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Optimal Penetration Landing Trajectories 
in the Presence of Windshear ~'2'3 

A .  M I E L E ,  4 T .  W A N G ,  5 H .  W A N G ,  6 A N D  W .  W .  M E L V I N  7 

Abstract. This paper is concerned with optimal flight trajectories 
in the presence of windshear. The penetration landing problem is 
considered with reference to flight in a vertical plane, governed by either 
one control (the angle of attack, if the power setting is predetermined) 
or two controls (the angle of attack and the power setting). Inequality 
constraints are imposed on the angle of attack, the power setting, and 
their time derivatives. 

The performance index being minimized measures the deviation 
of the flight trajectory from a nominal trajectory. In turn, the nominal 
trajectory includes two parts: the approach part, in Which the slope is 
constant; and the flare part, in which the slope is a linear function of 
the horizontal distance. In the optimization process, the time is free; 
the absolute path inclination at touchdown is specified; the touchdown 
velocity is subject to upper and lower bounds; and the touchdown 
distance is subject to upper and lower bounds. 

Three power setting schemes are investigated: (S1) maximum power 
setting; ($2) constant power setting; and ($3) control power setting. In 
Scheme (S1), it is assumed that, immediately after the windshear onset, 
the power setting is increased at a constant time rate until maximum 
power setting is reached; afterward, the power setting is held constant; 
in this scheme, the only control is the angle of attack. In Scheme ($2), 
it is assumed that the power setting is held at a constant value, equal 
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to the prewindshear value; in this scheme, the only control is the angle 
of attack. In Scheme ($3), the power setting is regarded as a control, 
just as the angle of  attack. 

Under the above conditions, the optimal control problem is solved 
by means of  the primal sequential gradient-restoration algorithm 
(PSGRA). Numerical results are obtained for several combinations of 
windshear intensities and initial altitudes. The main conclusions are 
given below with reference to strong-to-severe windshears. 

In Scheme (S1), the touchdown requirements can be satisfied for 
relatively low initial altitudes, while they cannot be satisfied for relatively 
high initial altitudes; the major inconvenient is excess of velocity at 
touchdown. In Scheme ($2), the touchdown requirements cannot be 
satisfied, regardless of the initial altitude; the major inconvenient is 
defect of  horizontal distance at touchdown. 

In Scheme ($3), the touchdown requirements can be satisfied, and 
the optimal trajectories exhibit the following characteristics: (i) the 
angle of attack has an initial decrease, which is followed by a gradual, 
sustained increase; the largest value of the angle of attack is attained 
near the end of the shear; in the aftershear region, the angle of attack 
decreases gradually; (ii) initially, the power setting increases rapidly 
until maximum power setting is reached; then, maximum power setting 
is maintained in the shear region; in the aftershear region, the power 
setting decreases gradually; (iii) the relative velocity decreases in the 
shear region and increases in the aftershear region; the point of minimum 
velocity occurs at the end of the shear; and (iv) depending on the 
windshear intensity and the initial altitude, the deviations of the flight 
trajectory from the nominal trajectory can be considerable in the shear 
region; however, these deviations become small in the aftershear region, 
and the optimal flight trajectory recovers the nominal trajectory. 

A comparison is shown between the optimal trajectories of Scheme 
($3) and the trajectories arising from alternative guidance schemes, 
such as fixed controls (fixed angle of attack, coupled with fixed power 
setting) and autoland (angle of attack controlled via path inclination 
signals, coupled with power setting controlled via velocity signals). The 
superiority of the optimal trajectories of Scheme ($3) is shown in terms 
of the ability to meet the path inclination, velocity, and distance require- 
ments at touchdown. Therefore, it is felt that guidance schemes based 
on the properties of the optimal trajectories of Scheme ($3) should 
prove to be superior to alternative guidance schemes, such as the fixed 
control guidance scheme and the autoland guidance scheme. 

Key Words. Flight mechanics, landing, abort landing, penetration 
landing, optimal trajectories, optimal control, windshear problems, 
sequential gradient-restoration algorithm, primal sequential gradient- 
restoration algorithm. 
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1. Introduction 

Low-altitude windshear is a threat to the safety of aircraft in take-off 
and landing (Ref. 1). Over the past 20 years, some 30 aircraft accidents 
have been attributed to windshear. The most notorious ones are the crash 
of PANAM Flight 759 of July 9, 1982 at New Orleans International Airport 
(Boeing B-727 in take-off, Ref. 2) and the crash of Delta Airlines Flight 191 
of August 2, 1985 at Dallas-Fort Worth International Airport (Lockheed 
L-1011 in landing, Refs. 3-5). 

Low-altitude windshear is usually associated with a severe meteorologi- 
cal phenomenon, called the downburst. In turn, a downburst involves a 
descending column of air, which then spreads horizontally in the neighbor- 
hood of the ground. This condition is hazardous, because an aircraft in 
take-off or landing might encounter a headwind coupled with a downdraft, 
followed by a tailwind coupled with a downdraft. The transition from 
headwind to tailwind engenders a transport acceleration, and hence a 
windshear inertia force (the product of the transport acceleration and the 
mass of the aircraft). In turn, the windshear inertia force can be as large 
as the drag of the aircraft, and in some cases as large as the thrust of the 
engines. Hence, an inadvertent encounter with a low-altitude windshear 
can be a serious problem for even a highly skilled pilot. 

This paper is concerned with the landing problem. When the pilot of 
an aircraft on a glide path detects an inadvertent encounter with a low- 
altitude windshear, he has two choices; (i) penetration landing or (ii) abort 
landing. Clearly, if the initial altitude is high enough, abort landing is a 
safer procedure than penetration landing; on the other hand, if the initial 
altitude is low enough, the opposite might be true: in penetration landing, 
the aircraft might have to traverse only a part of the shear region; in abort 
landing, the aircraft might have to traverse the whole of the shear region. 

When studying the penetration landing problem, one can take two 
points of view: (a) optimization and (b) guidance. In optimization studies, 
one assumes that global information on the wind flow field is available and 
determines the optimal trajectory, namely, the flight trajectory minimizing 
a suitable performance index, while satisfying the constraining relations. 
In guidance studies, one assumes that only local information on the wind 
flow field is available and determines a near-optimal trajectory, namely, a 
trajectory which approximates the behavior of the optimal trajectory, while 
utilizing only local information on the state of the aircraft and the wind. 
Obviously, because of difficulties in securing global information and because 
of limitation to on-board computer capacity, an optimal trajectory is not 
implementable in the near future. Nevertheless, the study of an optimal 
trajectory is important, because it leads to an ideal benchmark that it is 
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desirable to approach when developing a guidance scheme or a piloting 
strategy; clearly, this ideal benchmark enables one to evaluate the relative 
merits of different guidance schemes or piloting strategies. 

To sum up, this paper deals with the optimization of penetration landing 
trajectories. We note that, in this area of problems, previous optimization 
and guidance studies can be found in Refs. 6-10. We consider flight in a 
vertical plane, governed by either one control (the angle of attack, if the 
power setting is predetermined) or two controls (the angle of attack and 
the power setting). We impose inequality constraints on the angle of attack, 
the power setting, and their time derivatives. Also, we impose the following 
touchdown requirements: (i) the absolute path inclination at touchdown is 
to be -0.5 deg; (ii) the velocity at touchdown is to be within 30 knots of 
the nominal value; and (iii) the horizontal distance at touchdown is to be 
within 1000 ft of the nominal value. Under these constraints, we determine 
the control distribution which minimizes a performance index measuring 
the deviation of the flight trajectory from the nominal trajectory. In turn, 
the nominal trajectory includes two parts: the approach part, in which the 
absolute path inclination is constant; and the flare part, in which the absolute 
path inclination is a linear function of the horizontal distance. 

We consider three power setting schemes: (S 1 ) maximum power setting; 
($2) constant power setting; and ($3) control power setting, s In Scheme 
(S1), we assume that, immediately after the windshear onset, the power 
setting is increased at a constant time rate until maximum power setting is 
reached; afterward, the power setting is held constant; in this scheme, the 
only control is the angle of attack. In Scheme ($2), we assume that the 
power setting is held at a constant value, the initial value; in this scheme, 
the only control is the angle of attack. In Scheme ($3), we regard the power 
setting as a control, just as the angle of attack. Clearly, the number of 
independent controls is one in Scheme (S1), one in Scheme ($2), and two 
in Scheme ($3). 

Under the above conditions, we determine optimal penetration landing 
trajectories for several combinations of windshear intensities and initial 
altitudes. After concluding that the optimal trajectories of Scheme ($3) are 
superior to the optimal trajectories of Scheme (S1) and Scheme ($2), we 
compare the optimal trajectories of Scheme ($3) with alternative guidance 
trajectories, namely, constant control guidance trajectories and autoland 
guidance trajectories. 9 In a companion paper (Ref. 11), we develop new 

s Within the context of this paper, the term "power setting" is employed in the sense of "thrust 

setting." 
9 Within the context of this paper, the term "'autoland" is employed to denote the combination 

of automatic pilot and automatic throttle. 
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guidance schemes, based on the properties of  the optimal trajectories and 
approximating the properties of the optimal trajectories. 

We close this introduction by noting that the present paper and its 
companion paper (Ref. 11) are part of a comprehensive research program 
undertaken at Rice University on optimal trajectories, guidance schemes, 
and piloting strategies for take-off, abort landing, and penetration landing. 
For previous studies of optimal trajectories and guidance schemes for 
take-off and abort landing, see Refs. 12-20 and references therein. 

2. Notations 

Throughout  the paper, the following notations are employed: 
Co = drag coefficient; 
CL = lift coefficient; 
D = drag force, lb; 
g = acceleration of  gravity, ft see-2; 
h = altitude, ft; 
L = lift force, lb; 
m = mass, lb ft -1 see2; 
S = reference surface, ft2; 
T = thrust force, tb; 
V = relative velocity, ft see-l; 

Ve = absolute velocity, ft see-l; 
W = mg = weight, lb; 

Wh = h-component of  wind velocity, ft see-l; 
Wx = x-component of  wind velocity, ft see-l;  

x = horizontal distance, ft. 

Greek Symbols 
a = relative angle of  attack (wing), rad; 

ae = absolute angle of  attack (wing), rad; 
/3 -- engine power setting; 
7 = relative path inclination, rad; 

3'~ = absolute path inclination, rad; 
~5 = thrust inclination, rad; 
0 = pitch attitude angle (wing), rad; 
h = wind intensity parameter; 
p = air density, lb ft -4 see2; 
r = flight time, sec. 

3. System Description 

In this paper, we make use of the relative wind-axes system in connec- 
tion with the following assumptions: (a) the aircraft is a particle of  constant 
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mass; (b) flight takes place in a vertical plane; (c) Newton's law is valid in 
an Earth-fixed system; and (d) the wind flow field is steady. 

With the above premises, the equations of motion include the kinemati- 
cal equations 

~ =  Vcos 3'+ Wx, (la) 

/~ = V sin 3" + Wh, (lb) 

and the dynamical equations 

f/= ( T~ m) cos(a + 6) - D~ m - g sin 3" 

- (r~/" cos 3'+ ff'h sin 3'), (2a) 

(~= ( T/  m V) sin(o~ + 6 ) + L / m V - ( g /  V) cos 3' 

+(1 /V)(  ff'x sin 3 ' -  V¢1, cos 3'). (2b) 

Because of assumption (d), the total derivatives of the wind velocity com- 
ponents and the corresponding partial derivatives satisfy the relations 

if'x= (OW~/Ox)(Vcos 3"+ Wx)+(OW~/Oh)(Vsin 3"+ Wh), (3a) 

(Vh =(OWh/OX)(Vcos y+ Wx)+(OWh/Oh)(Vsin 3"+ Wh). (3b) 

These equations must be supplemented by the functional relations 

T = T(h, V, ~), 

D = D(h, V, c~), 

w~ = W~(x, h), 

and by the analytical relations 

Vex = Vcos 3"+ Wx, 

ve =,/(vex+2 veh), 

O=c~+y, 

L=L(h,  V, o~), 

Wh = Wh(x, h), 

Veh = V sin 3' + Wh, 

3'e = arctan(Veh/Ve~,), 

(4a) 

(4b) 

(4c) 

(Sa) 

(Sb) 

(5c) 

For a given value of the thrust inclination 6, the differential system 
(1)-(4) involves four state variables [the horizontal distance x (t), the altitude 
h(t), the velocity V(t), and the relative path inclination y(t)]  and two 
control variables [the angle of attack o~(t) and the power setting /3(0]. 
However, the number of  control variables reduces to one (the angle of 
attack), if the power setting is specified in advance. The quantities defined 
by the analytical relations (5) can be computed a posteriori, once the values 
of the state and the control are known. 
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3.1. Inequality Constraints. The angle of  attack a and its time deriva- 
tive & are subject to the inequalities 

a -< a , ,  (6a) 

- d ,  -< & ~ &,, (6b) 

where a ,  is a prescribed upper bound and &, is prescribed, positive constant. 
For the optimal trajectories discussed in Section 4, Ineqs. (6) are 

enforced indirectly via the following transformation technique: 
a = a ,  - u 2, (7a) 

zi = - ( & , / 2 u )  sin 4~, [u I - e, (7b) 

fi = - ( & , / 2 u )  sin2(Tru/2e) sin ¢, lul <- e. (7c) 

Here, u(t), ¢(t) are auxiliary variables and e is a small, positive constant, 
which is introduced to prevent the occurrence of singularities. Note that 
the right-hand sides of  Eqs. (7b)-(7c) are continuous and have continuous 
first derivatives at lul = e. Clearly, when using Eqs. (7) in conjunction with 
Eqs. (1)-(4), one must regard a( t ) ,  u(t) as state variables and ¢( t )  as 
control variable. 

The power setting /3 and its time derivatives /3 are subject to the 
inequalities 

13, --</3 ~ 1, (8a) 

-/3,-</3 -</~,, (8b) 

where /3, is a prescribed lower bound and /3, is a prescribed, positive 
constant. 

For the optimal trajectories discussed in Section 4, Ineqs. (8) are 
satisfied directly if the power setting distribution/3 (t) is specified in advance. 
On the other hand, if the power setting distribution 13 (t) is not specified in 
advance [that is, if/3(t) is regarded as a control], it is convenient to rewrite 
Ineqs. (8) in the form 

/3 >-/3,, (9a) 

/3 -< 1, (9b) 

- /3 ,  - / 3  -</3,. (9c) 

Then, Ineq. (9a) is enforced indirectly via a penalty function technique, 
while Ineffs. (9b)-(9c) are enforced indirectly via the following transforma- 
tion technique, which is analogous to (7): 

/3 = 1 - w 2, (10a) 

= - ( /3 , / 2w)  sin ~, [wl--> ~7, (10b) 

v~ = - ( /~ , /2w)  sin2(~rw/2rt) sin ~b, lwl ~< 7. (10c) 
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Here, w(t), ~b(t) are auxiliary variables and ~7 is a small, positive constant, 
which is introduced to prevent the occurrence of singularities. Note that 
the right-hand sides of  Eqs. (10b)-(10c) are continuous and have continuous 
first derivatives at I wl = r/. Clearly, when using Eqs. (10) in conjunction with 
Eqs. (1)-(4), one must regard fl(t), w(t) as state variables and ~b(t) as 
control variable. 

3.2. Approximations for the Forces. Here, we discuss the approxima- 
tions employed in the description of the forces acting on the aircraft, namely, 
the thrust, the drag, the lift, and the weight. 

Thrust. The thrust T is written in the form 

T=/3T, ,  ( l l a )  

T. = A0 + A1 V+ A2 V 2, (1 tb) 

where T, is a reference thrust (the thrust corresponding to the power setting 
/3 = 1) and/3 is the power setting. 

For the reference thrust, the coefficients A0, A1, A2 depend on the 
altitude of the runway and the ambient temperature. They can be determined 
with a least-square fit of manufacturer-supplied data over a given interval 
of  velocities. For the power setting, see the discussion below. 

Scheme (SI). For the maximum power setting scheme, we recall the 
basic assumption, namely: immediately after the windshear onset, the power 
setting is increased at a constant time rate until maximum power setting is 
reached; afterward, the power setting is held constant. This yields the 
relations 

where 

/3 =/3o+/~ot, 0<-t-<o, (12a) 

fl = 1, tr<_ t<_r, (12b) 

or = (1 -/30)//~o. (12c) 

Here, flo is the initial power setting,/3o is the constant rate of increase of 
the power setting, o- is the time at which maximum power setting is reached, 
and r is the final time. 

Scheme ($2). For the constant power setting scheme, we recall the 
basic assumption, namely: the power setting is held at a constant value, the 
initial value. This yields the relation 

/3=/30, O<_t<_r, (13) 

where/30 is the initial power setting. 
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Scheme ($3). For the control power setting scheme, we regard/3(0  
as a control, subject to Ineqs. (8), which are equivalent to Ineqs. (9). In 
turn, Ineq. (9a) is enforced indirectly via a penalty function technique, while 
Ineqs. (9b)-(9c) are forced indirectly via the transformation technique (10), 
rewritten here for convenience: 

/3 = 1 - w 2, 

= - ( / ) . / 2w)  sin ~, 

= - ( /~ . /2w)  sin2(~-w/2,/) sin if, 

(14a) 

Iw]--- ~q, (14b) 

I wl--< r/. (14c) 

When using Eqs. (14) in conjunction with Eqs. (1)-(4), we must regard/3(t), 
w(t) as state variables and ~O(t) as control variable. 

Drag, The drag D is written in the form 

D = (1/2)CDpSV 2, (15a) 

Co=Bo+Blo t+B2a  2, a ~ a , ,  (15b) 

where p is the air density (assumed constant), S is a reference surface, V 
is the relative velocity, and CD is the drag coefficient. The coefficients Bo, 
BI,/32 depend on the flap setting and the undercarriage position (gear up 
or gear down); they can be determined with a least-square fit of manufac- 
turer-supplied data over the interval 0-< a -< ~ , .  

Lift. The lift L is written in the form 

L = (1/2) CLpSV 2, 

CL = Co + Cla, a <- ~**, 

C L = C o + C l a + C 2 ( ~ - ~ * * )  2, ~**<-~<-a, ,  

(16a) 

(16b) 

(16c) 

where p is the air density (assumed constant), S is a reference surface, V 
is the relative velocity, and CL is the lift coefficient. The coefficients Co, 
C1, C2 depend on the flap setting and the undercarriage position (gear up 
or gear down); they can be determined with a least-square fit of manufac- 
turer-supplied data over the intervals 0 ~  o~ _< a** and a** -< a ~ a , .  

Weight. The mass m is regarded to be constant. Hence, the weight 
W = mg is regarded to be constant. 

Remark. The coefficients Ai, Bi, Ci, i = 0, 1, 2, appearing in Eqs. (11), 
(15), (16), can be determined with a least-square fit of manufacturer-supplied 
data. Numerical experiments show that the resulting precision in the thrust 
function T,(V),  drag coefficient function CD(a), and lift coefficient function 
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CL(a) is of order 1% or better in the range of velocities and angles of 
attack having interest in a windshear encounter. These functions are plotted 
in Fig. 1 with reference to the Boeing B-727 aircraft powered by three 
JT8D-17 turbofan engines. 

3.3. Approximations for the Windshear. The representation of the flow 
field characteristic of a downburst (Refs. 21-22) is usually done in one of 
two ways: (i) by solving numerically the basic fluid mechanics equations 
and associated boundary conditions; (ii) by employing simple analytical 
approximations, suggested by the analysis of aircraft accidents. For optimiz- 
ation and guidance studies, the disadvantage of (i) lies in excessive CPU 
time and excessive memory requirements; on the other hand, the disadvan- 
tage of (ii) lies in the possible dissatisfaction of the basic fluid mechanics 
equations and limited accuracy. 

In the light of (i) and (ii), an alternative point of view is taken in this 
paper: (iii) the flow field characteristic of a downburst is represented by 
solving numerically the basic fluid mechanics equations and associated 
boundary conditions and then developing analytical approximations to the 
numerical solutions. This point of view leads to the folllowing windshear 
model, valid for h---1000 ft (see Fig. 2): 

W~ = AA(x), 

Wh = A(h/h , )B(x) ,  

with the implication that (see Table 1) 

~W~ = 100•, 

AWh = 50A(h/h,). 

(17a) 

(17b) 

(17c) 

(17d) 

Here, the parameter ,~ characterizes the intensity of the windshear/down- 
draft combination; the function A(x) represents the distribution of the 
horizontal wind versus the horizontal distance; the function B(x) represents 
the distribution of the vertical wind versus the horizontal distance; and h,  
is a reference altitude, h ,  = 1000 ft. Also, A W~ is the horizontal wind velocity 
difference (maximum tailwind minus maximum headwind) and z~ Wh is the 
vertical wind velocity difference (maximum updraft minus maximum down- 
draft), 

Concerning the horizontal wind (17a), the function A(x) represents a 
linear transition from a uniform headwind of -50  ft sec -~ to a uniform 
taitwind of +50ftsec-~; hence, the wind velocity difference is AWx= 
100 ft sec -1 if A = 1. The transition takes place over a distance Ax = 4600 ft, 
starting at x = 0 ft and ending at x = 4600 ft; the average wind gradient over 
the horizontal distance interval 300-  ~ x-<4300 ft is A Wx/Ax ~0.025 sec -~ 
i f h = l .  
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Concerning the vertical wind (17b), the function B(x) has a bell-shaped 
form; in particular, the downdraft  vanishes at x = 0 ft and x = 4600 ft and 
achieves maximum negative value at x = 2300 ft; this maximum negative 
value is - 5 0 f t s e c  -1 if  h = 1 0 0 0 f t  and ) t = l ;  hence, AWh=50f tsec  -1 if 
h = 1000 ft and A = 1. 

To sum up, the windshear model (17) has the following properties: (a) 
it represents the transition from a headwind to a tailwind, with nearly 
constant shear in the core of the downburst; (b) the downdraft achieves 
maximum negative value at the center of the downburst; (c) the downdraft  
vanishes at h = 0; and (d) the functions W~, Wh nearly satisfy the continuity 
equation and the irrotationality condition in the core of the downburst. 

3.4. Aircraft Data. The numerical examples of  the subsequent sec- 
tions refer to a Boeing B-727 aircraft powered by three JT8D-17 turbofan 
engines. It is assumed that: the aircraft is in quasi-steady flight on a glide 
slope with inclination Ye = - 3 . 0  deg; the runway is located at sea-level 
altitude; the ambient temperature is 100 deg Fahrenheit; the gear is down; 
the flap setting is 6v = 30 deg; the landing weight is W = 150,000 lb. 

The inequality constraints on the angle of attack (6) are enforced with 

a ,  = 17.2 deg = 0.3002 rad, (18a) 

4 ,  = 3.0 deg sec -1 = 0.5236E - 01 rad sec -1. (18b) 

The inequality constraints on the power setting (9) are enforced with 

/3, = 0.20, (19a) 

/3. = 0.30 sec -1. (19b) 

Initial State. The following initial conditions are assumed: 

Xo = 0 ft, (20a) 

ho = 200, 600, t000 ft, (20b) 

Vo = 142 knots = 239.7 ft sec -1, (20c) 

Y~o = -3.0 deg = -0.5236E-01 rad. (20d) 

For the wind model of Section 3.3 and A = 1.20, the values (20) imply that 

3/0 = -2.249 deg = -0.3925E-01 rad, (21a) 

c~o= 7.349 deg=  0.1283 rad, (21b) 

0o = 5 .100deg= 0.8901E-01rad, (21c) 

/30 = 0.3825. (21d) 

For other values of  ,~, see Table 1. 
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We note that the initial velocity (20c) is FAA certification velocity Vref 
augmented by 10 knots (Vo = Vrer+ 10 knots). We also note that the values 
(21) are a consequence of the values (20) and the assumption of quasi-steady 
flight prior to the windshear onset. 

Final Time. The final r is free. It is to be determined indirectly through 
the satisfaction of the final condition (22a), given below. 

Final State. Concerning the altitude and the absolute path inclination 
at touchdown, the following final values are assumed: 

h~ = 0, (22a) 

ye, = -0.5 deg. (22b) 

The value (22b) is a compromise between the need for passenger comfort 
and the need for avoiding an excessively long flare distance. 

Concerning the velocity and the distance at touchdown, it is assumed 
that the following inequalities must be satisfied: 

V~ -< V~ -< V~, (23a) 

x~l - x, -< x~,, (23b) 

where V,~, V~, denote bounds for the touchdown velocity and x~t, x~, denote 
bounds for the touchdown distance. These inequalities are converted into 
equalities via the following trigonometric transformations: 

V~ = (V , ,+  V , , ) / 2 + [ ( V ~ , -  V~)/2] sinp, (24a) 

x ,  = ( x , , + x , u ) / 2  + [(x,u - x , t ) / 2 ]  sin q, (24b) 

where p, q denote parameters to be determined together with the flight time 
~-. In Eqs. (24), the quantities 

fz = (V , ,+  V~)/2, (25a) 

~ = (x,,  + x , , ) / 2  (25b) 

can be regarded as the nominal values for the velocity and the distance at 
touchdown. 

The velocity bounds in (23)-(25) are given by 

V,~ = Vrer- 20 knots = Vo - 30 knots = 112.0 knots 

= 189.0 ft sec -1, (26a) 

V~, = Vref+ 40 knots = Vo + 30 knots = 172.0 knots 

= 290.3 ft sec -~. (26b) 
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Hence, the nominal velocity at touchdown is given by 

1~', = Vref+ 10 knots = Vo = 142.0 knots = 239.7 ft see -1. (26c) 

The lower bound (26a) is determined by the fact that, if the velocity is too 
low, it is difficult to control the trajectory in such a way that the touchdown 
path inclination requirement (22b) can be met. The upper bound (26b) is 
determined by the need for containing the runway length needed for deplet- 
ing the velocity to zero after touchdown. 

The distance bounds in (23)-(25) are given by 

x,t = Y~ - 1000 ft, (27a) 

x~, = Y, + 1000 ft, (27b) 

where ~ is the nominal distance at touchdown. The bounds (27) are 
determined by the need of  avoiding excessive undershooting/overshooting 
of  the nominal touchdown distance. In turn, the nominal touchdown dist- 
ance is given by [see (29d)] 

£~ = ( h s -  ho)/tan yeo - 2hr /  ( tan  yeo + tan ye~), (27c) 

where YeO is the absolute path inclination at the initial point, Ye~ is the 
absolute path inclination at touchdown, ho is the initial altitude, and h s is 
the altitude at the end of  the approach path/beginning of  the flare path. 
The values of  the nominal touchdown distance (27c) are given in Table 2 
under the assumption that 

]if = 50 ft, Yeo = --3.0 deg, Y e t  = -0.5 deg. (27d) 

Clearly, for given values of  he, Yeo, "/e~-, the nominal touchdown distance 
is a linear function of  the initial altitude. 

3.5. Nominal Trajectory. In the absence of windshear, the geometry 
of  a nominal penetration landing trajectory can be computed, based on 
simple assumptions on the distribution of  slopes. Let the nominal glide 
path be subdivided into an approach path and a flare path. Assume that 
the slope of  the approach path is constant and the slope of  the flare path 
is a linear function of  the horizontal distance; namely, assume that 

d h / d x = t a n  Yeo, O<-x<-xf ,  (28a) 

d h / d x  = tan yeo + [(x - x i ) / ( x ,  - x f ) ] ( t a n  ye, - tan yeo), 

x f  <- x <-- x~. (28b) 

Upon integration, Eqs. (28) yield the relations 

h - ho = x tan Yeo, 0 <- x <- xi, (29a) 

h - h y = ( x - x y )  tan 3 , e o + [ ( x - x y ) 2 / 2 ( x ~ - x e ) ]  

x (tan Ye, - tan Yeo), xy <- x <- x ~ . ,  (29b) 
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in which the constants xy, x, are given by 

xy = (hy-  ho)/tan y~o, (29c) 

x, = (hf-h0)/ tan yeo-2hy/(tan Ye0+tan Ye~). (29d) 

Equations (29) represent the geometry of the nominal penetration landing 
trajectory. 

4. Optimal Flight Trajectories 

We refer to penetration landing and we assume that: global information 
on the wind field is available, that is, the functions Wx(x, h), Wh(X, h) are 
known in advance; the angle of attack a(t) is subject to Ineqs. (6); and the 
power setting fl(t) is subject to Ineqs. (8) or (9). Depending on the power 
setting scheme employed, three optimal control problems can be formulated: 
Problem (P1) corresponds to Scheme (S1); Problem (P2) corresponds to 
Scheme ($2); and Problem ($3) corresponds to Scheme ($3). 

4.1. Problem (PI). This optimization problem is associated with the 
maximum power setting scheme [Scheme (S1)]. In this scheme, the function 
13(t) is supplied by Eqs. (12). The feasibility relations include: the state 
equations (1)-(4); the angle of attack inequality constraints (6), converted 
into equality constraints by means of the transformations (7); the initial 
conditions (20); and the final conditions (22). In this system, the state 
variables are x(t), h(t), V(t), y(t), a(t),  u(t); the control variable is ~b(t); 
and the parameter is r. With this understanding, we formulate the following 
Bolza problem: Subject to the previous constraints, minimize the functional 

fo I=(1/rhZ,) [h-f~(x)]2 dt+(Kv,/V2,)(V~-~/~)2 

+ ( K x . /  x~,)( x ,  - £ ) 2. (30) 
Here, r is the flight time; h, is a reference altitude, h, = 1000 ft; x,  is a 
reference distance, x ,  = 1000 ft; V. is a reference velocity, V, = Vo; h is 
the instantaneous altitude;/~(x) is the nominal altitude [Eqs. (29a)-(29b)]; 
V~ is the touchdown velocity; 17" is the nominal touchdown velocity 
[Eq. (26c)]; x~ is the touchdown distance; ~ is the nominal touchdown 
distance [Eq. (27c)]; and KvT, Kx~ are penalty coefficients, having the 
following values: 

K~ = 0.002, (31a) 

Kx~ = 0.002. (31b) 

Note that the functional (30) is the sum of three quadratic terms: the 
first term measures the deviation of the flight trajectory from the nominal 
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trajectory; the second term is a penalization term, measuring the deviation 
of the touchdown velocity from the nominal value; and the third term is a 
penalization term, measuring the deviation of the touchdown distance from 
the nominal value. Also note that, in Problem (P1), the trigonometric 
transformations (24) are bypassed; approximate compliance with the touch- 
down inequality constrainfs (23) is enforced via the quadratic penalization 
terms in the performance index (30). 

4.2. Problem (P2). This optimization problem is associated with the 
constant power setting scheme [Scheme ($2)]. In this scheme, the function 
fl(t) is supplied by Eq. (13). The feasibility relations include: the state 
equations (1)-(4); the angle of attack inequality constraints (6), converted 
into equality constraints by means of the transformations (7); the initial 
conditions (20); and the final conditions (22). In this system, the state 
variables are x(t), h(t), V(t), y(t), a(t), u(t); the control variable is &(t); 
and the parameter is r. With this understanding, we formulate the following 
Bolza problem: Subject to the previous constraints, minimize the functional 

I = (1/~'h~,) [h -/~(x)] 2 dt+(KvT/V2.)(V, - Q,)2 

2 I0 r +(Kx. /x , ) (xT-Y.)z-(1/ 'rh , )  Kh,h 3 dt. (32) 

Here, r is the flight time; h is the instantaneous altitude;/~(x) is the nominal 
altitude [Eqs. (29a)-(29b)]; V. is the touchdown velocity; V. is the nominal 
touchdown velocity [Eq. (26c)]; x~ is the touchdown distance; Y. is the 
nominal touchdown distance [Eq. (27c)]; and IQ.  Kx., Kh~ are penalty 
coefficients, having the following values: 

K~ = 0.0002, 

Kx~ = 0.0002, 

Kh, = 0, if h --> 0, 

Kh, = 100, if h < 0. 

(33a) 

(33b) 

(33c) 

(33d) 

Note that the functional (32) is the sum of three quadratic terms and 
one cubic term; the quadratic terms are the same as in the functional (30); 
the cubic term is a penalization term, whose function is to ensure that h -> 0 
throughout the computation. Also note that, on the boundary h = 0, the 
cubic integrand in (32) is continuous, together with its first derivatives and 
its second derivatives. Finally note that, in Problem (P2), the trigonometric 
transformations (24) are bypassed; approximate compliance with the touch- 
down inequality constraints (23) is enforced via the quadratic penalization 
terms in the performance index (32). 
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4.3. Problem (P3). This optimization problem is associated with the 
control power setting scheme [Scheme ($3)]. In this scheme, the function 
fl(t) is described by Eqs. (14). The feasiblity relations include: the state 
equations (1)-(4); the angle of attack inequality constraints (6), converted 
into equality constraints by means of the transformations (7); the power 
setting inequality constraints (9b)-(9c), converted into equality constraints 
by means of  the transformations (14); the initial conditions (20); the final 
conditions (22); and the inequalities (23), converted into equalities by means 
of the trigonometric transformations (24). In this system, the state variables 
are x(t), h(t), V(t), 3,(t), o~(t), u(t), /3(t), w(t); the control variables are 
~b(t), @(t); and the parameters are r, p, q. With this understanding, we 
formulate the following Bolza problem: Subject to the previous constraints, 
minimize the functional 

fo I/ I=(1/rh2.) [h-h(x)]2 dt-(1/r)  K¢,(/3-C/3.)3 dt 

;o - (1/~'V~) Kvt(Vo- V) 3 dt. (34) 

Here, z is the flight time; h is the instantantaneous altitude; /~(x) is the 
nominal altitude [Eqs. (29a)-(29b)];/3 is the instantaneous power setting; 
/3. is minimum power setting; V is the instantaneous velocity; Vo is the 
initial velocity; and KCt, K~, are penalty coefficients, having the following 

K ~ ,  = 0,  i f  /3 - C/3, -> 0 ,  C = 1.5,  (35a) 

K~, = t00, if / 3 -  C/3. <0 ,  C = 1.5, (35b) 

K~t = 0, if V0- V --- 0, (35c) 

/Q, = 1, if V0- V < 0. (35d) 

values: 

Note that the functional (34) is the sum of a quadratic term and two 
cubic terms; the quadratic term measures the deviation of the flight trajectory 
from the nominal trajectory; the first cubic term is a penalization term, 
whose function is the avoidance of undershooting of the lower bound for 
the power setting; and the second cubic term is a penalization term, whose 
function is the avoidance of overshooting of the initial velocity. Also note 
that, on the boundaries/3 = C/3. and V= V0, the cubic integrands in (34) 
are continuous together with their first derivatives and their second deriva- 
tives. Finally note that the quadratic penalization terms, present in the 
functionals (30) and (32), are absent from the functional (34); this is due 
to the fact that, in Problem (P3), the trigonometric transformations (24) are 
accounted for; compliance with the touchdown inequality constraints (23) 
is rigorously enforced; hence, the quadratic penalization terms, essential 
for the functionals (30) and (32), are irrelevant for the functional (34). 
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4.4. Sequential Gradient-Restoration Algorithm. Problems (P1), (P2), 
(P3) are Bolza problems of optimal control. They can be solved using the 
family of sequential gradient-restoriation algorithms for optimal control 
problems (SGRA, Refs. 23-24) in either the primal formulation (PSGRA) 
or the dual formulation (DSGRA). 

Regardless of whether the primal formulation is used or the dual 
formulation is used, sequential gradient-restoration algorithms involve a 
sequence of two-phase cycles, each cycle including a gradient phase and a 
restoration phase. In the gradient phase, the value of the augmented func- 
tional is decreased, while avoiding excessive constraint violation. In the 
restoration phase, the value of the constraint error is decreased, while 
avoiding excessive change in the value of the functional. In a complete 
gradient-restoration cycle, the value of the functional is decreased, while 
the constraints are satisfi'ed to a preselected degree of accuracy. Thus, a 
succession of suboptimal solutions is generated, each new solution being 
an improvement over the previous one from the point of view of the value 
of the functional being minimized. 

The convergence conditions are represented by the relations 

P-< el, Q-< e2. (36) 

Here, P is the norm squared of the error in the constraints; Q is the norm 
squared of the error in the optimality conditions; and el, e2 are preselected, 
small, positive numbers. 

In this work, the sequential gradient-restoration algorithm is employed 
in conjunction with the primal formulation (PSGRA). The algorithmic 
details can be found in Refs. 23-24; they are omitted here, for the sake of 
brevity. 

5. Numerical Results for Optimal Flight Trajectories 

Problems (P1), (P2), (P3) were solved with the sequential gradient- 
restoration algorithm, employed in conjunction with the primal formulation 
(PSGRA, Refs. 23-24). Computations were performed at Rice University 
using an NAS-AS-9000 computer. Several combinations of an initial 
altitudes and windshear intensities were considered, specifically: 

ho = 200,600,1000 fi, (37a) 

A Wx= 100,120,140 fi sec -1. (37b) 

The numerical results are shown in Tables 3-5 and Figs. 3-5. 
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Table 3 refers to Problem (P1); Table 4 refers to Problem (P2); and 
Table 5 refers to Problem (P3). Each table exhibits the following informa- 
tion: the final time r, the touchdown absolute path inclination 7e,, the 
touchdown miss velocity V , -  I7", the touchdown miss distance x , -  ~,, the 
maximum deviation from the nominal trajectory, 

[Ahlm.x = maxlh -/~(x)l, (38a) 

and the average deviation from the nominal trajectory, 

,Ahl.ve= ~/{(1/r) ff [h-~(x)]2 dt}. (38b) 

Figure 3 refers to h0 =200 ft and A W~ = 120 ft sec- ~; Fig. 4 refers to 
h0=600ft  and 2xWx=120ftsec-1; and Fig. 5 refers to h0=1000ft  and 

Wx--120 ft sec -~. The following trajectories are shown in Figs. 3-5: the 
optimal trajectory for maximum power setting (OT1); the optimal trajectory 
for constant power setting (OT2); the optimal trajectory for control power 
setting (OT3); and the nominal trajectory (NT). Each figure includes four 
parts: the altitude h versus the distance x; the relative velocity V versus 
the distance x; the angle of attack c~ versus the distance x; and the power 
setting/3 versus the distance x. 

From Tables 3-5 and Figs. 3-5, the following conclusions can be 
inferred with reference to strong-to-severe windshears. 

In Scheme (St), the touchdown requirements can be satisfied for 
relatively low initial altitudes, while they cannot be satisfied for relatively 
high initial altitudes; the major inconvenient is excess of velocity at 
touchdown. 

In Scheme ($2), the touchdown requirements cannot be satisfied, 
regardless of the initial altitude; the major inconvenient is defect of 
horizontal distance at touchdown. 

In Scheme ($3), the touchdown requirements can be satisfied, and the 
optimal trajectories exhibit the following characteristics: 

(i) the angle of attack has an initial decrease, which is followed by 
a gradual, sustained increase; the largest value of the angle of attack is 
attained near the end of the shear; in the aftershear region, the angle of 
attack decreases gradually; 

(ii) initially, the power setting increases at a constant time rate until 
maximum power setting is reached; then, maximum power setting is 
maintained in the shear region; in the aftershear region, the power setting 
decreases gradually; 

(iii) the relative velocity decreases in the shear region and increases 
in the aftershear region; the point of minimum velocity occurs at the end 
of the shear; 
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(iv) depending on the windshear intensity and the initial altitude, the 
deviations of the flight trajectory from the nominal trajectory can be con- 
siderable in the shear region; however, these deviations become small in 
the aftershear region, and the optimal flight trajectory recovers the nominal 
trajectory. 

Remark. If one compares abort landing with penetration landing, it 
is clear that the former is to be preferred if the windshear is encountered 
at higher altitudes (large values of ho), while the latter is to be preferred if 
the windshear is encountered at lower altitudes (low values of ho). For low 
initial altitudes, the maximum power setting trajectory (OT1) and the control 
power setting trajectory (OT3) behave almost in the same way. This result 
is of interest and it might lead to considerable simplifications in the develop- 
ment of guidance schemes for low-altitude windshear encounter. For this 
type of encounter, the power setting is to be increased rapidly to the 
maximum value and is to be kept at the maximum value afterward; hence, 
the two-control guidance simplifies to a one-control guidance. 

6. Comparison of Trajectories 

In this section, we compare three trajectories: the optimal trajectory 
of the control power setting scheme (OT3); the fixed control trajectory 
(FCT), obtained by keeping constant both the angle of attack and the power 
setting; and the autoland trajectory (ALT), obtained by controlling the 
angle of attack via path inclination signals and controlling the power setting 
via velocity signals. The comparison is done in terms of the ability to meet 
the path inclination, velocity, and distance requirements at touchdown. 

For the fixed control trajectory (FCT), the angle of attack and the 
power setting are given by 

o~ = ao, (39a) 

/3 =/30, (39b) 

where ao,/3o denote prewindshear values. 
For the autoland trajectory (ALT), the angle of attack and the power 

setting are given by the following feedback control laws: 

- a(V) = - K , [  ~ - ,L (h)], 

= ~(V) as in Ref. 14, 

~/e = YeO, if h >- hf, 

"~e=y~,+(YeO-Ye,)h/hf, ifh<-hf, 
a ~ a . ,  --&,<~dl~dl., 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 
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and 

/3-/30 = -K2(  V -  Vo), K2 = (1 - /3o ) / (Vo-  V.~), (41a) 

/3, --</3 ----- 1, - / 3 ,  --</~ --</3,. (41b) 

In the above relations, o7(V) is the nominal angle of attack, whose concep- 
tion is described in Ref. 14; ~e(h) is the nominal absolute path inclination; 
%0 is the absolute path inclination at the initial point; %,- is the absolute 
path inclination at touchdown; and hf is the altitude at the end of  the 
approach path/beginning of  the flare path. The constants appearing in 
Eqs. (40)-(41) have the following values: 

Yeo = -3 .0  deg, ye~ = -0.5 deg, 

/3o = 0.3330, Vo = 239.7 ft sec -l ,  

hy = 50 ft, (42a) 

V~t = 189.0 ft sec -~, 
(42b) 

and the gain coefficients appearing in Eqs. (40)-(41) have the following 
values: 

K1 = 5, K2 = 0.01316 ft -1 sec. (43) 

Note that, in the feedback control law (40a), the change of the angle 
of  attack from its nominal value is proportional to the change of  the absolute 
path inclination from its nominal value. Also note that, in the feedback 
control law (41a), the change of the power setting from its nominal value 
is proportional to the change of the relative velocity from its nominal value; 
in addition, the gain coefficient K2 is such that maximum power setting is 
achieved when the relative velocity equals the lower bound V~; hence in 
(41a), 

/3 = 1, if V = V~z. (44) 

Several combinations of initial altitudes and windshear intensities were 
considered, specifically: 

ho = 200, 600, 1000 ft, (45a) 

A Wx = 100, 120, 140 ft sec -1. (45b) 

The numerical results are shown in Figs. 6-8. 
Figure 6 refers to ho=600 ft and A Wx = 100 ft sec-l; Fig. 7 refers to 

ho = 600 ft and 2~ Wx = 120 ft sec-1; and Fig. 8 refers to h0 = 600 ft and A W~ = 
140 ft sec -1. The following trajectories are shown in Figs. 6-8: the optimal 
trajectory for control power setting (OT3); the fixed control trajectory 
(FCT): the autoland trajectory (ALT); and the nominal trajectory (NT). 
Each figure includes four parts: the altitude h versus the distance x; the 
relative velocity V versus the distance x; the angle of  attack a versus the 



JOTA: VOL. 57, NO. 1, APRIL 1988 21 

distance x; and the power setting/3 versus the distance x. From Figs. 6-8, 
the following conclusions can be inferred. 

(i) The fixed control trajectory (FCT) is unable to meet the specified 
touchdown requirements; this statement holds regardless of the windshear 
intensity and the initial altitude. 

(ii) The autoland trajectory (ALT) is able to meet the specified touch- 
down requirements for weak-to-moderate windshears, but not for strong-to- 
severe windshears; for severe windshears, an undesirable characteristic of 
the autoland trajectory is that the point of minimum velocity occurs before 
the end of the shear; the velocity increase in the windshear region is coupled 
with severe altitude loss, occasionally resulting in a crash. 

(iii) The optimal trajectory of the control power setting scheme (OT3) 
is able to meet the specified touchdown requirements for all the combina- 
tions of initial altitudes and windshear intensities considered here. 

(iv) It is felt that guidance schemes based on the properties of the 
optimal trajectory of the control power setting scheme (OT3) should prove 
to be superior to alternative guidance schemes, such as the fixed control 
guidance scheme and the autoland guidance scheme. 

7. Conclusions 

This paper is concerned with optimal flight trajectories in the presence 
of windshear. The penetration landing problem is considered with reference 
to flight in a vertical plane, governed by either one control (the angle of 
attack, if the power setting is predetermined) or two controls (the angle of 
attack and the power setting). Inequality constraints are imposed on the 
angle of attack, the power setting, and their time derivatives. 

The performance index being minimized measures the deviation of the 
flight trajectory from the nominal trajectory. In turn, the nominal trajectory 
includes two parts: the approach part, in which the slope is constant; and 
the flare part, in which the slope is a linear function of the horizontal 
distance. In the optimization process, the time is free; the absolute path 
inclination at touchdown is specified; the touchdown velocity is subject to 
upper and lower bounds; and the touchdown distance is subject to upper 
and lower bounds. 

Three power setting schemes are investigated: (S1) maximum power 
setting; ($2) constant power setting; and ($3) control power setting. In 
Scheme (S1), it is assumed that, immediately after the windshear onset, the 
power setting is increased at a constant time rate until maximum power 
setting is reached; afterward, the power setting is held constant; in this 
scheme, the only control is the angle of attack. In Scheme ($2), it is assumed 
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that the power setting is held at a constant value, equal to the prewindshear 
value; in this scheme, the only control is the angle of attack. In Scheme 
($3), the power setting is regarded as a control, just as the angle of attack. 

Under the above conditions, the optimal control problem is solved by 
means of the primal sequential gradient-restoration algorithm (PSGRA). 
Numerical results are obtained for several combinations of windshear 
intensities and initial altitudes. The main conclusions are given below with 
reference to strong-to-severe windshears. 

In Scheme (S1), the touchdown requirements can be satisfied for 
relatively low initial altitudes, while they cannot be satisfied for relatively 
high initial altitudes; the major inconvenient is excess of velocity at 
touchdown. 

In Scheme ($2), the touchdown requirements cannot be satisfied, 
regardless of the initial altitude; the major inconvenient is defect of horizon- 
tal distance at touchdown. 

In Scheme ($3), the touchdown requirements can be satisfied, and the 
optimal trajectories exhibit the following characteristics: 

(i) the angle of attack has an initial decrease, which is followed by 
a gradual, sustained increase; the largest value of the angle of attack is 
attained near the end of the shear; in the aftershear region, the angle of 
attack decreases gradually; 

(ii) initially, the power setting increases rapidly until maximum power 
setting is reached; then, maximum power setting is maintained in the shear 
region; in the aftershear region, the power setting decreases gradually; 

(iii) the relative velocity decreases in the shear region and increases 
in the aftershear region; the point of minimum velocity occurs at the end 
of the shear; 

(iv) depending on the windshear intensity and the initial altitude, the 
deviations of the flight trajectory from the nominal trajectory can be con- 
siderable in the shear region; however, these deviations become small in 
the aftershear region, and the optimal flight trajectory recovers the nominal 
trajectory. 

A comparison is shown between the optimal trajectories of Scheme 
($3) and the trajectories arising from alternative guidance schemes, such 
as fixed controls (fixed angle of attack, coupled with fixed power setting) 
and autoland (angle of attack controlled via path inclination signals, coupled 
with power setting controlled via velocity signals). The superiority of the 
optimal trajectories of Scheme ($3) is shown in terms of the ability to meet 
the path inclination, velocity, and distance requirements at touchdown. 
Therefore, it is felt that guidance schemes based on the properties of the 
optimal trajectories of Scheme ($3) should prove to be superior to alternative 
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guidance schemes, such as the fixed control guidance scheme and the 
autoland guidance scheme. 
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T a b l e  1. In i t ia l  c o n d i t i o n s ,  

25 

Quantity .k = 0.00 h = 1.00 h = 1.20 h = 1.40 Units 

1Io 239.7 239.7 239,7 239.7 ft sec -I 
Yeo -3.000 -3 .000 -3 .000 -3.000 deg 
3'0 -3.000 -2.375 -2 .249 -2 .124 deg 
a o 7.370 7.353 7.349 7,345 deg 
0 o 4.370 4.978 5.100 5,221 deg 
~o 0.3330 0.3743 0.3825 0.3907 - -  

T a b l e  2. F i n a l  c o n d i t i o n s .  

Quantity ho = 200 ft ho = 600 ft ho = 1000 ft Units 

h, 0.0 0.0 0.0 ft 
Ye, -0 ,5  -0 .5  -0 .5  deg 
V~t 189.0 189.0 189.0 ft sec -~ 
V~,, 290.3 290.3 290.3 ft see - l  
V~ 239.7 239.7 239.7 ft see - t  
x, ,  t 3498 11130 18763 ft 
X~u 5498 13130 20763 ft 
~7~ 4498 12130 19763 ft 

T a b l e  3. N u m e r i c a l  r e su l t s  fo r  P r o b l e m  (P1) ,  m a x i m u m  p o w e r  se t t i ng  

[ S c h e m e  (S1)] .  

(ft) (ft sec - l )  (sec) (deg) (ft sec -1) (ft) (ft) (ft) 

200 100 19.4 -0 .5  -10 ,2  2.9 0.7 0.4 
200 i20 20.3 -0 .5  -27.2  14.2 3.6 2.3 
200 140 21,1 -0 .5  -45.2  23.5 4.2 2.7 
600 100 43.9 -0 .5  88.4 (*) -6 .0  5.4 3.0 
600 120 46.3 -0 .5  73.2 (*) -8 .2  17.8 8.2 
600 140 47.1 -0 .5  58.7 (*) 30.8 120.5 70.1 

t000 I00 66.1 -0 .5  132.1 (*) -37 .2  85.5 40.4 
1000 120 67.3 -0 .5  124.3 (*) 92.2 2t8.2 116.6 
1000 140 67.8 -0 .5  115.5 (*) -40.5  366,6 195.5 

(*) Asterisk denotes violation o f  touchdown inequality constraint. 
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Table 4. Numerical results for Problem (P2), constant power setting [Scheme ($2)]. 

h 0 AW x ~" ~o~ V~- ~ x~-;~ lahlm~ lAhl~ve 
(ft) (ft sec -1) (sec) (deg) (ft sec -I)  (It) (ft) (ft) 

200 100 13.8 -0 .5  -56.4  (*) -1825 (*) 78.2 60.5 
200 120 12.6 -0 .5  -55.1 (*) -2170  (*) 92.8 75,7 
200 t40 11.8 -0 .5  -54.1 (*) -2428 (*) 103.8 87.5 
600 100 17.5 -0 .5  -43.9 -8503 (*) 419.3 279.4 
600 120 15.6 -0 .5  -42.5 -8979  (*) 443.0 312.9 
600 140 14.3 -0 .5  -41.8 -9350 (*) 461.4 337.2 

1000 100 22.0 -0 .5  -32.4  -15215 (*) 769.0 462.1 
1000 120 18.5 -0 .5  -31.9 -15930 (*) 805.5 508.7 
1000 140 16.7 -0 .5  -32.8 -16343 (*) 826.9 557.7 

(*) Asterisk denotes violation of touchdown inequality constraint. 

T a b l e  5. N u m e r i c a l  resu l t s  fo r  P r o b l e m  (P3) ,  c o n t r o l  p o w e r  se t t ing  [ S c h e m e  ($3)] .  

h 0 A V(~ ~- 'y~ V , -  17' x , - ~ ,  [Ahlmax [Ahlaw 
(It) (ft sec -I)  (sec) (deg) (ft sec -~) (ft) (ft) (ft) 

200 100 21.5 -0 .5  -35.4 47.1 0.6 0.3 
200 120 21.6 -0 .5  -37.3 111.4 1,3 0.6 
200 140 21.9 -0 .5  -46.4 150.2 1.7 0.9 
600 100 47.8 -0 .5  7.6 -551.9 13.7 6,9 
600 120 46.5 -0 .5  7.6 -712.3 24.3 13,3 
600 140 49.8 -0 .5  -26.6 -207.2 109.9 61.6 

1000 100 69.6 -0 .5  19.7 -839.4 113.6 52.3 
1000 120 72.0 -0 .5  13.0 -795.2 212.8 108.1 
1000 140 77.4 -0 .5  5.8 -388.4 358.9 175.9 
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