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Sensitivity Analysis in Multiobjective Optimization ''~ 

T. TANINO 3 

Communicated by P. L. Yu 

Abstract. Sensitivity analysis in multiobjective optimization is dealt 
with in this paper. Given a family of  parametrized multiobjective 
optimization problems, the perturbation map is defined as the set-valued 
map which associates to each parameter value the set of minimal points 
of the perturbed feasible set in the objective space with respect to a 
fixed ordering convex cone. The behavior of  the perturbation map is 
analyzed quantitatively by using the concept of contingent derivatives 
for set-valued maps. Particularly, it is shown that the sensitivity is closely 
related to the Lagrange multipliers in multiobjective programming. 

Key Words. Sensitivity analysis, multiobjective optimization, perturba- 
tion maps, contingent derivatives. 

I. Introduction 

Stability and sensitivity analysis is not  only theoretically interesting 
but also practical ly impor tant  in opt imizat ion theory.  A number  o f  useful 
results have been obta ined  in usual scalar optimization.  See, for example,  
Fiacco (Ref. 1) and Rockafel lar  (Ref. 2). Here, by stability we mean  the 
qualitative analysis, that  is, the study of  various continuity properties of  
the per turbat ion (or marginal)  funct ion (or map)  o f  a family o f  parametr ized 
opt imizat ion problems.  On the other hand,  by sensitivity we mean the 
quanti tat ive analysis, that  is, the s tudy of  derivatives o f  the per turbat ion 
function.  
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For multiobjective optimization, the optimal value of a problem is not 
unique, and hence we must consider not a function but a set-valued perturba- 
tion map. The author and Sawaragi investigated some sufficient conditions 
for the semicontinuity of  the perturbation map (Ref. 3). However, their 
results are qualitative and therefore provide no quantitative information. 
In this paper, the behavior of the perturbation map will be studied quantita- 
tively via the concept of contingent derivative introduced by Aubin (Ref. 
4). Though several other concepts of  derivatives of  set-valued maps were 
proposed [see Aubin and Ekeland (Ref. 5, p. 493)], the concept of contingent 
derivative is the most adequate for our purpose. Because it depends on the 
point in the graph of  a set-valued map, when we discuss the sensitivity of  
the perturbation map, we fix some point in its graph. 

The contents of this paper are as follows. In Section 2, we introduce 
the concept of contingent derivatives of set-valued maps along with some 
basic properties which are necessary in the later sections. Section 3 is devoted 
to the analysis of  the contingent derivative of the perturbation map, which 
is defined from a feasible set map by taking the set of  minimal points with 
respect to a given closed convex cone. In Section 4, we analyze the sensitivity 
in general multiobjective optimization problems specified by feasible 
decision sets and objective functions which depend on a parameter vector. 
In Section 5, we concentrate on multiobjective programming problems in 
which only the right-hand side of the inequality constraints is perturbed. 
It is shown that the sensitivity of  the perturbation map is closely related 
with the Lagrange multipliers for the nominal problem. 

2. Contingent Derivatives of Set-Valued Maps 

In this section, we introduce the concept of  contingent derivatives of 
set-valued maps. Throughout  this section, V and Z are two Banach spaces 
and F is a set-valued map from V to Z. 

Definition 2.1. (Aubin and Ekeland, Ref 5). Let C be a nonempty 
subset o f a  Banach space V and ~ V. The set Tc(~)C V, defined by 

T c ( ~ ) = ( ~  ('-'/ (._J ( I ( c - ~ ) + e B I ,  (1) 
e > O  c~>O O<h----<cL l n  / 

is called the contingent cone to C at ~, where B is the unit ball in V. In 
other words, v ~ Tc(9) if  and only if there exist sequences {hk} C/~+ and 
{vk}c V such that hk~O, vk~v, and 

~+hkvk~c, for any k, 

where /~+ is the set of positive real numbers. 
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by 

It is well known that To(6) is a closed (but not always convex) cone. 
The graph of a set-valued map F from V to Z is defined and denoted 

graph F = {(v, z)lz e F(v)} C V x Z (2) 

The contingent derivative of F is defined by considering the contingent 
cone to graph F. 

Definition 2.2. (Aubin and Eketand, Ref  5). Let (6, if) be a point in 
graph F. We denote by DF(6, 2) the set-valued map from V to Z whose 
graph is the contingent cone Tgraph F(6, 2) to the graph of F at 03, 2) and 
call it the contingent derivative of F at (6, 2). In other words, z c DF(6, 2)(v) 
if and only if (v, z )~  T~ph F(6, 2). 

DF(~, 2) is a positively homogeneous set-valued map with closed graph. 
Due to Definition 2.1, z~ DF(~, 2)(v) if  and only if there exist sequences 
{hk}Ct~+, {vk}C V, and {z~}CZ such that hk-~O, vk~ v, z k~z ,  and 

2 + hkz k c F( 6 + hkvk), for any k. 

Now, we consider a nonempty pointed 4 closed convex cone P in Z. 
This cone P introduces a partial order on Z. We use the following notations: 
For z, z ' cZ ,  

Z<=pZ ', i f f z ' - z c P ,  (3) 

z -< e z', iff z' - z ~ e\{0}. (4) 

We consider the set-valued map F + P  from V to Z defined by 

(F+P)(v)  = F(v)+P, for all v~ V. 

The graph of F +  P is often called the P-epigraph of F[Sawaragi et aL (Ref. 
6, p. 23)]. The following result, which shows a relationship between the 
contingent derivatives of  F +  P and F, is useful. 

Proposition 2.1. Let (5, 2) belongs to graph F. Then, 

DF(6 ,$ ) ( v )+PCD(F+P) (6 ,2 ) ( v ) ,  for any v~ V (5) 

Proof. Let z~DF(6 ,  2)(v) and d~P.  Then, there exist sequences 
{hk}C/~+, {vk}C V, and {zk}C Z such that hk~O, vk~v ,  zk~z ,  and 

2 + hkz k ~ F( 6 + hkv k), for any k. 

4A cone P is said to be pointed if P•(-P)={O}. 
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Let ~k = z k + d, for all k. Then, ~k ~ z + d and 

2q-hkzk:-zq-hkzkq-hkzk-l-hkdkEF(~d-hkvk)h-P, for all k. 

Hence, 

z + d ~ D(F+ P)(~, ~)(v), 

and the proof  is complete. [] 

The converse inclusion relation of this proposition, 

D(F+ P)(~, 2)(v) C DF(~, ~)(v) + P, 

does not generally hold. See Proposition 2.2 below and Examples 3.3 and 3.4. 
Since we deal with multiobjective optimization, we must introduce the 

concepts of  minimal points and properly minimal points with respect to 
the cone P. 

Definition 2.3. Let S be a subset of  Z. 

(i) A point 2 ~ S is said to be a P-minimal point of  S if there exists 
no z~  S such that z ~ p E  We denote the set of  all P-minimal points of  S 
by Mine S, i.e., 

M i n e S = { 2 e  Slthere exists no z~  S such that z-<p2} 

= {~c S[(S-  2) n ( -P)  = {0}}. (6) 

(ii) A point 2c  S is said to be a properly P-minimal point of S if 

[cl [.~J>o a( S -  2) l c'~ ( -P)  = {O }. (7) 

Of course, every properly P-minimal point of S is P-minimal, since 

S - 2 C c l  [fl a ( S - 2 ) .  
c~ : :>0  

Now, we consider sufficient conditions for the converse inclusion of  
Proposition 2.t. We introduce the following property of  set-valued maps. 

Definition 2.4. (Aubin and Ekeland, Ref  5). F is said to be upper 
locally Lipschitz at ~3 ~ V if there exist a neighborhood N of  I3 and a positive 
constant M such that 

F(v )CF(~)+MHv-~[[B  , for any v~ N. (8) 

Remark 2.1. If  F is upper locally Lipschitz at ~3, then it is upper 
semicontinuous at ~, i.e., for any E> 0, there exists a positive number 8 
such that 

F(v)CF(~)+eB,  for any v such that 
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Definition 2.5. (Holmes, Re f  7). A base for P is a nonempty convex 
subset Q of  P with 0~ Q such that every d c P, d ~ 0, has a unique representa- 
tion of  the form ab, where b e Q and a > 0. 

We can prove the converse inclusion of Proposition 2.1 under some 
assumptions. Examples 3.3 and 3.4 will illustrate the importance of those 
assumptions. 

Proposition 2.2. If  ~ is a properly P-minimal point of  F(~),  F is upper 
locally Lipschitz at ~, and P has a compact base Q, then 

Let 

D ( F + P ) ( ~ ,  2)(v) = DF(~, f ) ( v )+P,  for any v6  V. (9) 

Proof. In view of  Proposition 2.1, it suffices to prove that 

D ( F + P ) ( ~ , ~ ) ( v ) C D F ( ~ , ~ ) ( v ) + P ,  for any v~ V 

z ~ D ( F +  P)(~, f)(v) .  

From the definition, there exist sequences {hk} C/~+, {v k } C V, {z k} C Z, and 
{dk}CP such that hk~O, v k ~ v ,  Zk~Z, and 

+ hkz k - d k ~ F( ~ + hkv k), for any k, 

i.e., 

2 + h k ( z k - d k / h k ) ~  F(~+hkvk),  for any k. 

Since dk~ P, d k= akb k, with C~k>0, and bk~ Q for each k. Since Q is 
compact, we may assume that bk-~ b e  Q. Suppose that {ak/hk} has a 
convergent subsequence. Then, we may assume that 

ak/ h k ~ a E R+, 

and therefore 

dk/hk = akbk/hk -> ab ~ P. 

This implies that 

z - c~b ~ DF(O, ~)(v), 

namely that 

z c  DF(~, 2)(v)+P.  

Hence, we have the conclusion of  the proposition. Therefore, it completes 
the proof  of  the proposition to show that {ak /hk}CR has a convergent 
subsequence. If this were not the case, it is clear that o~k/hk~ + ~ .  Since 
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F is assumed to be upper locally Lipschitz at ~, there exist a neighborhood 
N of  ~ and a positive number M satisfying (8). Since ~+ hkv k ~ ~, 

+ hkvkE N, for all k sufficiently large. 

Hence, there exists a sequence {2 k} in F(z3) such that 

ll~+ h k ( ?  - d ~ / h k ) -  ~ II--< MtI~+ h~v" - ~Ji, 

i.e., 

11(2- ~ k ) / h k  + z ~ - d ~ / h ~  II ~ MII v ~ II, 

for all k sufficiently large. Since v k ~ v, the right-hand side of the above 
inequality converges to M If vii. Therefore, the sequence 

{( i f -  ~k)/h k + z k _ dklhk} 

is bounded. Since ak/hk--) +oC, the sequence 

{(hk/c~k)((2- ~k)lhk + z k -- dk/hk)} 

= { - ( ~  - ~)/o~k + ( h k / ~ ) z  ~ - b ~} 

converges to the zero vector in Z. Since z k--) z, the second term of  the 
right-hand side converges to the zero vector. Hence, (2 k -  f ) / ak  --) -b .  This 
implies that 

- b ~  [Cl UoO~( F ( ~ ) -  ' ) l  ~ ( - P ) ,  

which contradicts the assumption of  the proper P-minimality of ~. This 
completes the proof  of the proposition. [] 

Corollary 2.1. If ff is a properly P-minimal point of F(~),  F is upper 
locally Lipschitz at ~, and Z is finite dimensional, then 

D(F+P)(~ ,~) (v)=DF(~,£) (v)+P,  for any v e  V 

Proof. It is clear that the set {d ~ P[lldl] = 1} is a compact base tbr P 
when Z is finite dimensional. [] 

Corollary 2.2. If  ~ is a properly P-minimal point of  F(~),  F is upper 
locally Lipschitz at ~, and Z is finite dimensional, then 

MinpDF(~,2)(v)=MineD(F+P)(~,2)(v) ,  for any v~ V 
(t0) 
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Proof. In view of Corollary 2.1, by using Proposition 3.1.2 of Sawaragi 
et al. (Ref. 6), we can prove that, for any v, 

Minp DF(~3, 3)(v) = Minp(DF03, ~)(v) + P) 

= Mine D ( F +  P)(b', ~)(v) .  

The following theorem is also fundamental. 

Theorem 2.1. Let (B, 8) belong to graph F, and suppose that P has a 
compact base Q. Then, for any v E V, 

Minv D ( F +  P)(~,  3) (v)  C DF(B,  3)(v). (11) 

Proof. Let 

z ~ M i n e D ( F +  P)(B, ~)(v). 

Since 

z ~ D ( F +  P)(B, 3) (v) ,  

there exist sequences {hk}C/~+, { v k } c  V, {z k} C Z, and {d k} C P such that 
h k ~ O, vk -o V, zk--~ Z, and 

2 + h k z k - - d k 6 F ( ~ + h k t . ' k ) ,  for any k. 

We shall prove that d k / h k ~ O .  Since dkc  P, there exist some ak > 0 and 
b k e Q such that d k = ak bk, for each k. Since Q is compact, we may assume 
without loss of generality that b k ~ b ~ Q .  Then, d k / h k = a k b k / h k  and 
d k / h k  ~ 0 when and only when ak/h~-~ O. Suppose that {c6,/hk} does not 
converge to O. Then, for some E > O, we may assume without loss of generality 
that Oek/hk >= e, for all k, by taking a subsequence if necessary. Let 

dk = ( e h k / a k ) d  k e P. 

Then, 

and 

~k ~ e d k  

8 + hkz k - d k c F (  ~ + hkv k) + P. 

Since dk /hk  = eb k for all k, 

dk/hk  "-> eb # O. 

Thus, 

z k -" d k / h k  ~ z - Eb, 
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and hence 

z - Eb e D ( F +  P)(v  ~, 2)(v). 

However, this contradicts the assumption 

z c  M i n e D ( F +  P)(~, 2)(v), 

since z -  el) <-e z. Therefore, we can conclude that d k/hk ~ O. This implies 
that 

2 + h k ( z k - - d k / h k ) e F ( ~ + h k v k ) ,  for any k, 

and 

z k - dk/hk ~ z. 

Therefore, z ~ DF(~, ~)(v), and this completes the proof  of  the theorem. 
[] 

Corollary 2.3. Let (v ~, 2) belong to graph F, and suppose that Z is 
finite dimensional. Then, for any v ~ V, 

Mine D ( F +  P)(~, 2)(v) C DF(~, 2)(v). 

3. Contingent Derivative of the Perturbation Map 

In this section, we consider a family of parametrized multiobjective 
optimization problems. Let Y be a set-valued map from U to R e, where U 
is the Banach space of  a perturbation parameter vector, R p is the objective 
space, and Y is considered as the feasible set map in the objective space. 
Let P be a nonempty pointed closed convex cone in R p. In the optimization 
problem corresponding to each parameter value u, we aim to find the set 
of P-minimal points of  the feasible objective value set Y(u) .  Hence, we 
define another set-valued map W from U to R p by 

W(u)  = Mine Y(u ) ,  for every u e U, (12) 

and call it the perturbation map (or P-minimal map), since it is a generaliz- 
ation of the perturbation function (optimal value function) in scalar optimiz- 
ation. The purpose of  this section is to investigate relationships between 
the contingent derivative of  W and that of  Y. Hereafter in this paper, we 
fix a nominal value of  u as a and consider a point f ie  W(a).  

In view of Theorem 2.1, we have the following relationship: 

M i n p D ( W + P ) ( a , ~ ) ( u ) C D W ( ~ , ~ ) ( u ) ,  for any u e  U. (13) 
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Definition 3.1. We say that Y is P-minicomplete near  t~ if 

Y ( u ) C W ( u ) + P ,  for any u~ N, (14) 

where N is some neighborhood of  t~. 
Since W(u)C Y(u), the P-minicompleteness of  Y near a implies that 

W ( u ) + P =  Y(u)+P, for any u ~ N. (15) 

Hence, if Y is P-minicomplete near t~, then 

D(Y+P)(a ,  f i ) = D ( W + P ) ( a , ; ) ,  for all 3~  W(~). 

Thus, we obtain the following theorem from (13). 

Theorem 3.1. If  Y is P-minicomplete near t~, then 

MinpD(Y+n) (~ ,~ ) (u )CDW(~ , f ) (u ) ,  for any u 6  U. (16) 

Some sufficient conditions for the P-minicompleteness can be seen in 
Sawaragi et al. (Ref. 6, Chapter 3). The following example illustrates that 
the P-minicompleteness is essential for the above theorem. 

Example 3.1. (Y  is not P-minicomplete near ~.) Let U =  R, p = 1, 
P = R+, and Y is defined by 

y(.u)=~{yoR[y>=O}, if u = 0 ,  

[{ycR[y>lu[}  i f u ~ O .  

Then, 

W(u)=~{o}, ifu=O, 
(Q ,  i f u ¢ 0 .  

Let ~ = 0. Then, 33 = 0 and 

D( Y+ P )( ~, fi)( u ) = D Y( ~, 33)(u) = { YlY >- tul}, 
for any u ~ R, 

Minp D( Y+  P)(9,  fi)(u) = Mine DY(¢~, ¢)(u)  = {Iul}. 

On the other hand, 

DW(~,33)(u)=~{O}, if  u = 0 ,  
( Q ,  i f u ¢ O .  

Hence, 

MineD(Y + P)(~,fi)(u)ff. DW(~,fi)(u), for u # 0 .  

The converse inclusion of  the theorem does not generally hold as is 
shown in the following example. 
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Example 3.2. Let U = R, p = 2, and Y be defined by 

Y(u) = ( {(0, 0)}, i f u  _-<0, 
I{y~R2ly2=-(yl)2,0<=y~<-_u}, if u > 0 .  

Let 

P = R~+, a = 0, 33 = (0, 0). 

Then, W(u)= Y(u), for every u, and 

Tg~.ph v(a, 33) = Tgraph w(t~, 33) 

={(u,y)[u<=O,y=O} 

U {(U, y)lu > 0, y2 = 0, 0--_<yl _--< U}, 

Tgr, ph(v+e)(a, 33) = Tgr, ph(W+p)(O, fi) ={(u, y)ly ~ 0}, 

{(0, 0)}, if u <_- 0, 
DW(u'33)(u)=DY(a'33)(u)=[{yly2=O,O<=yl<-_u}, if u > 0 ,  

D( Y+ P)( a, 33)(u) + D( W+ P )( a, 33)(u) = { yly >= 0}, 

Mine D( Y+ P)(~, 33)(u) = Mine D( W +  P)(a, 33) = {(0, 0)}, 

for any u. 

By combining Theorem 3.1 and Corollary 2.2, we have the following 
theorem. 

Theorem 3.2. If  Y is P-minicomplete near t~ and upper locally 
Lipschitz at ~, and if 33 is a properly P-minimal point of Y(~), then 

MinpDY(a,  33)(u)CDW(a, 33)(u), for any u c  U. 

Example 3.1 shows that the P-minicompleteness of Y is essential for 
the above theorem. The following two examples illustrate the importance 
of the other two conditions in Theorem 3.2, namely the Lipschitz property 
of Y and the proper P-minimality of 33. These examples illustrate Proposition 
2.2 and Corollary 2.2, too. 

Example 3.3. 
P = R+, and Y be defined by 

Y(u)  = 
{o}, 

t{o, -4-~},  

Then, 

W(u)  ~ {o}, 
= (( -v- i f} ,  

( Y is not upper locally Lipschitz at ft.) Let U -- R, p = 1, 

ifu=<O, 

i f u > O .  

if u-<_0, 
if u > 0 .  
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Let ~ = 0 and )9 = 0. Then, 

Hence, 

DY(O, O)(u) = ({y]y  ~ 0}, 
i f u ¢ 0 ,  

i fu  =0,  

MineDY(O,  0)(u) = [ Q ,  
i f u # 0 ,  

i fu  =0,  

D(Y+P)(O,O)(u)  ~ {yty-->O}' 
= ( R ,  

M i n p D ( Y + P ) ( O ,  O)(u)= [ ~ ,  

[ {o ) ,  > o~ 
DW(O, O)(u) = l { y l y  = 

/ 

(~ ,  

if u < 0 ,  

i f u  =0 ,  

if u > 0 .  

i f u < 0 ,  

i f u ~ 0 ,  

i f u < 0 ,  

i f u ~ 0 ,  

{0} = Minp DY(O, 0)(u) ¢ DW(O, 0)(u) = Q, ~ r u > 0 .  

Example 3.4. 0 ) is not properly P-minimal.) Let U = R, p = 2, P = R] ,  
and Y be defined by 

Then, 

Let ~ = 0 

Hence, 

Y(u) = {y[y~ +Y2 = 0, yl _-< u} w {Yl Y~ + Y2 + 1 - 0, y~ > 0}. 

W ( u ) = { y l y l + y z = O ,  yl =rain(0, u)}w{y ty~+y2+t  =0,  y, > O}. 

and f = (0, 0). Then, 

D Y(  ~, )$)(u) = Minp D Y ( (t, fi)( u ) = { y[ y~ + Y2 = O, y~ <= u}, 

D( Y +  P)( a, fi)( u) = {YlY, + Y2 >= O, Y2 >= - u }  w {YlY, >= 0}, 

M i n n D ( Y + P ) ( u . ~ ) ( u )  ~r{Y[Y~+Y~ =O'y'<=u}' i fu  <0 ,  
=[{y[y~+)2=O,y~<O},  ifu>=O, 

D W (  ~, fi)(u) = {YlY~ + Y2 = O, y~ <= min(0, u)}. 

(1, -1 )  ~ DW(t~, f ) (1) ,  while (1, - 1 )  c Mine DY(~, fi)(1). 
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4. Sensitivity Analysis in General Multiobjective Optimization 

In this section, we deal with a general multiobjective optimization 
problem in which the feasible set in the objective space is given by the 
composition of the feasible decision set X(u) and the objective function 
f(x,u).  Namely, let X be a set-valued map from R m to R ' ,  f be a 
continuously differentiable function from R" x R "  into R p, and Y defined 
by 

Y(u) =f (X(u) ,  u)={YIY =f(x, u), x~ X(u)}, 

for each u c R" .  (17) 

First, we investigate a relationship between the contingent derivatives of X 
and Y. Let 

a c  R" ,  ; e  X(a) ,  )I = f (~ ,  a) ~ Y(~). 

Proposition 4.1. For any u c R m, 

7xf(~, a)DX( a, ~)(u) + 7~f(~, a)u C DY( a, y)(u), (18) 

where V J ( ~ ,  fi) [or V,f(~,  fi)] is the p x n [or p x m] matrix whose (i,j) 
component is Of(~, a)/ox; [or Of(2, ~)/Ouj]. Moreover, let 

X(u, y) = {x 6 R' lx  c X (u),f(x, u) = y}. (19) 

If )( is upper locally Lipschitz at (~,)3) and )~(a, 3~) = {~}, then the converse 
inclusion of (18) is also valid, i.e., 

V ff(:~, B)DX( a, ~)(u) +V, f (2 ,  a)u = DY( a, fi)(u), 
for any u ~ R".  (20) 

Proof. First, we prove (18). Let x~DX(~t,~)(u). Then, there exist 
sequences {hk}C/~+, {ug}cR  m, and {xg}cR"  such that hk~O, uk~u, 
x k ~ x, and 

:~+hkx ~ ~ X(a+hkuk), 

Then, 

i.e., 

for any k. 

f (~+ hkx k, a+ hkuk)c Y(~+ hkuk), 

Since hk 

for any k, 

.~+hk f(~-t-hkxk" u+hkuk)--f(x' U)~ Y(~+hkuk), for any k. 
hk 

~0, uk ~ u, and xk ~ x, 

lim f(p" + hkxk'~ + hkU k) _ f (2 ,  ~) = V~f(~, ~)x + V,f(~, ~)u. 
k ~eo h k 
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Hence, 

V.f(2, a)x +Vuf(2, ~)u ~ DY(~, ;)(u). 

Thus, (18) has been established. Next, we prove (20). Let y ~ DY(~, fi)(u) 
along with sequences {hk} C/~+, {u k} C R m, and {yk} C R p such that hk ~ 0, 
uk~u,  yk~y ,  and f i+hkyk~Y(~+hkuk).  Then, there exists another 
sequence {x k} C R" such that 

2+hkxkc f ( (~+hku k, fi+hkyk), for any k. 

Since 2 is upper locally Lipschitz at (4,)9) and 2(~/, fi)= {2}, there exists 
a positive number M such that 

112+ hkx k -211 <= MIl(a + hku k, ;+  hkY k) - (a ,  fi)ll, 

i.e., 

Ilx ktl <--_ MII( u k, yk)tl, 

for all k sufficiently large. Since the right-hand side of the above inequality 
converges to M II(u, y)tl as k-~ co, we may assume without loss of generality 
that x k converges to some x. Then, clearly xc  DX(~, 2)(u). Moreover, 

,, k a+hkuk)_f(2,  a) y =  lim yk = l imf (x+hk  x , 
k~ec k~oo hk 

= Vxf(2, ~)x + V,f(2, ~)u. 

Therefore, 

y c V~(2,  ~)DX(~, 2)(u) + V.f(2, ~)u, 

and the proof of the proposition is completed. [] 
The following two examples show that the additional conditions in 

Proposition 4.1 are essential for (20). 

Example 4.1. (J((~, 33) ~ {2}). Let 

X(u)={x~RlO<=x<=max(t,l+u)}, for u c R ,  

f(x,  u ) = x ( x - 1 ) ,  2=0 ,  2=0 ,  fi=f(2, ~)=0.  

Then, 

and 

2 ( 4 ,  ; )  = {0, 1}, 

Y(u) = ~ [{yI-1/4<=y<--O}' 
[{Yl-  1/4Ny<= u ( l +  u)}, 

if u _<-- O, 
i fu>O.  
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Hence, by taking 

hk = 1/k,  u k = 1, 

we can prove that 

1E DY(~, 9)(1). 

On the other hand, 

D X ( a ,  ~)(1) = R+, 

Therefore, 

y k  = 1~ 

v~f(~, 9) = -1 ,  v.f(~,  a) = 0. 

Y ( u ) = { y ~ R l O < = y < - - 1 }  

DY(O,  0)(u) = R+, for any u ~ R. 

However, 

Vaf(0, O)DX(O, O)(u)+V J ( 0 ,  0)u = {0}. 

In this case, 

Jr(u, y) = , fy ,  for 0<_-y<_ - 1 and any u, 

which is not upper locally Lipschitz at (0, 0). 
Finally, we should note sufficient conditions for the upper local Lip- 

schitz continuity of Y at ~. 

and 

Then, 

1 ~ Vxf(:~, i )DX(f i ,  9~)(1) + V=f(~, fi)1, 

and (20) does not hold. 

Example 4.2. (X is not upper locally Lipschitz at (u,9)-) Replace 
X ( u )  by 

X ( u ) = { x ~  Rl0=<x<max(1,  l + u ) }  

in Example 4.1. In this case, X(fi, 9)={0},  but X is not upper locally 
Lipschitz at (r~, 9). We can analogously prove that 

1~ DY(a ,  ~)(1), 

but 

1 ~ V J(:~, ~)DX(~,  :~)(1) + V~f(:~, ~)1. 

Example 4.3. ()~ is not upper locally Lipschitz at (~, 9).) Let 

X ( u ) = { x c R [ O < = x ~ l } ,  for every u ~ R ,  

f ( x ,  u) = x=, fi = O, ~ = O, 9 = O. 
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Lemma 4.1. If X is upper locally Lipschitz at ~ and if X(fi)  is 
bounded, then Y is upper locally Lipschitz at a. 

Proof. Since X is upper locally Lipschitz at ~, there exist some 
e-neighborhood N of fi and a positive number M1 such that 

X(u)CX(~)+M, tlu-~llB, for any u ~ N .  

Since f is continuously differentiable and U u ~ N X(u)  is bounded from the 
boundedness of X(~)  and the above relation, there exists a positive number 
M2 such that 

tlf(x, u ) - f ( Y ,  ~)11 _-----M211(x, u ) - ( ; ,  ~7)11, 

for any u e  N, x ~ X ( u ) ,  and Y~ X(~) .  For any u ~ N  and y ~  Y(u), there 
exists x ~ X ( u )  such that f ( x ,  u) = y. Then, there exists £ ~ X ( a )  such that 

llx-~zll _-< M, l lu -  all. 
Hence, 

Putting 

we have 

Ilf(x, u ) - f ( ~ ,  ~)[I ~ M2t]( X, u ) -  (~, ~)[! 

M2(tlx-Xll ÷ t l u -  ~71!) 
<--M2(l + M,)llu-all. 

M = ( I + M i ) M : ,  

y~ Y(~)+MIlu-~IIB. 
This completes the proof  of the lemma. [] 

As can be seen from the proof, f n e e d  not be continuously differentiable, 
but locally Lipschitz continuous in the above lemma. The following example 
shows that the boundedness of X(t~) is essential. 

Example 4.4. (X(~)  is not bounded.) Let 

X(u)={xcR2Ixl=u}, for u~R, 

f ( x ,  u) = xlx2. 

Then, 

Clearly, 

y ( u )  = ~'{0}, if u = 0 ,  

[ R, i fu  #0 .  

Y is not upper locally Lipschitz at ~ = 0. 
Finally, we have the following theorem. Note that Y is P-minicomplete 

near ~ if X ( u )  is compact for each u near f,~. 
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Theorem 4.1. Assume the following conditions: 

(i) X is upper locally Lipschitz at a; 
(ii) X ( u )  is compact for each u near a; 
(iii) fi is a properly P-minimal point of  Y(~); 
(iv) Jr(a, )3) = {0}}; 
(v) 2 is upper locally Lipschitz at (~, fi). 

Then, for any u c R m, 

Mine{Vff(~  a)x  + V~(~,  a)ulx  e O X  ( a, R)(u)} C D W (  a, ; ) (u ) .  
(21) 

5. Sensitivity Analysis in Multiobjective Programming 

In this section we apply the results obtained in the preceding section 
to a usual muitiobjective programming problem: 

P-minimize f ( x )  = ( f i ( x ) , f 2 ( x ) , . . . , f p ( x ) ) ,  

subjectto g(x )=(g l ( x ) , g2 (x ) , . . . , gm(x ) )<=O,  x ~ R " ,  (22) 

and discuss the sensitivity in connection with the Lagrange multipliers. 
Recall that, in usual nonlinear programming, the sensitivity of the perturba- 
tion function with respect to the parameter on the right-hand side of each 
inequality constraint is given by -h i ,  j = 1 , . . . ,  m, where hj is the corre- 
sponding Lagrange multiplier. Our final result will be an extension of 
this fact. Throughout this section, each function f ,  i=  1 , . . . , p ,  and gj, 
j = 1 . . . .  , m, is assumed to be continuously differentiable. 

Let X be the set-valued map from R m to R" defined by 

X(u)={x~R"[g(x)-<_-u} ,  for u c R  m. (23) 

Hence, in this case, the feasible set map Y from R m to R p, the objective 
space, is defined by 

Y ( u )  = f ( X ( u ) )  = {y c RVl y = f ( x ) ,  x ~ X(u)} 

= {y ~ RPIy = f ( x ) ,  g(x)  <= u}. (24) 

Of course, the nominal value of the parameter vector u is 0 in R m. Take a 
point ~ ~ X(0), and denote the index set of the active constraints at ~ by 
J()}), i.e., 

J(~) = { jlgj(~) = 0}. (25) 

First, we consider the contingent derivative of the set-valued map X. 
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Lemma 5.1. The contingent derivative of X at (0, 2) is given as follows: 

DX(O, ~)(u) = {xl(Vgj(~), x) = uj, for all j ~ J(2)}, (26) 

where ( . ,  .) denotes the inner product in the Euclidean space. 

Proof. Note that 

graph X = {(u, x)lgj(x) - uj <= O, j = 1 , . . . ,  m} 

is specified by m inequality constraints. The gradient vector of the j th  
constraint at (0, 2) with respect to (u, x) is ( - # ,  Vgj(2)), where e j is the 
j th  unit vector in R m, i.e., 

#k=0,  if k # j ,  

eJl ~--- 1. 

Hence, these gradient vectors are linearly independent,  and so the tangent 
cone to graph X is given by 

Tgrapa x(0, 2) = {(u, x ) l ( ( - e  j, Vgj(2)), (u, x)) _<- 0, for j ~ J(~)} 

= {(u, x)l(Vgj(2), x) <_ us, for j ~ J(2)}. 

This completes the proof  of  the lemma. [] 

In this case, X ( u )  is a closed set for every u, since g is continuous. 
The next lemma provides sufficient conditions for the Lipschitz continuity 
of X around ~ = 0. Here, X is said to be Lipschitz around a if there exist 
a neighborhood N of ~ and a positive number M such that 

I lx-x ' l l<=Mllu-u ' l l ,  fo ranyu ,  u ' c  N, a n d x ~ X ( u ) , x '  ~ X ( u ' ) .  

Of course, if X is Lipschitz around ~, then it is upper locally Lipschitz at ~. 

Lemma 5.2. Assume that there exists a vector ~ > 0  such that X ( a )  
is bounded, X(0)  # Q, and that the Cottle constraint qualification is satisfied 
at every g ~ X(O), i.e., 

Aj~Tgj(~) = 0 and A s _-> 0, for j ~ J(~) ,  
jEJ(.~) 

imply that Aj = 0, for a l l j  ~ J(~).  (27) 

Then, X is compact-valued and Lipschitz around ~ = 0. 

Proof. This lemma is due to Rockafellar (Ref. 8). Combine Theorem 
2.1 and Corollary 3.3 in Ref. 8. D 

Analogously, we have the following lemma concerning the set-valued 
map 

Y((u, y) = {x l f ( x )  = y, g(x)  <= u}. (28) 
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Lemma 5.3. Assume that ,,Y is locally bounded around (0,33), 
37(0, ~ ) #  Q and that the Mangasarian-Fromovitz constraint qualification 
is satisfied at every £ ~ J~(0, 3~), i.e., 

p 

/ , , V f ( ; ) +  Y~ AjV&(~)=0and; t j=>0,  f o r j e J ( ~ ) ,  
i = 1  jcJ(,~) 

impty that/xi = 0, for all i = 1 . . . .  , p, and Aj = 0, for all j z J (£) .  

(29) 

Then, J~ is compact-valued and Lipschitz around (0, 33). 
We will proceed with the discussion under the following assumptions. 

Assumption 5.1 

(i) There exists ~ > 0 such that X(~)  is bounded. 
(ii) The Cottle constraint qualification (27) is satisfied at each 

x e x (0 ) .  
(iii) 33 = f ( 2 )  is a properly P-minimal pointSof Y(0), where ~ ~ X(0). 
(iv) .~(0, )3) = {~). 
(v) The Mangasarian-Fromovitz constraint qualification (29) is 

satisfied at £ 

Then, we can apply Theorem 4.1 to obtain the relationship 

Mine V f ( ~ ) D X ( O ,  ~)(u)  C DW(O, fi)(u), for any u ~ R m. 
(30) 

In view of (26) of  Lemma 5.1, 

Vf (~ )DX(O,  ~)(u)  = {YlYi = (Vf ()~), x), for i = 1 , . . . ,  p; 

(V&(2), x}= < uj, fo r j  ~ J(~)}. 

Hence, the left-hand side of (30) consists of all the P-minimal values of 
the linear multiobjective programming problem: 

P-minimize (Vf(~),  x), i = 1 , . . . ,  P, 

subject to (V&(~), x)<=uj, j ~ J ( ~ ) .  

In view of Theorem 3.4.7 in Sawaragi et al. (Ref. 6) and the ordinary 
Kuhn-Tucker theorem, the necessary and sufficient P-minimality condition 

s In this case, we call .~ a properly P-minimal solution to the problem (22). 
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for the above linear problem are that there exists a mult iplier  vector  (/z,A) 
R p x R m such that 

P 

2 ~ iv f (~ )+  2 , jvgj (~)=0,  (31) 
i=l  j c J ( ~ )  

/z c i n t  P+ = {~, ~ RPI(1. ,, d) > O, for  all d ~ P, d ¢ 0}, (32) 

)tj _>- 0, f o r j  6 J (2 ) ,  (33) 

Aj((Vgj(2), x) - uj) = 0, f o r j  ~ J (2 ) .  (34) 

Since ~ is a proper ly  P-minimal  solution to problem (22), there exists a 
vector  (/x, 3,) ~ R p x R m satisfying (31)-(34).  In fact, let 

K = {x E R°[(Vgj(~), x)_<- 0, j ~ Y(~)}, 

and G =  R ~ in Theorem 4 o f  Borwein (Ref. 9), and note  that we have 
assumed the Cott le constraint  qualification. Hence ,  if x ~ R"  satisfies 

then 

(Vgj(~), x)_- < uj, 

(Vgj(~), x) = uj, 

for all j ~ J ( 2 )  such that hj = 0, (35a) 

for  att j ~ J()~) such that Aj > 0, (35b) 

Vf()~)x ~ Minp D Y(O, f ) (u) .  

Moreover ,  

p m 

E ~(vf , (~) ,x)+  E ~uj=0.  
i=l  j = l  

Thus,  we have proved the following theorem. 

Theorem 5.1. Suppose  that Assumption 5.1 is satisfied, and let (# , ) t )  
be the multiplier  vector  corresponding to .,~. Then,  for  each x E R" satisfying 
(35), 

V f ( ~ ) x  c DW(O, ~)(u). 

Moreover ,  

Z m(vf~(~),x)+ Ajuj=0. 
, = 1  / = 1  
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Remark 5.1. The equations and inequalities in (35) characterize the 
set of  admissible changes of  x corresponding to a perturbation u. They can 
be also seen, say, in Malanowski (Ref. 10). 

6. Conclusions 

In this paper, we have studied sensitivity analysis in multiobjective 
optimization. The essential result that we have proved is that every cone 
minimal vector of  the contingent derivative of the feasible set map in a 
direction is also an element o f  the contingent derivative of the perturbation 
map in that direction under  some conditions (Theorem 3.2). We have also 
obtained the relationship between the contingent derivative of  the perturba- 
tion map and the Lagrange multipliers for multiobjective programming 
problems (Theorem 5.1). 

However, there remain several open problems which should be solved 
in the future. Some of them are the following. First, the contingent derivative 
of the perturbation map is not completely characterized. In other words, 
sufficient conditions for the converse inclusion of  Theorem 3.2 have not 
been obtained yet. Secondly, the Lipschitz continuity of  the perturbation 
map is not studied here. Thirdly, some more refined results may be obtained 
in the case of  multiobjective programming. We should like to mention that 
the effects of  the convexity assumptions wilt be made clear in another paper. 
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