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Abstract. We study stochastic games with countable state space, com- 
pact action spaces, and limiting average payoff. For N-person games, 
the existence of an equilibrium in stationary strategies is established 
under a certain Liapunov stability condition. For two-person zero-sum 
games, the existence of a value and optimal strategies for both players 
are established under the same stability condition. 
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1. Introduction 

We study noncooperative stochastic games with countable state space, 
compact action spaces, and with ergodic or limiting average payoff. The 
existing literature in stochastic games with limiting average payoff seems to 
be very limited. To the best of  our knowledge, notable contributions are 
due to Gillette (Ref. t), Sobel (Ref. 2), Bewley and Kohlberg (Ref. 3), 
Federgruen (Ref. 4), and Mertens and Neyrnan (Ref. 5). As in Markov 
decision processes (MDP),  the standard approach to stochastic games with 
limiting average payoff is to treat it as a limiting case of B-discount payoff 
as the discount factor f l ~  1. For B-discount payoff criterion, much more is 
known. For  two-person zero-sum games with B-discount payoff, the 

1The authors wish to thank Prof. T. Parthasarathy for pointing out an error in an earlier 
version of this paper. M, K. Ghosh wishes to thank Prof. A. Arapos~athis and Prof. S. I. 
Marcus for their hospitality and support. 

2Associate Professor, Department of Electrical Engineering, Indian Institute of Science, Banga- 
lore, India. 

3Assistant Professor, Department of Mathematics, Indian lr~stitute of Science, Bangalore, India. 

539 
0022-3239/93/0300-0539507.00/0 © t993 Plenum Publlsl~ing Corporation 



540 JOTA: VOL. 76, NO, 3, MARCH 1993 

existence of stationary fl-discount optimal strategies for both players is 
established in Ref. 6 for Borel state space. For N-person game, the existence 
of fl-discount Nash equilibrium in stationary strategies is established in Ref. 
4 for countable state space. For more general state space the problem is 
much more involved. Parthasarathy and Sinha (Ref. 7) have established the 
existence of fl-discount equilibrium in stationary strategies for Borel state 
space and finite action spaces, but with a transition law which is independent 
of the state. Mertens and Parthasarathy (Ref. 8) have proved the existence 
of subgame perfect equilibrium for fl-discount criterion for general state and 
action spaces. 

The limiting average payoffcase is drastically different from other cases, 
because here the finite-time evolution of the processes is irrelevant in some 
sense; it is only the asymptotic behavior of the time-averaged processes that 
matters. For the big match, Blackwell and Ferguson (Ref. 9) have estab- 
lished the nonexistence of an optimal strategy for the maximizer. Therefore, 
it is clear that some conditions on the transition law are necessary to establish 
the existence of equilibrium for this case. Federgruen (Ref. 4) has established 
the existence of equilibrium in stationary strategy for this case under a 
geometric ergodicity condition. He has also given some other recurrence 
conditions which imply geometric ergodicity. For two-person zero-sum 
games with this payoff criterion, the existence of a value has been established 
by Mertens and Neyman (Ref. 5) for finite state and action spaces under 
no assumptions and for countable state and action spaces under certain 
assumptions. 

Our main objectives in this paper are: (i) for two person zero-sum 
games, to establish the existence of value and stationary optimal strategies 
for both players and characterize the same via the Shapley equation for the 
average payoff criterion; (ii) for N-person games, to establish the existence 
of equilibrium in stationary strategies. 

We achieve our goal by imposing a Liapunov-type stability assumption. 
We also introduce the notion of almost-sure optimality (for the two-person 
zero-sum case) and almost-sure equilibrium (for N-person games) by a path- 
wise treatment of the problems. Pathwise solutions, apart from yielding a 
mathematically stronger result, are very useful in many practical appli- 
cations, since we often deal with only one realization; in this case, the 
expectation may not be appropriate in the payoff function. We first treat the 
N-person game. Following Borkar (Refs. 10, l 1), we introduce certain 
measure-valued processes and use a technique involving disintegration of 
measures to show that, if all but one (say the kth) player employ stationary 
strategies, then player k cannot improve his payoff by going beyond the set of 
stationary strategies. When all but one player (say k) choose fixed stationary 
strategies, then the stochastic game problem reduces to a Markov decision 
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problem for player k. Using the results in MDP, several results in stochastic 
games are often derived using appropriate fixed-point and minimax theor- 
ems. The MDP with ergodic payoff criterion has been studied extensively in 
Refs. 10, I1, 12. We use the results in these references to establish the 
existence of equilibrium in stationary strategies for N-person games. As a 
corollary of this, we get the existence of a value and stationary optimal 
strategies for both players for two-person zero-sum games. Using these exist- 
ence results, we derive the corresponding Shapley equations and characterize 
the optimal strategies via these equations. Our previous papers (Refs. 10, 
11, 12) thus form the basis for this work. We have tried to make this paper 
self-contained as far as the essential ideas in stochastic games are concerned, 
but for technical details we often refer to Ref. 11 and Ref. 12. To give 
complete details in every step would enormously increase the length of this 
paper. We structure our paper as follows. Section 2 introduces the notation 
and describes the problems. We follow the notation of Ref. 13. The notation 
is unconventional, but has the advantage of economy as far as the present 
approach is concerned. We introduce the concept of ergodic occupation 
measures and study some of these properties in Section 3. Section 4 deals 
with N-person games. Two-person zero-sum games are treated in Section 5. 

2. Problem Description 

2.1. Two-Person Zero-Sum Stochastic Games. A two-person zero-sum 
stochastic game is determined by five objects (S, U~, U2, p, r). Here, S = 
{1, 2 . . . .  } is the state space. At each stage (time), players I and II observe 
the current state i~S of the system and then players I and II independently 
choose actions u 1 ~ U1, u2~ U2, respectively, Uj and U2 being prescribed com- 
pact metric spaces. As a result of this, two things happen : 

(i) player I receives an immediate payoff r(i, u r, u 2) from player II, 
where r:S× U j × U 2 ~  is a given bounded and continuous 
function; 

(ii) the system moves to a new statej  with probabHityp(i, d,  u2,j). 

The map p : S x  U1 x U2xS~[0,  1] is assumed to be continuous. More 
generally, UI and U2 can be allowed to depend on i. Then, for each 
ieS, U~, U~ are prescribed compact metric spaces. However, replacing U~ 
by I]~ g~, U~ by l-lk U~ and p(i . . . . .  j )  by its composition with the 
projections (l~ku(*,l-LU~)o(U~, U~), one may assume that U(, U~ are 
replicas of fixed compact metric spaces U,, U2, respectively. 

Payoff accumulates throughout the course of the game. Player I wants 
to maximize his accumulated income, while player II wants to minimize the 
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same. The problem is to choose a strategy for player I that will maximize 
his total expected income and a strategy for player II that will minimize 
the same. 

For any set Y, let Y", n=  1, 2 . . . . .  co, denote the n-fold Cartesian pro- 
duct of Y with itself. For any Polish space X, ~(X)  will denote the spaces 
of probability measures endowed with the topology of weak convergence. 

A pair of strategies ( ~ ,  42) for players I and II is a pair of sequences 
({~}, {¢2} ), ' ' ' 2  .. 4" = [ {,(1), 4"() ,  .] of U•-valued random variables, I= 1, 2, 
such that, for each ieS, n_>0, 

fiX,., ~,., ~ ,  m<_n)=p(X,,, ~(X,,), ~(X.), i), P¢,.¢2(X.+t = " 1 2 

and ~2, ~ are conditionally independent given X,., m <n, ¢l, ~,~, rn <n. We 
say that {X.} is governed by ( ~I, ~2) whenever the above hold. If in addition 
~ is independent of X,., m<_n, ~t,,, l= 1, 2, re<n, call ~l= {~,t} a Markov 
strategy for player L If furthermore 4 / are identically distributed, call {~} 
a stationary strategy for player l. A stationary strategy is called a pure 
strategy if the law of ~ is a Dirac measure. Let AI, MI, St, D! denote the set 
of arbitrary, Markov, stationary, and pure deterministic strategies for player 
l. We shall be interested only in the laws of the sequences 

{(X., ~.'(X.), ~.~(Xo)), n_>O}. 

Therefore, for a stationary strategy ~l= {~} for player t, the common law 
of ~ can be taken to be of the form 

:= the space of product probability measures on U~l, 

Such a stationary strategy of player l will be denoted by ?,[~i] and we will 
often use the notation {~}~y[* l ] ,  For a pair of stationary strategies 
(y[Ol], ?,[O2])~S 1 x $2, the corresponding process {X~} is a stationary 
Markov chain with transition probabilities P[O m, • 2] (i,j) given by 

p [ o ' O 2 ] ( i , j ) = ~ f v p ( i ,  ui, u 2 . j ) ~ ( d u , ) * ~ ( d u 2 ) . ,  (1) 

Let P[O~, • 2] denote the infinite stochastic matrix [[P[O ~, O2](i,j)]]. A pair 
(7[O*], ~,[O2])ESj x $2 is called stable if the corresponding chain is positive 
recurrent and thus has a unique invariant probability measure denoted by 
zr[O 1, O2]~3a(S). Writing zr[O 1, • 2] as a row vector, it satisfies 

u[o ' ,  o=]p[o ', o=t = u [ . ' ,  o21. (2) 
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Ergodie or Limiting Average Payoff. Let (~, ~2)aA~ ×A2 and {X,} 
be the corresponding process with initial law re. The ergodic payoff is 
defined as 

L[~ l, ~2](~)--liminf(1/N)E~,~2 r(X., ~(Xn), ~(X.))  . (3) 
N-.* ~ n 

We call a strategy ~*~ eA~ optimal for player 1 for initial law ~ if 

L[~.I,  ~2](~)> inf sup L[~ ~, ~21(~ ), (4) 

for any ~2~A2 ; ~*~ is called optimal if it is optimal for any initial law. A 
strategy ~*2eA2 is called optimal for player II for initial law tc if 

]( )~ (5) L[ ( l ,~ ,2] ( rc )<sup  in f L [~ ,  2 zc 
c A !  ~ ' e A z  

for any ~I eAr; ~,2 is called optimal if it is optimal for any initial law. The 
stochastic game with ergodic payoff has a value if 

inf sup L[~', ~2](rc)= sup inf t [~ ' ,  ~ ] ( ) ,  (6) 
~2EA2 ~ I ~ A !  ~ l ~ A  l ~2~A 2 

for any initial law re. We will establish the existence of a value and stationary 
optimal strategies for both players. We also consider pathwise ergodic pay- 
off, i.e., the right-hand side of (3) with Eg~2 deleted. Player I a.s. wants to 
maximize 

I N - l  
(7) lira inf--  ~] r(X,, I 2 

N-.~ N ,=o 

whereas player II a.s. wants to minimize the same. For a stable 
(7 [~] ,  7[~2])eS~ × Sz, (3) and (7) a.s. equal 

p[q~', ~2]:= ~s ~ fv r(i, u,, u:)*,(du,)~(du:)~r[q~', ~](i ). (8) 
• 2 I 

In the next section, we will impose some stability conditions 
[(A1)-(A3)] under which all (7[@~], 7/[~:])~Sl × S: are stable. Various other 
sufficient conditions for stability can be found in Ref. 10. Let 

= inf sup p[O ~, @2], (9) 
r[~] ~$2 7,[OI]~Si 

p =  sup inf p [ ~ ,  @z]. (10) 
-- 7/[~1)l] eSi 7[~I)2] e $2 

Under our blanket stability assumption, we wilt show that # = p = p* (say), 
the stochastic game with ergodic payoff has a value equal to p*, and each 
player has an optimal stationary strategy for both (3) and (7). 
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2.2. Noncooperative N-Person Stochastic Game. A noncooperative N- 
person stochastic game is determined by 2 N + 2  objects ( S ,  Ut, r t , p ,  l = 
1 . . . . .  N).  Here, S = { 1, 2 , . . .  } is the state space. For each I, UI is the action 
space of  the lth player, assumed to be a compact metric space. 
r t : S  × U~ ×.  • • x UN-- '~  is the payoff function of the Ith player, which is 
assumed to be bounded and continuous, p(. ,  . . . .  .): S × UI ×" ' ' × Un x 
S o [ 0 ,  1] is the transition function which is assumed to be continuous. At 
each stage, all the players observe the present state of  the system i ~ S  and 
choose actions independently. If  u t is the action chosen by the Ith player and 
u = (u j . . . . .  u N ) ~  U1 x .  • • × UN, then the Ith player, 1= 1 . . . . .  N ,  receives a 
payoff rt( i ,  u) and the system moves to a new state j with probability 
p( i ,  u , j ) .  An N-tuple of  strategies ~ = (~l . . . . .  ~N), where for each I= 

1 . . . . .  N, ~1= {~},  ~ =  [~,(tl), ~(2) ,  . .  .], n > 0, is a Ilk U~2-valued random 
variable such that 

P~(X,+j  = i ]Xm,  ~,~, m <_n, l =  1 . . . . .  N )  

= p ( X , ,  1 N ~ , ( X , )  . . . . .  ~, ( X , ) ,  i ) ,  

and ~ are conditionally independent given Xm,  r e < n ,  ~ , ,  m < n ,  l =  
1 , . . . ,  N. Markov, stationary, pure strategies are defined the same way as 
before. Let At, Mr, St, Dt denote the set of  arbitrary, Markov, stationary, 
and pure strategies for player /, l =  1, 2 . . . . .  N. We will always assume 
that each St is endowed with the pointwise convergence topology and 
S~ x . • • x SN with the product topology. 

We will use the following notation. For ~ = [ ~ , . . . , ~ N ] s  
A, x . . .  xAN, A/eAt, ~7=(~, , . . . ,  #t-,, #t+,, ~N), 

(¢7 = (¢ ,  . . . . .  ( - , ,  zk, ( + ,  . . . . .  

We will use similar notation for any other N-tuple. 
As before, we will assume that all 

= . . . .  , r[¢NI) s, x . . .  × sN 

are stable. For  such 7[@], let ~r[@] denote the corresponding invariant 
probability measure. Then, writing Jr[@] as a row vector, 

Jr[e ] e [ e  ] = (11) 

For ~A~ x . . .  x AN and initial law rc~ (S) ,  the ergodic payoff to the lth 
player is 

L t [~] (~)= l im i n f ( I / N ) E ~  ~, r t (X~ ,  ~ . (Xn) )  , (12) 
N--* co L.=o 
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where {X,} is governed by ~ with initial law Jr. An N-tuple 4 *= 
(4.1 . . . . .  ~.N) e A~ ×. •. × AN is called an equilibrium in the sense of Nash 
if, for each l= 1 . . . . .  N, 

Lt[ ~*](Tr) > L,[ ~*k, ~](~r), (13) 

for any ~leA1 and any initial law ~v. As before, we also consider pathwise 
ergodic payoff, i.e., the right-hand side of (12) with E~. deleted. Under 
our stability hypothesis for 7[O]eS~ × " "  ×S N, (12) and its pathwise 
counterpart a.s. equal 

Pl[~P]:= ~ Tr[@ fv~," " " fv,  r,(i, u )~(du , )  . . . ~N(duN), (14) 

for u=(u~ . . . .  ,UN). We will show that there exists 7[~*]eS~ × " "  ×SN 
such that, for each l, 

p,[@.] > p,[@.7, @,], (15) 

for any 7[~l]eSt. 
We note at this point that the existence of a value and optimal strategies 

for both player in two-person zero-sum game can be deduced from the 
existence of equilibrium in N-person games. Indeed, take N= 2, and r~ = 
- r2=r .  Then, if (~*~, ~*2)eA~ ×A2 is an equilibrium, it is easily seen that 
~.~, ~.2 are optimal strategies for players I and II, respectively. In this case, 
(~,~, ~.2) is often referred to as a saddle-point equilibrium. Thus, if the N- 
person game admits equilibrium, then the desirable results in two person 
zero-sum games automatically follows. However, in general, to show the 
existence of equilibrium is more difficult. 

3. Ergodic Occupation Measures 

Here, we will introduce the concept of ergodic occupation measures 
and study some related properties. We will carry out our study (both for 
two person zero-sum and N-person games) under the following stability 
assumptions. 

(A1) For any (7[@ ~] . . . . .  7[@N])~Sl X" • " X SN ' the corresponding 
process {X,} has S as a single communicating class. 

(A2) For each i tS ,  there is a finite set R i c S  such that p(i, .  , j ) = 0  
forjCRi. 

(A3) Liapunov-Type Stability Assumption. There exists a function 
w : S ~  ~+ such that 

(i) limi_.~ w(i)= oo. 
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(ii) There exist a > 0, E > 0 such that 

E~[(w(X,,+I) - w(X,,) + ~)I{ w(X,) > a } I "~,1 < O, 

for any ~eAl ×" • • × AN, {X,} governed by 4 and 

~ .  = cr(Xm, 4~,m<n, I= i . . . . .  N). 

(iii) There exist a random variable Z and a scalar ~ > 0  such 
that 

E[exp(~Z)] < 0% 

and for any c e ~ ,  

e,(Iw(X,,+O-w(X,,)l>c)<_e(Z>c), n>O, 

under any 4EAl x .  • • x AN. 

We will now summarize some consequences of  the above assumptions 
which will be needed later. For  proofs and details, see Section 3 in Ref. 7. 
By (A3)(i), the set {iES: w(i) <_a} is finite. Without loss of  generality, we 
may assume it to be of  the form Su  = { 1 , . . . ,  M}. Let ~ = ( 41 . . . . .  ~N)~ 
A~ x .  • • x AN, and let {X,} be governed by 4. Let 

r,,=min{n>OlX,,~SM }, r'=min{n>OlX,,(~Su}, 

z( l)=min{n>OIX,= l }. 

Lemma 3.1. Under (A1)-(A3),  the following results hold: 

(i) sup~E~[r'[Xo=i]<~,ieS, m> l. 
, rn  . <  (ii) supi~s~sup~E¢[(r) IXo-t] ~ , m _ l .  

(iii) All ~,[O]= ( y [ ~ l ] , . . . , ) , [ ~ u ] ) e S  1 x - -  • × SN are stable. 
(iv) Let i>  M and ),[~] as above; then, 

E,t,[r,,IXo=i]<_w(i)/E. 

(v) y '  w( i )n [~ l ( i )  < ~ -  

(vi) lim,~ ~ (1/n)E,[w(X,)]  = O. 
(vii) suprt ,  J E~[(r(1))  2lXo=i] < ~ ,  7/[~]ES1 x .  • • x SN, ieS. 
(viii) The set {~r[O]e~(S)  ly[O]~S~ x . . ,  x SN} is compact. 

Let y[@]=(y[@l]  . . . . .  ~[@s])eSl x . . .  x S~, and let ~r[@]e#(S)  be 
the invariant measure of  the corresponding process {X,}. Define the ergodic 



JOTA: VOL. 76, NO. 3, MARCH 1993 547 

occupation measure v e [ ~ ] e ~ ( S x  UI x - .  • x Uu) as follows: 

dvF~[Ol = E 7r[q)](i) f ( i ,  u, . . . . .  uzv) 1-I ~(dUk), 
i~S i x . . . x U  N I=1 

for f e C b ( S x  U~ x .  . • x Uiv). In terms of  ve[q~], (14) becomes 

(16) 

p , t ,  ] = f ,., dve[O 1. (17) 

Let  

v~[S, × . . .  × sN]= { v d O l l r [ o ] ~ s ,  × . . .  × s~}. (18) 

Lemma 3.2. ve[Sl ×" • • x SN] is compact. 

Proof. By Lemma 3.1(viii), the set { z c [ O ] [ y [ O l e S ~ x . . .  xSN} is 
compact. Since Uj . . . . .  UN are compact metric spaces, it follows that 
ve[S~ x.  • • x SN] is tight. We will now show that it is closed. Let 

rN ' , , ]  = ( r [ o , ' ] , . . . ,  r [~,Nl)  ~ s l  × - , ,  × s,,,. 

t 1 For each l, let O~,- ,O~ in ~0(UF),  i.e., O , e ~ $ ~  in ~ ( U 3  for each ieS .  
Then, P[ok]~P[O~o] by the continuity of  p( .  , ' , - ) .  Let Jr be a limit point 
of  {zr[O,]} in ~'(S).  Therefore, ~r[q),]~zr along a subsequence of  {n} in 
~ ( S ) .  Denoting this subsequence by {n} again by abuse of  notation, 
~r[q),,] ~ tc  in totN variation by Scheffe's theorem (Re/'. 14, p. 224). It is easily 
checked that 

7c[4).]P[0.] ~rcP[O~].  

Since 

7r[o . ]e [o . ]  = ~r[o.], 

we have 

for all n, 

r ce [a ,~ ]  = re, 

i.e., 7r=rr[(I,o~]. Using once again the fact that ~r[O.]~z in total varia- 
tion and the fact that A~ q;,.,-~(b~,- in 3~(U3 for each i, we have, for 
f ~  Cb(S  × U, x .  • • x UN),  

f ( i ,  u, . . . . .  uN) $~,(du,)--, f ( i ,  u, . . . . .  ux)  ~ ~)~i(dlx,), 
I= l  l = l  
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and thus 

f f dve[~,,]-.* f f dv~[Cbo~]. 

The claim follows. [] 

From the proof of this lemma, the following result is immediate. 

Corollary 3.1. The map S j x . . .  x S N 9 7 [ ~ ] = ( 7 [ ~ 1 ] , . . . ,  ~[ON])_., 
Ve[O ] ~ ve[Sj x. • • x S~] is continuous. 

Let 7[~t]ESI, l#k ,  and ~k={~,k}EA~. Define the ~ ( S x  U1 x . . .  × 
UN)-valued empirical process v, as follows: for ieS, BicUi Borel, i=  
I . . . .  , N ,  

n - - t  N 

v . ( { i } x B i x  XBN) =1- Z I{Xm =i} I~ ^' "k • . .  (~i(B3(I)~.(Bk), (19) 
i v / m = 0  I=1 

l#k 

where $ ~ ( U k )  is the law of ~( i) .  

Lemma 3.3. {v,} is tight and any limit point v of {v,} as n~oo  a.s. 
belongs to re[St x .  • • x SN]. 

Proof. Def inep ' :Sx UkxS~[0 ,  1] as 

p'(i, uk,j) . . . . . . .  p(i, u l , . . . ,  u , , j )  I-I ~I(du,). 
l=1  

- !  • +1 l#k 

Let {X,} be governed by (7 [~] ,  ~)~S~ x . . .  × Sk-~ x Ak × Sk+t × ' ' "  x SN. 
Let 

r = r(1) = min{n > 0IX,= 1}. 

Define the stopping times 

~'o = 0, 

v,+x =min{m> r,  IX,= 1}, n>0.  

Using Lemma 3.1(vii) and an argument analogous to the one leading to 
Lemma 5.2 in Ref. 13, it can be shown that 

sup E,~,~[r ~- IX0 = 1] < oo. (20) 
~keAk 
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By (20) and the standard concatenation properties of controlled Markov 
chains, it follows that 

sup E.~ek[(r,+l -- r,) 2 IX0 = 1] < co. 
n 

In particular, r , < m  a.s. for all n. Let S = S w  {m} denote the one-point 
compactification of S and 9, the extension of v, to ~ ( S  x U, ×- • • x U,v), 
obtained by setting 9,({oo} x UI × ' "  " x UN)=0. Each w ~ ( ~ x  U1 x . . .  x 
UN) has a decomposition 

v (B)=6(V)v ' (Bo  (Sx U1 x . . .  x UN)) 

+ ( 1 - a ( v ) ) v " ( B c ~ ( { o o }  × u ,  × . . .  x u,~)), 

for B Borel in S x Uj x . . .  x U~, where 

v ' ~ ( S x  U~ x .  • .  x UN), V " ~ ( { 0 0 }  x V~ × ' ' "  x V~), 

O_<6(v)<l. 

This decomposition can be rendered unique by picking a prescribed v' [resp. 
v"] when 6 ( v ) = 0  [resp. 1]. Since O'($x U~ ×. "- × UN) is compact, {9,} 
converges to a sample path-dependent compact set in ~(5 '× U, x . .  • × UN). 
The desired tightness will follow if we show that, outside a set of zero 
probability, every limit point v of {9,} in ~ ( S ×  Uj × . . .  × U,) satisfies 
6 (v )=  1. By (20) and the martingale stability theorem (Ref. 15, p. 53), it 
follows that, for any M>_ 1, 

lira (1/n) I{X, .  >_ M }  - E®~.~ 2 I{X,,, >_ M}  ~ ~, = O, 

Thus, 

lim sup v,~( { M,  M +  1 . . . .  } x UI x . . • × U.v) 

=l imsup I E I{X, ,>M}<lim s u p ! ~  ~ I{X, ,>_M} 
n ~  F/m=0 n-*~ F/ i=0 

1 n--I  ['~'/+i --  1 "t 
= lira sup - Z E.~k [ Z I{X,, _> M} ~'~ | 

. + o o  n i = o  L - , = r i  -~ 

v-!  I ] 
<_sup E+'¢F ~= I{X, , ,>_M}IXo=I " 

~%A~ ' L.,=o 

a.s,  

(2t) 

(22) 
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the last inequality follows by the concatenation properties of controlled 
Markov chains. By an argument similar to the one leading to Lemma 5.2 in 
Ref. 13, the supremum over all Ak in (22) may be replaced by the supremum 
over Sk. This in turn equals 

(23) 

In view of Lemma 3.1, the right-hand side of (23) can be made smaller than 
any prescribed E > 0 by choosing M sufficiently large. Let {e,} be a sequence 
in (0, 1) decreasing to zero. Consider a sample point for which the above 
holds for all E = E,, n > 1. Such sample points have probability one, and for 
them { v,} is a tight sequence. This establishes the first claim. Again by the 
martingale stability theorem, we have 

( l /n)  , ,~o[ I{Xm+'=J}-  i,s ~ I{X,=i} p'(i, uk,j)+~,(dUk) +0, a.s. 

(24) 

Let v be a limit point of  { vn} as n ~ oo. Disintegrate v as 

N 

v({i} × A, × . .  • × AN) = ~({i} × Ak) I1 ~, I (A , )  
I = 1  
I ~ k  

N 

= ~r(i)dO~(Ak) I] gO~(AI), 
/=1  
lv~k 

where # e N ( S x  Uk) is the image of  v under the projection S x  Uj x.  • • x 
UN--*Sx Uk, 7teN(S) is the image of  9 under the projection S x  Uk--*S, 
and ~)~e~(Uk) is any version of  the appropriate regular conditional law. 
Let ?'[ook]eSk be defined as 

oo 
a '~= H,=, ~ ' f s~o(~) .  

Then, by (24), 

re(j) =,~s y~ zr(i) fvkp'(i, Uk,j)gPf(dUk) 

= y ,  Jr( i )  • • • p ( i ,  u .  . . . . .  u N , j )  g l  ~ , l (du , ) .  
i~S  I I=1 
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Denoting 

r[,l=(rW],..., v[~Nl)eS~ x . . .  x SN, 

we have from the above 

= ~ [ q ~ ] .  

Thus, veve[Sl  x .  • • x SN]. 

551 

D 

4. N-Person Game 

Let 

Let 

r [~]  = ( r [* ' ]  . . . . .  r [ # ' ] )  ~s, × . - . ×  sN. 

p~[q)]:= max pk[~]=pk[qfi, q~*k]. (25) 
r[~ k] ~ & 

If players l, lCk ,  choose fixed stationary strategies ),[q~:], lCk ,  then for 
player k, the game problem reduces to a Markov decision problem with 
ergodic payoff. Under assumptions (A 1)-(A3), p~[q~ ] is the optimal ergodic 
payoff and y[q),k] an optimal strategy for this problem (Refs. 10, 11, 12). 
7[q~ *k] will be called an optimal response for player k given y[q~]. For 7[q~ ] 
as above, define V k [ ~ ] : S ~  as follows. Let y[~*k]~Sk be as in (25). Let 
{X,} be governed by 0,[@el, 7[@*k]). Let 

r(1) =min{n > I IX,= 1}, (26) 

gk[~](i)=E@,¢*~t ~ (rk(Xn, ~(X,,),  ~*~k(x,))--p~[q)]) =i  , (27) 

where 

{ ~*~} ~ r [ * *~ ] ,  { ( }  ~ r [ * ' l ,  t ek .  

Then by Lemma 3.1, Vk[q)] is well defined. We say that a function f :  S ~  
is 0(w(. )) x N if 

lim suplf(i)]/w(i) < oo, 
t ~ e O  

where w(- ) is the Liapunov function described in Section 3. 
In view of Lemma 3.3, the following result follows as in Theorem 3.11 

and the analogue of Theorem 3.2 stated immediately after the end of the 
proof of Theorem 3.11 in Ref. 12. 
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Lemma 4.1. Given ) ' [ O ] ~ S l x . . . x S N ,  for each ke{1 . . . .  ,N}, 
(V~[O], p~[O]) is the unique solution in 0(w(. )) x R, with Vk[O](1) =0,  of 

p + v(i) 

=max~%~(vk) ffUN''' fu [rk(i'ul'''''uN)W~ j~S 

x~ ~(du,)~k(du~)]. 
l~k 

(28) 

A ?'[O*k]~Sk is an optimal response for player k, given 7[0],  if and only if 
the maximum in the above [(Vk[O], p*[O]) replacing (V, p)] is attained at 
$ . k  for each i~S. 

Fix ks{1 . . . . .  N} and ) '[O]eSl x .  • • x SN. For ~.ke~(Uk), set 

Lk(i, Ofc, x k ) =  f 5;v " " ' f U [rk(i, . . . .  , UN) + ~ p(i ,  tq, . . . , 

× v,~[Ol(j) l l  ~ ' ~ ( d u , ) ; ~ k ( d u k )  • 
I=1 
I~k 

For each ieS, define a poitat-to-set mapping 

f 1 ) 
/-if[O]= ~,[Ok]eSkl max Lk(i,O ~, ~k)= Lk(i, O ~, ~ ) ,  for each i~S}. 

) 

Then, t/k[O ] is easily seen to be nonempty compact and convex. Here, we 
view Sk as a subset of the topological vector space of  all measurable functions 
/~ :S ~ the space of  finite signed measures on Uk. Let 

N 

tt[o1 = 11 ~[o]. 
k=l 

Then, H[O]  is a nonempty compact convex subset of St ×" • • x Su. 

Theorem 4.1. There exists an equilibrium ~'[~*]=(y[O *1] . . . . .  
r[o*N])ESI ×" " " × SN. 
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Proof. The map ~,[(1)]=(~,[(I) J] . . . . .  ~,[(I)S]) to H[(D] defines a point- 
to-set map from St x .  • • x SN to 2 s' . . . . . .  s,,. We show that this map is upper 
semicontinuous. Let 

~.[(I).] = ( r [ ~ . ' ] ,  • • • ,  ~ ' [ ( ~ ] ) - - ,  ~.[(I)~] 

= (~,[(I)L] . . . . .  ?[(I)L]), in S, x - . .  x SN. 

Fix k and pick 

r[~.~l  e / ~ [ * . ] ,  m =  1, 2 . . . . .  

By dropping to a subsequence if necessary, we may assume that 

~.[~.] ~ ~'[q)~], for some 

Define 

by 

- - N  y [ ~ . ] = ( y [ ~ ]  . . . .  y [¢ . ] ) ,  n = 1 . . . . .  o% 

~'[~'.] = 7,[q,'.], f o r / ~ k ,  

r [~ ' . ]  = ~'[~.~], for  t =  k. 

Then, y[(b.]~7/[~o~ ]. We next show that, for each/~S,  

Vk[dP.](i)~ V~[~]( i ) .  

By Lemma 3.1, Vk[q).](i) is bounded uniformly in n for each i~S. Let 
V:S--.~ be such that Vk[~.](i)~ V(i) for each i along a subsequence of  
{n}. We claim that V(. ) is 0(w(" )). We have that 

F~o)-I 9 
Vk[@P"]=E~"L ,.~--o (rk(X,,,, ~, . (X, , , ) ) -p*[~ . ] )Xo=i ] ,  where {~,~'~,,}.~ ~'[¢.], 

E [ ' " - '  ~" p~L(D.]) Xo = i] = ~°Lf_-o (r~(X,°, ~,.(x,,,))- 

F~o)-, 
- p~ [$.]) Xo = i] 

<_ 2KE~.[ r,, IX0 = i] + sup Vk[(D.] ( j ) ,  
jESa,t 
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where K is a bound on rk. Hence, in view of Lemma 3.1, there exist constants 
6"1, C2 independent of n, such that 

I Vk[~,](i)l < C1 + C2w(i). 

Hence, 

I V(i)I < G + C2w(i). 

Thus, V(-) is 0(w(.)). Clearly, V(0)=0. For each n, (Vk[O,], p*[O,]) satis- 
fies (28) with p = p*[O,]. Dropping to a further subsequence of {n} if neces- 
sary, let p~[O,]~t3 for some t3eN. Consider (28) with (Vk[O,], p~'[O,]) 
replacing (V, p), and let n--* oo. Passing to the limit [justified by (A2)], we 
observe that (V, ~) satisfies (28). Hence by Lemma 4.1, 

v =  Vk[,i,~], - -  * - p--pk[O~]. 

Using this and (A2), it follows that, for each i~S, 

Lk(i, ~.)--'.Lk(i, 0~). 

Now, fix 7[Ok]ESk. Define 

r [ q ' , l  = ( r [ 6 , ' ] , . . . ,  r [ ¢ ~ ] ) ,  , = l , . . . ,  oo, 

by 

~,[~] = ),[abel, for l~k,  

~,[O~,,] = :r[q~k], for l=k. 

Repeat the above arguments for :riO,] in place of ?,[O,] for each i~S. Then, 

Lk(i, O,,)~Lk(i, ~ ) .  

Now, for each i tS ,  

Lk( i, 0,,) <_ Lk( i, CP,,), n = 1, 2 , . . . .  

Thus, for each i tS,  

Lk(i, 6 o )  <_L~(i, ~,~). 
Hence, ~ e I/k[O~]. The upper semicontinuity thus follows. By Fan's fixed- 
point theorem (Ref. 16), there exists 

r [ O * ]  = ( 7 [ 0  . I ]  . . . . .  7~[¢*N])eS1 x . .  • x Su, 

such that T[q)*] ~H[q)*]. This ),[q)*] is dearly an equilibrium. [] 

5. Two-Person Zero-Sum Games 

Theorem 5.1. The stochastic game with ergodic payoffcriterion admits 
a value and both players have stationary optimal strategies. 
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Take N =  2, and r~ = -  r 2--- r. By Theorem 4.2, there exists an Proof. 
equilibrium (),[q)*~],),[q~*=])e& x $2. Clearly, 

min p[**~,*21= max min p[q)~,q)z]--p 
r[~2leS2 r[oll~st r[q~2l~Sz - 

= rain max p[q)i q)2]=t3 
z[~,21 eS2 r[OllsSi 

= max p[qb t, q),2] := p ,  (29) 
7,[~leSi 

Obviously, y[q~*~], 7[q~ .2] are optimal strategies for players I, II, 
respectively. []  

We now study the Shapley equation for the ergodic payoff criterion. 
The equation is 

P+V(i) = rain max I f e f v { r ( i ,  UhU2) 
~2~ P(U2) ~bl ~P(UI) 2 | 

× c~'(du2)df(du2)] 

+ Y, p(i, u,, u2,j)V(j)} 
j E S  

= max rain r(i, ut, u2) + ~ p(i, ul, u2.,j) V(j) 
~leP(U0 $2ep(U2) ! ~ 0"2 " j~S 

× ¢(du:)¢'(du:)J, (30) 

where p is a scalar and V:S--+R. A solution (30) is a pair (p, V) satisfying 
it. Let (7[O*~], y [ ~ . z ] ) e &  x $2 be a pair of  optimal strategies. Let {X.} be 
the corresponding process. Let 

r(1) = rain{n_> l IX. = 1}. 

Define V:S--+IR as follows: 

1] E.*,,.*2 L t .), ~*=(X.)) - p*) X0 = i v ( i )  = E ° ( r ( x . ,  (31) 

where 

, k  {~. } ~ r[q,*k], ~ =  l, 2. 

Then, by Lemma 3.1, V(i) is well defined. 
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Theorem 5.2. (V, p*) is the unique solution of (31) in the class 
0(w(. )) x R with V(I) =0. 

Proof. By the results of Refs. 11 and 12, as noted in the previous 
section, V(1)=0 and V satisfies 

P * + V( i ) = f v2 ~v lr( i' u" u2) + ~ P( i' u" u2 ' j ) V(J ) :~s 

~*t(du,)qb*2(du2). (32) 

Also from Lemma 3.1 and the strong Markov property, it follows that V 
belongs to 0(w(" )). Fix 1,[~,2]. By Lemma 4.1, 

p* + V(i) 

-~- m a x  

Hence, 

Eff  ] [r(i, ul, u2)+ ~ p(i, ut, u2,j) V(j)]~J(duO~*Z(du2) • 
L UI j e S  

p* + I/(i) 

> min~2~e,(v=) ~'~,(v,)max I fv fv~[r( i ,  ul, u2)+Y.p(i, ul, 
1 

q~ l ( dul )q~Z( duz) ] . 

Similarly, it can be shown that 

p* + V(i) 

< max min I f  fv2Ir(i, u,, u=)+ ~. p(i, u,, u2,j)V(j)] 
j e s  

e'(au,)(/,2(d.2) 1. 
Since min max>_max min, (C, p*) satisfies (30). Let (V', p') be another 
solution of (30) in the class O(w(.)) satisfying V'(1)=O. Let (y[~)l], 
~'[~2])eS1 x $2 be such that 

p'+ V'(i)= f fv [r(i,u,,u2)+~p(i,u,,u2,j)V'(j)l 
~ U2 1 J 

$1(uu,)$1(Uu=). 
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Let {An} be governed by (y[~a],),[~)2]) with X0 = 1. Then, using (A2) to 
justify conditional expectations/expectations, 

E., .:~, (U'(Xm+,)- 

But 

e~,,~2[ v'(x,.+,) 15,.1 

Summing this over m = t . . . . .  n, taking expectation, and dividing by n, we 
have 

0 = p ' -  (1/n)E~,M v'(x.)l 

-(1/n)Ee~'.~[m~_, fv2 f v r(X,,,, u,, u2)*~x.(du,)*2x,.(du2) ]. 

Letting n ~  oo and using Lemma 3.1 (vi), we get 

p'= p[~', ~2 I. 

On the other hand, if (7[q~J], 7[~2])eS~ x $2, then using similar arguments 
with (7[q)l], 7[~2]) and (7[~)1], 7[q~2]) would lead to 

rain max p[q~l, q)2] < p[q~l, ~2] < p, _ p [ ~ ,  q~2] 
r[~ 21 y['~l 

< m a x  min p[q~l, q)2]. 
- -  r [ * ' l  r[*2l 

Since min max >_>_ max min, we have 

p'=~=p_=p*. 
Let () , [~] , ) , [~2])eS~ x 5:2 be such that, for each isS, 
p* + v(i) 
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p* + V'(i) 

= max r(i, ul, u2) + ~, p(i, ul, u2,j) V'(j) ~o~(duz)~(dul) . 
4~ I ~ ( U t )  t j E S  

Let {X,} be governed by (7[~J], y[~2]) with the law of X0 = ~r[~ I, ~2]. Then, 

P * + V(X°) <- ;v~ f v [ r(x°' u" u~) + y" p(x°' u" u~ ' j)  v'( j ) j~s 

x G.(du,)6~o(au~) 

=fu~f.,'(X..ul.u=)~x.(du,)ff'2x.(du2) 

+ E~,,d,2 [ V(X,,+,) 1~,1. 

Similarly, 

' >Iv2I  c u2)~tx.(dul)~)}c"(du2) p* + V (X,,)_ r(X., u~, 
]1 

+E~.,~:[V'(X.+,) I ~ .1 .  

Thus, V(X,)-V'(X,),  n >0, is seen to be a submartingale satisfying [cf. 
Lemma 3.1 (v)] 

sup E~,'d:tIV(X.)- V'(X.)[]<C[ ~ w(i)~rt~', ~2](i)+ 1]<o% 
n L i e S  

where C is some constant. By the submartingale convergence theorem, it 
must converge a.s. Since {X,} is positive recurrent, this is possible only 
if V(i)-  V'(i) is a constant independent of L Considering i= 1, we have 
V' (1) -  V(1)=0. Hence, V--- V'. [] 

Theorem 5.3. A y[O*1]ESI [resp. y[O'2]~$2] is optimal for player I 
[resp. player II] if and only if the outer maximum [resp. outer minimum] in 
(30), with ( V, p*) the unique solution of (30) in the class 0(w(. )) x ~, V(0) = 
0, as described in Theorem 5.2, is attained at ~*~ [resp. ~,2] for each ieS. 

Proof. The necessity has already been proved. Let • .1 e#(U1) attain 
the outer maximum in (30). Let 

• *' = l-I o?' ~'o(U~). 
i 
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Then, )'[~*l]eS1. Pick any 7[~2]eS2. Let {X,} be governed by (~'[qb*l], 
~,[~2]). Then, using the same argument as in the proof of the previous 
theorem, we can show that 

p ly , J ,  (i)2] > p , ,  

proving the optimality of ~,[~,1]. The claim for player II can be proved 
similarly. [] 
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