~n<N(m+l). 

Then, 

( 

J t 

for N(m)<~n<N(m+l). 

Now, since g~-~ r and e,, ~ 0 ,  there exists M(E) such that 

bin: = f q~[6(ft~)-CJ(r)]dt <~e/2, 
d 

and E,, ~< e/2,  for m 1> M(E).  Hence, 

I f  q~(t)[O(u")-O(r)]dt <~a~+bm<'E' f ° r n > ~ N ( M ( e ) ) ' . ,  

Since the linear combinations of  functions q~. ~O are dense in C°(I x U), it 
follows that u,, -~ r in R. 

For r. ~ R., define the functions 

~.(t)  =xo,, 

xo(t) = xo, + ( t -  tni)fU°,  x., .  r.,). 

[] 

t~ Ini, i = 0 , . . . , k - 1 ,  

t~I,i, i = 0 , . . . , k - 1 ,  

where k {x,i}i=o corresponds to r, by (t0). 

(16a) 

(16b) 

Proof. Let e > O, Since f is uniformly continuous on the compact  set 
D, there exists S such that 

[If(t',X', u)-f(t",X", U)]] ~ E, 

Lemma 4.2. Under  Assumptions A1 and A2, if  r,, ~ r in R, then x. -~ x r 
and ~. ~ x ~ uniformly on I, 
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for I t ' -  t"[ <~ 6, [[x'-x"[[ <~ 6, and u ~ U. Clearly, this implies that 

[[f(t', x', p ) - f ( t " ,  x", p)[[ ~< e, 

for every p ~ Ml(U) ,  ] t ' -  t"] <~ 6, and IIx'-x"[[ <<- 6. Now, choose n such that 

hn = max hni <~ min(6, 6 /M) .  

Then, by construction of xn(t), we see that 

[]x~(t')-x,(t")l]<~M]t'-t"l, t ' , t"~I ,  

and 

]lx.( t ) -  Xott ~ M T  ~ b, 

which show that the functions xn(t) are equicontinuous and bounded on 
I. For t ~ In~, we also have 

llxo(t)-x.,li 6, 
hence, 

l [ x ' ( t ) - f ( t ,  Xn (t), rn(t))ll 

=Hf(tni, xni, r , i)-f( t ,x,( t) ,rn(t))l[<~e, for t6I,~, i - - 0 , . . . , k - 1 .  

Therefore, 

xPn(t) =f( t ,  Xn (t), rn(t)) + an(t),  

where a~ ~ 0 uniformly on I. Now, we have 

xn(t)=Xo+ [ f ( s ,x . ( s ) ,  r . (s ) )+a.(s)]  as. 

By Ascoli's theorem (Ref. 2, p. 109), there exists a subsequence {x.} (same 
notation) such that Xn -~ X uniformly. We have 

Io x.( t)  = Xo+ [f(s, xn, r.) - f ( s ,  x, r.)] ds 

So + [f(s, x, r.) - f ( s ,  x, r)] ds 

+ f ( s , x , r )  ds+ an(s) ds. 

Since f is uniformly continuous and r. ~ r in R, we find that, in the limit, 

;0 x(t) = Xo+ f(s,  x(s), r(s)) ds, 
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which shows that x = x ~. The convergence of the whole sequence {x.} follows 
from the uniqueness of  the limit x ~. Finally, it follows easily that also )7~ ~ x ~ 
uniformly. [] 

Lemma 4.3. Under  Assumptions A1-A4, we can choose the sequences 
{ E1 n }, { ~'2n } of  vectors in (11) such that the DRP.  have an admissible control. 

Proof. Let r be admissible for the CRP, By Lemma 4,1, there exists 
a sequence {r. • R.} converging to r. By Lemma 4.2 and the continuity of  
g l ,  g2 for l[xfl <~ c, we have 

lira G~,,(r.) = lim g~(x.k) = g~(x~( T))  = 0, 

lim G 2 . ( r . ) =  lim g2(X.k)=g2(x~(T))<~O. 
n .4, ct3 iI~oo 

Now, for each n, choose any solution r* of  the minimization problem 

min {llG~n(r')[[~+ [[max[0, Q.(r')]l[2}, 
r ~E R,r 

where the max between vectors is taken componentwise,  and set 

el.  = G1~(r*), ~2. = max[0, G2.(r*)] .  

Then, r* is admissible for the DRP. ,  and clearly e~., ff2n "-> 0. [] 

From now on, we suppose that the sequences {e~.}, {e2,,} are chosen 
as in Lemma 4.3. 

Theorem 4.1. Under  Assumptions A1-A4, let r. be optimal for the 
DRP. ,  for n = 1, 2 , . . . .  Then, the sequence {r.} has cluster points and every 
cluster point is optimal for the CRP, 

Proof. Since R is compact ,  let {r.} (same notation) be a subsequence 
such that r. ~ r. By Assumptions A1, A4 and Lemma 4.2, 

lim G1,,(r~)=limgl(x .k)=g~(x")=Gl(r) ,  for l = 0 ,  1,2. 

Since r. is optimal for the DRP. ,  we have 

Go.(r.)<~ Go.(r'.), Vr ' c  R.. 

Let r 'e  R and, by Lemma 4.1, a sequence {r" • R.} converging to r'. Then, 

Go(r) = lira Go.(r.)  ~ l i m  Go.(r~) = Go(r'), 

Gl(r)  = lira Gl . ( r . )  --- lira El. = 0, 

G2(r) = lira G2.(r.)  <- lira e2. = 0, 

i.e., r is optimal for the CRP. [] 
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Now, for z. given by (14), define 

~..(t)=z.,i+l on I.i, i = 0 , . . . , k - 1 ,  (17a) 

z.( t) = z.,i+l + ( t . , i+,-  t)z.,i+, " f (  t.i, x.i, t.i), 

on l.i, i = 0 , . . . , k - 1 .  (17b) 

Lemma 4.4. Under Assumptions A1, A4, A5, if r. ~ r and At.-~At, 
l = 0, 1, 2, then z. -~ z and ~. -~ z uniformly o n / ,  where z [resp., z. ] is given 
by (8) [resp., (14)]. 

Proof. Setting 

M':= maxllfxJj, 
D" 

from (14) and Lemma 4.2, we get 

k - |  

Ilz.i[I ~< (1 + h.iM')llz.,t+~tl <~ 1] (1 + h,vM')ttZ.g tl 
j = i  

~ e x p  ~ h,jM' ILz, kll~exp(rM')tlz°klt 
Lj=O 

<~exp(TM' At. 'ga(x,k)  ~Cl,  for i = 0 , . . . , k - 1 .  
! 

Hence, by (17) we have 

I[ Z,,(t ')- Zn(t")ll <~ Cl M'(  t ' -  t") 

and 

[Izn( t )-znk ll <~ e, M'T,  

which show that the z.(t)  are equicontinuous and bounded. As in Lemma 
4.2, it follows that 

2 

z.(t)  = • At." gtx(x.(r))  
1 = 0  j.T 

+ [Z.(S) "fx(S, Xn(S), rn(s))+fln(s)] ds, 
t 

where/3. ~ 0 uniformly, and we can pass to the limit in this equation, since, 
by Lemma 4.2, x. ~ x uniformly. [] 

Theorem 4.2. Under Assumptions A1, A4, A5, let r. be admissible 
and extremal for the DRPn, for n = 1, 2 , . . . .  Then, the sequence {r.} has 
cluster points and every cluster point is admissible and extremal for the CRP. 
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ProoL Setting ?.(t) = t.~, t c I.~, i = 0 , . . . ,  k - 1, the discrete necessary 
conditions for optimality can be written as 

f ~ . ( t ) . f ( ? ( t ) , ~ ( t ) , r ~ ( t ) - r . ( t ) ) d t ~ O ,  V r ~ R . .  
I 

Let {r.}, {Af.} be subsequences converging to r, A~., respectively (note that 
the At. are bounded).  Let any r '~ R and, by Lemma 4.1, a sequence {r~ ~ R.} 
converging to r'. By Lemmas 4,2 and 4.3, we can pass to the limit in the 
above inequality, 

f z ( t ) . f ( t , x ( t ) , r ' ( t ) - r ( t ) ) d t > ~ O ,  V r ' ~ R .  
t 

which is in fact equivalent to the pointwise minimum principle (7), and in 
the transversality condition (15), 

A2" g2(x(T))  = O. 

Therefore, r is extremal for the CRP. It is easily seen that r is also 
admissible. [] 

5. Approximation by Classical Controls 

In relaxed numerical methods for solving nonconvex optimal control 
problems, it seems computationally more efficient to use Gamkrelidze con- 
trols (cf. Ref. 3). Since one must discretize anyway these problems to 
implement these methods on a computer, it is natural to use discrete 
Gamkrelidze controls R~ in the DRP. .  Note that, by Caratheodory's 

- k--1 theorem (Ref. 2, p. 139), for every r. ~ R.,  there exists a control ~. = {r.~};=o 
R~ ,  where 

p 

?.~ = E a.u6.,,,~, (18) 
j = O  

which has the same effect on the discrete state equation (10) (and hence 
gives the same cost), 

P 

x.,i+l = x., + h. i f (  t.i, x.,,  r. i)= x~i + h.i Z ce .J(  t.i, x.i, u.o), 
j = 0  

since f(t .~,  x.~, r.~) ~ Cof(t.~, x.~, U). 
Now, given ?. ~ R ~ ,  as defined by (18), we construct an associated 

approximate discrete classical control as follows. Subdivide each I.~, i = 
0 , . . . ,  k -  1, into p + 1 subintervals I.u of  length o~.oh.i , j = 0 , . . . ,  p, and 
define ~. by 

~n ( t ) = u.o, on I.ij, j = O , . . . , p, i = 0  . . . .  , k - 1 .  
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Theorem 5.1. Let r e R, and let rn ~ R,  be a sequence converging to r 
in R. For each n, let f7 E R ,  c be a sequence converging to r, in R,. Let t i t  
be the discrete classical control associated to ~7. Then, there exists an 
integer function M(n) such that 

- m  lim u,  =r ,  in R. 
n, rrl ~.cx3 

m>-M(n) 

Proof. Let ~ e C°(I), ~b ~ C°(U), and e > 0 be given. Define q3n by 

¢}.(t)=q~(t,,i), on I.i, i = 0 , . . . ,  k - 1 .  

Clearly, ft.--> ~o uniformly on L Now, write 

e~ = (q~[4,(t7~) - q1(r)] dt = a'~ + b~ + c= + d~, 
. /  I 

where 

laTl-- I f ' (q~-Co.)[th(a~)-q~(r.)] dtt <~2Ttl~Pt[~" ll~-~nl[~, 

bm.=f ¢.[~(t i7)-~0(~7)]  d t = 0 ,  
I 

by construction of u.,-m 

Ic.~[ = ~.[O(F'~)-~(r.)]dt <~h. ll~.ll~ Y [4,(~T)-0(r.)[, 
I i=0 

and 

d, = f ,  ~[4'(rn) - ~(r)] at. 

it follows that there exists N and M(n) ,  for each n, such that 

for n>~ N and m ~ M ( n ) .  [] 

In practice, r may be an optimal [resp., admissible and extremal] 
control for the CRP, r, an optimal [resp., admissible and extremal] control 
for the DRP,,  and the sequences {r~}~=o are computed by applying some 
relaxed optimization method (descent method, penalty method, etc.) on the 
DRP, using discrete Gamkrelidze controls. The discrete classical controls 
~"  thus approximate the relaxed control r for n, m sufficiently large, 
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