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Recursive Solution 
of Linear-Quadratic Nash Games 

for Weakly Interconnected Systems ~ 
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Abstract. A recursive method is developed for the solution of coupled 
algebraic Riccati equations and corresponding linear Nash strategies 
of weakly interconnected systems. It is shown that the given algorithm 
converges to the exact solution with the rate of convergence of O(e2), 
where e is a small coupling parameter, In addition, only tow-order 
systems are involved in algebr,,ic computations; the amount of computa- 
tions required does not grow per iteration and no anatyticity assumption 
is imposed on the system coefficients. 

Key Words. Nash differential games, weak coupling, coupled Riccati 
equations, recursive algorithm. 

1. Introduction 

The linear quadratic Nash game strategies of large-scale weakly inter- 
connected systems were studied in Ref. 1 by means of  a power series 
expansion method with respect to a small coupling parameter e. This 
approach, originated in Ref. 2, is not recursive in its application and can 
be inferior compared to the hierarchical type decentralized control method 
(especially when E is not very small), as was pointed out in Ref. 3. In this 
paper, we develop a new recursive technique which will recover the impor- 
tance of ideas presented in Ref. 2. Motivated by previous results for sin- 
gularly perturbed systems (Ref. 4), we have shown that weak coupling 
produces algebraic problems similar to those of  Ref. 4 and the fixed-point 
method used in Ref. 4 is very efficient in this case also. 
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As a matter of fact, we have developed an algorithm which converges 
very rapidly to the exact, nonnegative definite stabilizing solution of the 
coupled algebraic Riccati equations, and thus to the optimal linear Nash 
strategies, even in the case when e is not very small. 

2. Problem Formulation 

A controlled linear dynamic system under consideration is given by 

Yc = A(e )x  + Bl(e)ul + B2(e)u2, (1) 

where x~  R" is a state vector, u l c  R m' and u2~ R "2 are control inputs, 
A(E), Bl(e),  B2(e) are bounded matrix functions of a small parameter e 
with compatible dimensions. 

A quadratic type functional is associated with each control agent, 

fo o J, = [xrQ,(e)x+U~Rl(e)u l+ufRt2(e)u2]  dt, (2a) 

fo° J2 = [xTQ2(~)  x ~- u(R21(E)/dl -t- u2FR2(E)U2] dr, (2b) 

where the weighting matrices are symmetric satisfying 

Q~(e)-- 0, Ri(e) > 0, i =  1,2, 

R~j(e) >-0, i # j ,  i = 1, 2 , j  = 1, 2. 

The optimal solution to the given problem with the conflict of  interest 
and simultaneous decision making (Ref. 5) leads to so-called Nash strategies 
u* and u* satisfying 

Z,(u*, u*) <- J ,(u, ,  u*), (3a) 

J2(u*, u~) <- J2(u*l, u2). (3b) 

It was shown in Ref. 5 that the optimal closed loop strategies are given by 

u*i = - R f ( e ) B f ( e ) K i ( e ) x ,  i = 1, 2, (4) 

where K~'s satisfy coupled algebraic Riccati equations 

K,(e )A(e )  + AT(e )K , (e )  + Q,(e) - K , (e )S l (e )K , (e )  

-K~(e)S2(e)K2(e) - K2(e)S2(e)K,(e) + K2(e)Z2(e)K2(e) 

=0 = W,(K, ,  K2), (5a) 

K2(e)A(e) + AT(e)K2(E) + q2(e) - K2(e)S2(e)K2(e) 

-K2(e )S~(e )K~(e) -  K~(e)S~(e)K2(e)+ K~(e)Zl(e)Kl(e)  

=0 = N2(K,,  K2), (5b) 
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where 

S i (e )  = B i ( e ) R ) - ~ ( E ) B T ( e ) ,  i = 1, 2, 

Z i ( e )  = B i ( e ) R i l ( e ) R i i ( e ) R T l ( e ) B F ( e ) ,  i = 1, 2, j = 1, 2, i C j .  

The existence of the nonlinear optimal Nash strategies was established 
in Ref. 6, so that (4), in fact, are the best linear optimal strategies. Since a 
linear control law, from a practical point of view, is very desirable, the 
linear strategies (4) attract the attention of many researchers. 

The existence of Nash strategies (4) and solutions of coupled Riccati 
equations (5) has been studied in Ref. 7, by means of Brower's fixed-point 
theorem and by imposing norm conditions on the given matrices. In a recent 
paper (Ref. 8), under control-oriented assumptions (Refs. 9 and 10), the 
existence of  nonnegative-definite stabilizing solutions of (5) has been estab- 
lished. 

It is important to point out that, at the present time, there is no published 
method for finding stabilizing solutions of  coupled algebraic Riccati 
equations (5). Some attempts in that direction have been made in Refs. 15 
and 16. 

In this paper, the Nash game problem is considered for a special case 
of weakly interconnected systems characterized by 

L~A=,(~) A=(E) j '  

= [ l, = 

eB=,(e)l L B==(,) J' 

O'(~) = L~uT~(~) ~-~u~(~)J' O=(~) = L~v~(~)  v2(~) J" 

This partition decomposes the state vector x into two vectors x~ ~ R n, and 
x2 ~ R ~2, such that n~ + n2 = n. Since the small coupling parameter e cannot 
change the basic structures of the subsystems by destroying their main 
properties (otherwise, we cannot talk about the weak coupling), it is very 
natural to adopt the following form for the subsystem matrices. 

Assumption 2.1. W e a k  Coupling Assumpt ion .  For i = 1, 2, 

Ai(  e ) = Aio + EAoi( e ), 

Bii( e ) = Bio + eBoi( e ), 

U,(  e) = U,o + EUot( E), 

V2( ~ ) = V2o + E Vo~( E ), 

Ri(e) = Rio+ ERoi(e), 
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where Aoi(e), Boi(E), Roi(e), i =  1,2, Urn(e) and Vo2(e) are continuous 
functions of  E, whereas Aio, Bio, Rio, i = 1, 2, and U~o, Vzo are independent 
of e. 

In order to simplify the algebra, we will assume, without loss of  
generality (Ref. 19), that 

U12(e) = O, V~2(e) = O, R~2(e) = O, R21(e) = O, 

u2(E) = o, v,(E) =o,  B,2(E) =o,  B2,(E) =o. 

Note that we are studying a more general case than the one studied in 
Ref. 1, because of  the c-dependence of  the problem matrices. In addition, 
we do not need to impose the analyticity assumption with respect to e, 
which must be done for the power series expansion method. 

The following scaling of K~(e) and K2(E) is consistent with the nature 
of the solution of (5) 

F E a (E) l l 
Kl(e) = LEM~(E) e=M=(e)J ' K2(E)= LENI~(E) N2(e) J" 

(6) 
The very well-known e-decoupling method (Ref. 2), based on the power 

series expansion with respect to E, will convert the given full-order problem 
(5) to a family of reduced-order problems (Ref. 1). However, the power 
series expansion method is not recursive in nature and, in the.case when 
we are interested in high order of accuracy or when E is not very small, the 
size of the required computations can be considerable. Moreover, when 
the problem matrices are functions of E, the power series method demands 
the analyticity of  all matrices. On the other hand, the expansion of quadratic 
terms [for example, KI(E)BI(E)R[J(E)BT(e)KI(E)] will produce an enor- 
mous number of  terms, so that the reduced-order advantage of  the series 
expansion method becomes questionable. The presence of a small parameter 
e will be exploited in the next section from a different point of  view, leading 
to the recursive scheme for the solution of (5). Since the proposed method 
is of the fixed-point type, the boundness of all problem matrices over a 
compact set e • [0, eli has to be imposed. This is a much milder condition 
than the analyticity requirement of the power series expansion method. 

3. Iterative Solution of Coupled Algebraic Riccati Equations 

Partitioning (5) compatibly with (6), we get the following set of 
equations: 

M~(E)A~(e) + AT(~)M~(e) + Ul(e) - Ml(e)S~l(~)Ml(e) 

+~2{M12(E)A2~(e)+ A ~ ( e ) M ~ ( e ) -  MI2(e)S22(e)N~(e) 

-S l z (e )S22(e )M~(e)}  = O, (7a) 
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M,(e)A,2(E) + M,2(E)A2(e) - M,(e)S~ (e)M~2(e) 

- M , z ( E )  $22(E) Nz(e)  - e2{N,z(e)S22(e)M2(E) 

- A ~ ( e )  M2(e)} + A((e)M~2(e) = 0, (7b) 

M2(e)Az(E) "1- A2T(e) M2(e) - M2(E)Sz2(e)N2(e ) 

-- N2( e ) S22( e ) M2( e ) .4- M ~2(e)A12(e ) + A ~z( e ) M12( e ) 

-M~(e)Sal(e)M12(e)  = 0, (7C) 

N,(e)Al(e)  + A-((e)Nl(e)  - N,(e)S, , (e)M~(e)  

- M , ( e ) S , , ( e )  N,(e)  + N,2(e)A2,(e) + A~ (e)N~2(e) 

-N,2(e)S22(e)N~e(e) = 0. (7d) 

e2Nl(e)Ai2(e) + N,2(e)Az(e)  - N,2(e)S22(e)N2(e) 

-e2 N,(  ~)S,,(~)M,2( E) - M,( e)S,,(  e) N,2( ~) + A2~ (e) N2(e) 

+Arl(e)N,z(e) = 0, (7e) 

N2(e)A2(e) + A f  (e)N2(e.) + V2(ff ) - -  N2(e)S:e(e)N2(e) 

T E +E2{N~(~)A,z+ A T ( e ) N , 2 ( e ) -  N , 2 ( e ) S , , ( ) M , z ( e )  

-M~(e )S , , ( e )N ,2 (e ) }  = O, (7f) 

where 

S.(E) = B,,(e)RT,'(e)BT(e), 

3.1. Zeroth-Order Approximation. 
t ion of  (7) as 

M , ( e ) A , ( e )  + A ( ( e )  _M,(e) + U,(e)  - M.,(E)S, , (E)M,(E) = O, (8a) 

_ M I 2 ( ~ ) D 2 ( ~  ) "k D, (e )  r M,2(e)  = - _ M i ( e ) A 1 2 ( e ) ,  ( 8 b )  

_M2(e) D2(e ) q- D2(e) r M2(e) 

_M,~(E)S,,(~)_M, d e ) - -  ~ ~ ' = M,2(~)A,a(E) - A,2(e) _M,2(E), (8c) 

N , ( E ) D , ( e )  + D ~ ( E ) N , ( e )  

= N 1 2 ( f f ) S 2 2 ( f f )  N 1 T 2 ( e )  - -  / ~ , 2 ( E ) A 2 I ( E )  - -  A ~ ( e )  N~(E) ,  (8d) 

N,2(E)D2(E) + D ~ ( e )  N,2(E) = - A l l ( E )  _Nz(e), (8e) 

_N2(E)A2(e) + A2T(e) _N2(E) + V2(e) - _N_4 e)S2dE) _Nd e) = 0, (Sf) 

where 

D , ( e )  = A , ( e )  - S , , ( e )  _M,(e), 

D2(E) = A2(e) - 822(e) _-N2(E). 

i = 1 , 2 .  

Let us define the O(e 2) perturba-  
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This system of equations has decoupled form and can be solved like two 
lower-order Riccati equations (8a), (8f) and four low-order Lyapunov 
equations (8b)-(8e). The nonnegative-definite stabilizing solution of (8a) 
and (8f) exist under the well-known stabilizability-detectability assumption 
(Refs. 9 and 10). 

Assumption 3.1. The triples (A1(0), BI(0), U~/~I(0)) and 
(A2(0), B2(0), ~V2(0)) are stabilizable-detectable. 

Under the same assumption, the unique solution of (8b)-(8e) exist, 
since Dr(e) and D2(e) are stable matrices (Refs. 9 and 10). 

3.2. Solution of Higher-Order Accuracy. The zeroth-order solutions 
_M(E) and _N(E) are O(e 2) close to the exact ones. Then, the exact solutions 
can be sought in the form 

[ -M'(E) + e2E'(e) 
Kl(e )  = Le{ _M,2(E) + E2E12(E)} T 

[ E2{ -N'(E) + OG'(e)} 

Kz(e) = LE{N12(E ) + ~52G,2(E)} T 

~'{ -MI2(E) "]- E2EI2(E)}I (9a) 
~2{ _Md~) + dE:(~)} J'  

e{ N,d E) + e~ C;,d ~)}'] 
N2(E ) -F ff2G2(E ) J" (9b) 

Obviously, O(E k) approximations of E(e)'s and G(e)'s will produce 
O(e k+2) approximations of required solutions, which is why we are inter- 
ested in finding a convenient form for these error terms and the appropriate 
algorithm for their solution. 

Subtracting Eqs. (8) from corresponding Eqs. (7), and after doing some 
algebra, we get the following expressions for the error equations: 

E1D, + D~E~ = CI + E2FI(E~, E12, G~2), (10a) 

E1 D12 + E12D2 + D['E12- _M12S22 G2 

= C2+ E2F2(EI, El2, E2, G12, G2), (10b) 

E ~2Dt 2 + D r E ,  2 + E2 D2 + D [ E z  - G2S22 ~_I2 - M_2Sz2 G2 

=~'2F3(Et2, 62, G2), (10c) 

T T G1D1 + D-(G, + G12D21 + D21G12- E1S11_N, - N_ IS1IE, 

=E2F4(E,, G,2, G2), (10d) 

Gv~D:+ Dr, G~2+ D2q G2 - E,S~,N_ ~2 

=Cs+•2Fs(E,, E,2, G,, G,2, G2), (10e) 

G2D2+ DfG 2 = (76+ e2F6(E12, GI2, G2), (10f) 
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where 

D , 2  = D:2(  e ) = A ~2( e ) - S,:(e)  _M:?(e), 

D2~ = Dz:(e) = A2~(e ) - S2e(e) _Ni2(e). 

Matrices F~, i = 1, 2 , . . . ,  6, and constant matrices Cj are given in the Appen- 
dix (Section 7). In order to simplify eotation, the e-dependence of the 
problem matrices in Eq. (10) and in the remaining part of the paper is 
omitted. 

The weakly coupled and hierarchical structure of (10) can be exploited 
by proposing the following recursive scheme, which leads, after some 
algebra, to the six low-order, completely decoupled Lyapunov equations 

K'~ T ~7(i+ 1) 

~2 ]ET(i)c l~(i) ~d(i) l'~(i) p~(i)T ~/[(i) T 
~ ' ~  L~t ~'711z~-'l ~ v 1 1 2 ~ ' 2 1 - - a - ' 2 1  ~ '~12 

E( i+l )  r'~ ~ l'~T ly2(i+l) 
12 1-"¢2--1-~'1 1-'12 

K7(i+1) /~ ( i )  ~_ ~Ar(i )~ f ~ ( i + l )  ~(i)g~Ar(i)  
~ - - J ' ~ t  z- 'a '12t l~at12ia '22kar2 - - ~ " ' 2 t  1v12 '~ 

E ( i + l ) / ~  A,. i-1T ~7(i+ 1) 
2 J J 2  ~ L" 2 x-'2 

~ff(i)  ,~ f 2 (  i+1 ) ..L. [-2~(i+ 1 )~  ~/f( i )  ~7( i+ l )T  /~  
= l v a t 2  ° 2 2 u 2  ~ " ~ 2  ° 2 2 1 v 1 2  - - ~ 1 2  g"12  

r ' ~T  r ( i + l )  - -  2 r ( i + l ) T r ,  r , ( i + l )  
- - L J 1 2 E ,  12 - i - e  L512 ~.~l 1/2~ 12 

G~i+~)D~ + ~tFI T/"~(i+l)'j1 

/ z7 ( i+1)~  1 ~f(i)-~-~'l l k r ( i ) ~  ~ 7 ( i + 1 ) - -  f 2 ( i ' ÷ l ) / 1  
~ 1  ~1  l~  I ~"ll~t~l '~'~12 ~ 2 1  

_ / 1 T  [ '~(i+l)T..k.  2 [ - ¢ ( i + 1 ) ~  / ,~( i+1) T 
L-"21 '~J 12 ~ e  "'-"12 "~22 u 12 

G ( i + l ) l ~  _j_ /~  T g-~.(i+ I ) 
12 i J 2  : "tJ 1 ~'J12 

- -  t~(i)T ~ ( i+ l )_~  l~(i+l)~ ~T(i) ~ f ( i ) ~ ( i )  

G ( i + l ) l ~  A_ /-~ T / -~ ( i+  1 ) 
2 a J 2  ~ L"2  ~J2  

2/ . -~(i)~ K~(i) [t[(i~7~(i) -- l~(i) T l~[(i) 
~-~" ~J2 ° 2 2 ~ J 2  - - ~ 1 2  ~'"12 ~tJl2 ~'~12~ 

with i = 0, 1, 2, 3 , . . . ,  with initial conditions chosen as 

E]Ol = ~,2=I°> = E(2 ° /= G] °3 -- ~2~(°~ = G:O~_ = 0, 

where 

M { ~ =  MI2+e2E]~ ), 

N{}' _N,2+ 2"~(i> : e t,-/12 ~ 

N ]  i ) =  N I + e 2 G l  i), 

M(2 ° = M_ 2 + e2 E(2i), 

- ~ A ( i  ) D ~ = A ~ 2 - S ~ , ~  w_, 

D(2'; 1 = A21 ¢ ~r(i) r 
- -  ° 2 2 ~  ~ 12 

( l l a )  

(11b) 

(11c) 

( l ld) 

(1:e) 

(l lf)  
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with i =  1, 2, 3 , . . . .  These Lyapunov equations have to be solved in the 
given order, that is, first E~ and G2, then E~2 and G~2, and finally E2 
and G~. 

The following theorem indicates the features of  the proposed recursive 
scheme. 

Theorem 3.1. Under imposed weak coupling and stabilizability and 
detectability assumptions the given algorithm (11) converges to the exact 
solution of the error terms, and thus of K~(e) and K2(E), with the rate of 
convergence of O(e2), that is, 

ti 

II 

It 

II 

with j = 1, 

1P 

z j ( ~ )  - zJ'>(~)TI = o(~'), 

O,~(~)- O~(~)I[ = 0(~'), 

2, i = 1 , 2 , 3 , . . . ,  and 

Kj(e )  - K}')(e)II = o(e2~+2), 

(12a) 

(12b) 

(12c) 

(lZd) 

j =  1,2, i = 0 ,  1,2. 

Proof. As a starting point, we need to show the existence of a bounded 
solution of  (10) in the neighborhood of  E=O. By the implicit function 
theorem, it is enough to show that the corresponding Jacobian is nonsingular 
at E = 0. The Jacobian is given by 

.I(~) [~=o = 

F1 0 0 0 0 

* F2 0 0 0 

0 * ['3 0 0 

* 0 0 F1 * 0 

* 0 0 0 F2 * 

0 0 0 0 0 F3 

0 

(13) 

where the asterisk denotes terms which are not important for a nonsingularity 
of  the Jacobian. F's are given by the Kronecker product representation 

r ,  = I,, x DT(o) + DT(o) x I,,, i = 1, 3, 

r2 = I~ x Dr (0 )  + D~r(0) x I.,, 

where In, and I, 2 are identity matrices. Under Assumptions 2.1 and 3.1, 
D~(0) and D2(0) are stable matrices for any sufficiently small e e [0, e2] and, 
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by the well-known properties of the Kronecker product (Ref. 12), so are 
matrices F~, F2, F3. It is easy to see that the nonsingularity of the Jacobian 
is guaranteed by the nonsingularity of F~, F2, I ' 3 .  

The second step in the proof of the given theorem is to give an estimate 
of the rate of convergence. 

For i=0 ,  (10a) and ( l l a )  imply that 

(El - -  E~I))D, + DT(E~ - E~ ~)) = e2F,(E,, El2, G12), 

which by stability of DI and the existence of the bounded solution of (10) 
gives 

II E , -  E~ ~) tl = O(e2) • (14a) 

By the same arguments, from (10f) and ( l l f )  we have 

II G 2 -  G~ ') II = o (~=)  - (14f) 

Subtracting ( l lb )  from (10b) and using (14a) and (14f) and the expression 
for F3 (from the Appendix) lead to 

( E l 2  _ El 2(1) )D2 + D1T (El2 - E1:(7) ) = O (t~2), 

which implies that 

[I E I 2 -  E ~ 12) I] = O ( f f 2 )  • (14b) 

By analogy [Eqs. (10b) and (10e) have similar form], (10e) and ( l le )  will 
produce 

]1 G12-- GI~ ) 1[ = O(e2) • (14e) 

Also, from (10c), (11c), (14a,b,c,d,e,f) and the Appendix, we have 

( E2-  e~'))D, + D2( E2- ~ ' )  = 0 (  ~2), 

that is, 

11 E2-  E(2 ~) [[ = O(E2); (14c) 

and, by analogy, from (10d) and ( l ld )  we get 

l[ G l -  G~ 1) I1 = O(e2) - (14d) 

Using these starting observations and the forms of F/s  and C/s it can be 
shown that 

I[ Fj - f~ ° II = O(e2i), j = 1, 2, i = 1, 2, 3 , . . .  (15) 
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For example, for j = 1, 

F , -  F] ' )= ( E , -  E]'))Sa ,E~" + E,S, I (  E, - E] ')) 

-- ( E l 2  - E]iz))D2, - aJ  21 \ ~ 1 2 F I T  ( P  -- ~'12]l~(i)'~T 

+ ( G 1 2  - f;"(i)'~ i '  l / r ( i ) r ~  M 1 2 8 2 2 ( G I 2  _ g.'~(i)]T ~.f12]o221v.i12 1 " J 1 2 ]  , 

so that, for i = 1, from (14) we have 

F ,  -- F ]  l , =  O ( E 2 ) ,  

that is, 

(E, - E~2)) D, + D ( ( E, - E~ ~)) = e2( F, - FI ~) = O( e4), 

which implies that 

(El - E~ 2~) = O(e4). 

Continuing the same procedure, we can verify (15), which by the existence 
of the bounded solutions of E's  and G's will imply (12). Note that the 
solution of (11) exists at each iteration, since the corresponding Jacobian 
is always given by (13), and thus nonsingular at e = 0 for every i. [] 

We would like to point out that the imposed form of the solution (9) 
is an additional limiting factor for a small parameter e. It was shown in 
Ref. 8 that under Assumption 3.1, the solution of (5) is nonnegative definite. 
Since the solution of (10) is only symmetric (which can be easily seen from 
the form of corresponding equations), the small parameter e has to be 
constrained to the set E ~ [0, E3] such that, rE, Kl(a) and K2(e) preserve 
the required nonnegative definiteness. Thus, the present method is appli- 
cable for e ~ [0, e*], where 

e*=  min{El, a2, E3}" 

However, the limiting condition 

e * =  m i n { e , ,  if2, i f 3 , . . . }  

is present in the entire theory of small parameters (weak coupling and 
singular perturbations); it is both method-dependent and problem-depen- 
dent, and it is not a direct consequence of the procedure studied in this paper. 

Let us compare the proposed algorithm (11), based on the fixed-point 
iterations, for weakly coupled systems, and the power series expansion 
algorithm for the same type of systems. The comparison is done for the 
case where the problem matrices are not functions of e [which is in favor 
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of the power series expansion algorithm (see page 466)]. The equations 
corresponding to (11) are given by (Ref. 1) 

M]i+l)Dl + ~IF}T ~raA//(i+ l ) 1  ---- Z ~  0 ' 1 ' 2 " ' ' ' ' i )  , 

M~i2 +I)D: + n r  ~,~(i+u _ 7~oa~2,....i) 
L ~ I  ~ 12 - -  S - - ' 2  

M(j +~)D2 + r'~ T l / t ( i + l )  _ 7(o, l ,z , . . . , i> 
a..- 2 l v l  2 - -  L ' 3  

l?~T(i+l)  F I ~ ¢  1 "L"I + D I T  N I ( i + I )  _- t - , 47 ( ° ' 1 ' 2 ' " i )  

N ( i + u  r'~ ~ F I T / - ' g  ( i + 1 )  - -  7 (0,1,2, ' '"  i)  
12 "~'2 ~ z J  1 ""112 - - ~ 5  

N ( i + l )  n .s- n r ~ r ( i + D  - 7 ( 0 , 1 , 2 , - - . ,  i) 
2 *" '2 ~ J~ '2  ~ ~ 2 - -  "e" 6 

(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

(16f) 

where Z;, j = 1, 2 , . . . ,  6, depend on the all previously obtained terms. For 
example, 

Z] ° ' l ' : ' ' ' °  : - ( i  + 1){ M~>A21 - ~ ~al~-*a r ~/r(~)T~2 J 

+ ~ i+l~M(i+l  k)¢ M(k) 

k even  

k = l  
k o d d  

(17) 

Both approaches produce the same type of equations (Lyapunov ones); 
but, in order to form the right-hand side, for example of ( l la ) ,  we have to 
perform only three matrix multiplications for every i, whereas for the 
corresponding equation of the power series expansion the number of 
required matrix multiplications grows very quickly as i increases in (17). 
Thus, the obvious advantages of the fixed-point iteration approach are: (i) 
the size of the required computations is considerably less, and since it does 
not grow per iteration, the proposed method is extremally efficient for 
obtaining the exact solution or the solution of very high accuracy; (ii) the 
fixed-point method is recursive in nature (the power series expansion method 
is not), and thus much easier to implement. 

4. Suboptimal Linear Nash Strategies 

The approximations of the suboptimal Nash strategies (4) can be 
defined by 

u~')(t) = - R f ' ( e ) B f ( e ) K } ' > ( e ) x ( t ) ,  j = 1, 2, i = O, 1, 2, 3 , . . . ,  
(is) 
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where 

K~ ~ -  [ -M'(e) + e2E]')(e) e{M-~2(e)+e2E]~)(e)}l, (19a) 

+ } j .  (19b) 

Then, by following the arguments of Ref. 13, the cost approximations 
produce 

j(i)(, (i) u(2i))=j)(uT, u.)+O(e2i+2), j = l , 2 ,  i = 0 , 1 , 2 ,  j k~l , . . . .  
(20) 

The approximate cost functions for the other cases, when the control agents 
use the approximate strategies of different order of accuracy [for example 
u~ p~ and u(a q~, p # q] can be obtained by using results of Ref. 13 also. But, 
since the proposed method is recursive in its nature, and thus very easy to 
implement, and since the amount of required computations is constant per 
iteration (does not grow with i), accuracy of very high order can be achieved 
at a very low cost, so that the proposed method can be efficient for finding 
the exact solution as well. 

Since the proposed algorithm defines the error of approximation 
similarly to the power series expansion, - it can be easily seen that the 
approximate Nash strategies (18) are also well posed in the sense of Khalil 
(Ref. 17). 

5. Numerical Example 

In order to demonstrate the efficiency of the proposed algorithm, we 
have run a fourth-order example. Matrices A1, Al2, A21, A2, Bi t ,  B22 have 
been chosen randomly (standard deviation = 1, mean value = 0), and the 
matrices R~ = R2 = U1 = V2 = I are chosen such that the required stabilizabil- 
ity-detectability assumptions are satisfied: 

= [ -1 .035  -0.1921 [-1.084 0.597] 
A~ 1_ 1.648 -0.421J '  a ' 2 = k  1.327 -0.841J '  

 1370 0139  
A21= L 1.069 0.835J' Az= L 0.410 1.238J 

[,o,9 06< [-1.641 03 01 
B11 = -0.912 1.329J' Ba2= 1.068 0.243.]' 
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Table 1. Dependence of number of iterations on E. 

i = Number of required iterations 
such that e (~) < t0 -1° 

0,8 16 
0.6 11 
0,4 8 
0,2 5 
0.1 4 
0.05 3 
0.01 2 
0.001 1 

The s imula t ion  results  for  different  values  o f  the  coup l ing  p a r a m e t e r  e are 
given in Tab le  1. Since we d o  no t  know the  exact  so lu t ion  o f  (5) [no  m e t h o d  
is ava i lab le  in the  l i t e ra ture  at the  p resen t  t ime] ,  the  e r ror  is def ined  as 

e ('> = max{ [I W,(K] i), K~ i>) II~, tl N2(K~ '>, K~ '>) tlo~}. 

In  Table  2, we show the p r o p a g a t i o n  of  the  er ror  pe r  i te ra t ion  when E = 0.1. 
The resul ts  f rom Table  1 s t rongly  suppo r t  the necess i ty  o f  the exis tence  

o f  the  recurs ive  scheme for  the so lu t ion  o f  w e a k l y - c o u p l e d  l i nea r -quadra t i c  
Nash  game  p rob lem,  since,  unless  E is very small ,  the zero th  and  first o rde r  
a p p r o x i m a t i o n s  are far  f rom the op t ima l  solut ion.  

The  results  f rom Table  2 verify,  for  this pa r t i cu l a r  example ,  the con- 
c lus ions  o f  Theo rem 3.1, that  is, the rate o f  convergence  o f  the p r o p o s e d  
a lgor i thm is O ( e  2) = O(10-2) .  The  s imula t ion  results  have been o b t a i n e d  
by  using the  sof tware  package  LAS for  c o m p u t e r - a i d e d  cont ro l  system 
des ign  (Ref.  18). 

Table 2. Propagation of the error per iteration 
for a constant value of e (e =0.1). 

i Error e (i~ 

0 0.89662 x 10 ~ 
1 0.65481 x 10 -4 
2 0.10349 x 10 6 
3 0.40663 x 10 -9 
4 0.92572 x 10 -11 
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6. Conclusions 

The solution to the Nash strategies of weakly interconnected systems 
can be obtained up to an arbitrary accuracy by performing iterations on 
the Lyapunov equations corresponding to the local subsystem problems. 
Hopefully, this idea can be extended to generalized weak coupling problem 
(Ref. 11) and to weakly coupled nonlinear systems (Ref. 14). 

7. Appendix 

We give the expressions of the matrices F~ and Cj introduced in 
Section 3: 

T T 3" 
F1 = E1S11EI + _MI2S22G172 "[- G12522-M12- E12Dvl - D21El2 

+ 

F2 = Et2S22 G: + E~ S~1 ~12 + G12S22M_ : -  D r  E2 + E ~ G12S22E2, 

F3 = E12S~ l El2 + E2S22 G2 + G2S22E~, 

1=4 = G12S22G-(: + E1Su G1 + GISuE1,  

F 5 = E1SI 1G12-t- G12S22G2-t- ~1Sll G12- GlD12+ ezGlS11E12, 

r + r r 
F6 = G2S2zG2+ E12Sll_N12 N_ ~(2SllE12- GlaD12- D12G12 

+ E2(e;s .  G,2+ c(2s.E 2), 

C, = -M~2A,2 - A21MI2T T q_ _M12S22NIT2 q_ ~N12S22 _M1T2, 

C2 = - D~I _M2, 

C 5 = - N 1 D I 2  ~ 

C6 = __ N12A12T _ A 1 2 N I  2 T  q_ _M 12Sl 1 N12 _ / _ T  N l/;Sl 1M12 . 
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