
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 50, No. 2, AUGUST 1986 

Existence of Optimal Controls for a Class 
of Systems Governed by Differential Inclusions 

on a Banach Space I 
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Abstract. Using Cesari's approach, we prove the existence of optimal 
controls for a class of systems governed by differential inclusions on a 
Banach space having the Radon-Nikodym property. Theorem 3.1 gives 
the existence result for optimal relaxed controls under fairly general 
assumptions on the system and the admissible controls. This result 
depends on a fundamental result (Theorem 2.1) that proves the existence 
of mild solutions of differential inclusions on a Banach space, which 
has also independent interest. Further, the preparatory results, such as 
Lemma 3.1 and Lemma 3.2, are also useful in the study of time-optimal 
and terminal control problems. 

For illustration of the results, we present two examples, one on 
distributed controls for a class of systems governed by nonlinear para- 
bolic equations and the other on boundary controls with discontinuous 
boundary operator. 

Key Words. Differential inclusions, Banach spaces having Radon- 
Nikodym property, mild solutions, Polish spaces, relaxed controls, 
measure-valued controls, Cesari property, distributed controls, bound- 
ary controls. 

1. Introduction 

Let F be a compact subset of  a Polish space B, and let M = M(F)  
denote the space of  bounded positive Radon measures, in particular proba- 
bility measures, on the Borel o--field of  B, with support F. Suppose that M 
is given the usual w*-topology, which is metrizable, making M itself into 
a Polish space. Let X be a Banach space; let I be the interval [0, T], T < co; 
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and let f be a multivalued mapping defined on I x X × M, with values 
f(t, x, v)~ 2 x, the space of all nonempty subsets of X. More technical 
assumptions will be given in the sequel. 

Let ~ denote the space of w*-measurable M-valued functions defined 
on / ,  that is, 

Jr/-= {{/~,, t~ I}:/~,~ M, a.e., and t ~ tz,(h)=- Ir h(o')la.t(do') 

is measurable for each h ~ C(F), the space of continuous functions on F}. 

Let L: I x X x M ~ R be given by 

L(t, x, v) =- f L(t, x, o')v(do'). 
dr 

Let A(t), t I> 0, be a family of linear operators with domain D ( A ( t ) ) C X  
and range R(A(t))CX.  Consider the system governed by the inclusion 
relation on X, 

dx /  dt + A(  t)x(  t) ~ f (  t, x(t),/zt), 

x(O) = Xo, 

(la) 

(lb) 

with tz c M and Xo ~ X. 
Define, for each/~ ~ d/, the functional 

H J(tz) =- L(t, x(t), l~,) dr, (2) 

with x being the solution of the evolution equation (1) corresponding to 
/z. We consider the question of the existence of optimal relaxed controls 
(control measures)/x°~ d//, in the sense that 

I0 Io j(go)= L(t, xO(t), O)dt<JQz)_ L(t,x(t),tz,)dt, (3) 

for all pairs {/x, x} satisfying the evolution equation (inclusion) (1), where 
x ° is also a solution of the system (1), corresponding t o / o .  

We wish to prove the existence of optimal controls under quite general 
conditions on the nonlinear operatorf  and the cost integrand L. This result 
is given in Theorem 3.1 after we have presented in Section 2 some basic 
results on the question of existence of solutions of differential inclusions 
on Banach space. This result, given in Theorem 2.1, has independent interest. 
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We have used upper semicontinuity properties, the Cesari property, measur- 
able selection theorems, the Radon-Nikodym property, and the Kakutani- 
Fan fixed point theorem for the existence results. For earlier results in the 
area of existence of optimal controls for nonlinear evolution equations in 
Banach space, the reader is referred to Refs. 1-11. For illustration of our 
results, we have presented two examples, one on distributed controls of 
nonlinear parabolic equations and the other on boundary controls with a 
multivalued boundary operator. 

A question of significant theoretical and practical interest is whether 
or not the optimal relaxed controls can be approximated by ordinary 
controls, that is, measurable functions defined on I with values in F. In a 
recent paper (Ref. 1), it was shown that, for a very general class of nonlinear 
evolution equations on a Banach space, this approximation property holds. 
In the present context, this remains an open question. 

Basic Notations. For any Banach space X, let [IXllx denote the norm 
of the element x of X and let X* denote its (topological) dual. Let ~ (X)  
represent the space of bounded linear operators in X, with 11B II~e(x) denoting 
the norm of the element B of 5¢(X). For a topological vector space Z, we 
use 2 z to denote the set of all nonempty subsets of Z and CC(Z) to denote 
the class of closed convex subsets of Z. I f  F e 2 z, its closure is denoted by 
cl F and its closed convex hull is denoted by clco F. If Z is also a Banach 
space, WC(Z) will represent the class of weakly compact subsets of Z and 
WCC(Z) the class of weakly compact and convex subsets of Z. For any 
bounded interval I C R, and X a Banach space, C(I, X) denotes the vector 
space of continuous functions on I with values in X. Furnished with the 
norm topology given by 

Ilfl[c(~,x)- sup{[[f( t)l[x, t e I}, 

C(/, X) is a Banach space. Similarly, for any p, 1 -< p < oo, Lp(I, X )  denotes 
the space of equivalence classes of strongly measurable X-valued Bochner 
integrable functions {f}, so that 

[[fllLv(I,X) ~ ( II Hf( t)[lP ) 1/p'< O0. 
Furnished with this norm topology, Lp(I, X )  is also a Banach space. This 
is also true for p = oo with the norm 

[lfIl~(i,x)- ess. sup{l[f( t)[lx, t e I}. 

L~°¢([0, oo); X) is a locally convex complete topological vector space whose 
elements when restricted to finite intervals J C  [0, co) belong to Lp(J, X).  If 
X is a Banach space with its dual X* satisfying the Radon-Nikodym 
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property (Ref. 12) and if the Lebesgue measure of I is finite, then the dual 
of Le(/, X) is given by Lq(/, X*), provided 

(1/p)+(1/q)=l and l___p<ao. 

In particular, Y* = Lo~(/, X*), whenever Y = LI(/, X). If  X is a reflexive 
Banach space and 1 < p  <oo, then Lp(I, X) is also reflexive. For any open 
bounded connected subset f~ of R n, any nonnegative integer m and 1 - p  < 
oo, W",p(12) C Lp(l~) denotes the standard Sobolev spaces, with W~ "p denot- 
ing the closure of C~(I~) in the topology of W m'p. The dual of W m'p is 
denoted by (W"'P) * and that of W~ 'P is given by W -'~q for ( I /p)  + (1/q) = 1, 
where the elements of  W - ' 'q  are genuine distributions on ~q. In fact, the 
Sovolev spaces W s'p are defined for all s e R. For p = 2, we use H" for W ~'2. 
For a nonempty set E of  a normed space Z, we define 

IIE II °--- sup{l[  llz: ¢ c 8} c [0, oo) {oo}. 

Let F denote a measurable set-valued function (or multifunction), defined 
on I and taking values F(t) e 2 z. By the integral of the function F, we mean 

I F ( t ) d t = { I f ( t ) d t ,  fameasurableselection o f F } .  

The multifunction F is said to be pth power integrably bounded, 1 - p -< oc, 
if there exists a nonnegative function g e Lp(I)=------Lp(I, R), such that 

HF(t)ll°=-sup{lly[t,y~F(t)}<-g(t), a.e. 

A multifunction H mapping ZI to 2 z2, where Z1 and Z2 are any two 
topological vector spaces with topologies ~'1 and ~'2, respectively, is said to 
be uppersemicontinuous with respect to inclusion (USC) at ~o e Zt if, for 
every ~'2-neighborhood N2(H(~o)) of H(~o), there exists a rl-neighborhood 
N,(~o) of  ~:o, such that 

H(~:) C N2(H(~o)), for all ~ N~(~o). 

If  this is true for all ~ e K C Z1, then H is said to be USC on K. For further 
details on multifunctions, the reader is referred to Refs. 2 and 9 and the 
references therein. 

We have used the notation ~n w(~) ~o ~. > to indicate that converges to 
~o weakly (strongly) as n --) ~ .  For any Banach space E with dual E*, the 
duality pairing is denoted by (f, g)E*,~ or (g,f)E,E* for f e  E* and g e E. 
For any set F, co F denotes the convex hull of F and clco F stands for 
closure of  co F. 
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2. Existence of Solutions of the Differential Inclusion 

In this section, we consider the question of the existence of solutions 
of the differential inclusion (1), For convenience of reference, we quote 
some standard results on the existence of mild solutions of the evolution 
equation 

dx/d t=-A( t )x+g( t ) ,  te l ,  (4a) 

x(0) = Xo, (4b) 

where xo~X and g c  L I ( / ,X)  (Ref. 13, p. 108 and Ref. 2, p. 100). First, 
we consider the Cauchy problem 

dx/dt+a(t)x=O, x(0) =x0, t_>0, 

in the Banach space X. 

I.emma 2.1. Suppose that the operator A satisfies the following 
assumptions: 

(ai) the domain D(A)=D(A( t ) )  is independent of t and is dense 
in X; and, for each t, A(t) is a closed operator; 

(aii) there exists a constant C independent of t such that, for each 
t ~ / ,  the resolvent E(A, A(t))=- (AI+A(t)) -~ of A(t) exists for all A with 
real h -< 0 and 

IIR(X,A(t))ll~(x)>-C/(l+l,q), R e ) t - 0 ;  

(aiii) there exists an a ~ (0, 1) such that, for all t, 7, s ~ J, 

11 (A(t) - A( T))A -l(s) II ~(,~) - clt - rl ~. 

Then, there exists an evolution operator U(t, "r)l ~ ~LP(X), O -  r -  < - t-< T, 
satisfying the following conditions: 

(ci) (O/Ot)U(t,r)+A(t)U(t,'r)=O, r<t<_T, (5a) 

U(% ~') = I (identity in £~(X)), z-> 0; (5b) 

(cii) U(t, r) is strongly continuous in t, ~', for 0 -  < r_< t<_ T; 
(ciii) (a/at) U(t, z) exists in the strong topology and belongs to £F(X) 

for 0 -< ~- < t -< T and is also strongly continuous in t for t > r; 
(civ) there exists a C = C ( T ) > 0  such that, for any p~[0,  1], 

ItAP(t) U(t, ~')ll~(x)--- c / ( t -  ~y, for 0 <- ~-< t__< T; 

(cv) for each Xo c X, the equation 

dx/dt+A(t)x=O, x(0) = Xo, 

has a unique solution x c C(/, X), with ~ ~ C((0, T], X),  given by 

x ( t ) =  U(t,O)xo, t eL  
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Remark 2.1. We must emphasize that the evolution operator U exists 
under milder hypothesis (Ref. 14, Theorem 3.t, p. 116). 

Under an additional hypothesis, one can prove the existence of a mild 
solution of the nonhomogeneous Cauchy problem (4). This is given by the 
following lemma. 

Lemma 2.2. Suppose that the operator A satisfies the hypotheses of 
Lemma 2.1 and g c LI(/, X) and XoC X. Then, the evolution equation (4) 
has a unique mild solution x ~ C(/, X), given by 

x(t) = U(t, 0)Xo+ U(t, O)g(O) dO. (6) 

Remark 2.2. In fact, the mild solution (6) is defined for all t-> 0 and 
for each gc  Lip°C([0, oo); X) for all 1---p-<oo (Ref. 2, p. 100). 

For each t ~ I and Xo ~ X, define the operator St as 

Stg-- U(t, O)xo+ f~ U(t, T)g(r) dr. (7) 

Clearly, St is an affine map and takes LI([0, t], X) into X for each t e / ,  
and t ~ Stg is a continuous X-valued function on any compact interval of 
[0, 0o). 

We need one more result before we can prove the existence of solutions 
of the differential inclusion (1). Let Y denote LI(/, X); and let CC(X) and 
CC(Y) denote the class of closed convex subsets of X and Y, respectively. 
Define, for each given /x ~:g, the multifunction f,(t, x)=-f(t, x,/zt), and 
write Eq. (1) as 

~ - A ( t ) x + f ~ ( t , x ) ,  t>--O. 

Let p ~ (0, 1), and suppose that Dp- D(AP(t)) is independent of t ~/.  

Lerama 2.3. Let X be a Banach space, with its dual X* satisfying the 
Radon-Nikodym property (RNP), and suppose that the multifunction f 
satisfies the following properties: 

(ai) f(t,x, ~,)eCC(X) for all (t,x, u ) e I x D p x M ;  
(aii) t ~ f ( t ,  x, z,) is a measurable multifunction on I for each x ~ Dp 

and z, e M; 
(aiii) x~f ( t ,  x, ~) is upper semicontinuous (USC) with respect to 

inclusion on Dp, uniformly in I x M; 
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(aiv) v -->f(t, x, v) is upper semicontinuous (in the sense of inclusion) 
with respect to the w*-topology on M for each fixed t ~ I and x ~ Dp; 

(av) there exists a constant k ~ [0, oo), such that, for each x ~ Do, 

I[f( t, x, ~')[I ° -  sup{llyllx: y ~ f (  t, x, v)}_ k(1 + IlA'( t )xl[). 
Then, for each/x ~ ~ and g ~ L~(I, X),  so that S,g ~ Dp, we have: 

(ci) the mapping t->Fg(t)--fg(t, Stg) is a measurable and 
integrably bounded set-valued function on I with values in CC(X); 

(cii) H~,(g) - {h ~ Y: h(t) ef t ( t ,  Stg)a.e.} ¢ CC( Y); 
(ciii) g o  H~,(g) is USC (upper semicontinuous with respect to 

inclusion) on Y to 2 Y. 

Proof. Since, for each g~ Y - L I ( I ,  X),  t-> S,g is continuous, and/z 
is a w*-measurable M-valued function, the measurability of the set-valued 
map t o  F~,(t) follows from the assumptions (aii), (aiii), (aiv). We show 
that it is integrably bounded. Indeed, it follows from (civ) of Lemma 2.1 that 

Io tlA°(t)S,gHx <-(CllxoH/tP)+C (1/(t-r)°)t]g(r)[t dr; (8) 

and hence, one can easily verify that 

f o r l l A ' ( t ) S , g l l × d t < o ~ ,  for any g~ Y. 

Therefore, the measurable set-valued function F,  is integrably bounded 
since, by assumption (av), 

[IF~,(t) II °= Hf,(t, Stg)ll°- < K(1 + IlA'(t)Stgll), a.e. (9) 

In fact, using (8) in (9), one can show that there exists a constant c~ 
independent of g such that 

for llF,(t)ll ° <- c1(1 + ]lgttr)- (10) dt 

Closure and convexity of F ,  (t), t ~/ ,  is a direct consequence of our assump- 
tion (ai). This proves (ci). We now prove (cii). Convexity of H~(g) is 
immediate. For its closure, let {h,} ~ H~(g) and suppose that hn ~ ho in 
Y---LI(/, X). Note that the weak topology on LI(/, X) is generated by 
elements of L~(/, X*), since, by the Radon-Nikodym property of X*, 
Y* = L~(/, X*). Since h, ~ H~(g), hn(t) ~ F~(t), a.e.; consequently, by the 
integrability of the set-valued map F~, we have 

[1/l(J)] Jj h,(t) dt ~ [1/l(J)] jy F,(t)  dt, for all n, (11) 

and for any Lebesgue measurable set J C I with Lebesgue measure l(J). 
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By the integral of the set-valued map F , ,  we mean, as usual, the integrals 
of measurable selections of F~,. Since F~,(t) e CC(X),  for all t e / ,  it is clear 
that [ 1/ l (J)]  SJ F~,(t) dt is convex. Therefore, by Mazur's theorem, its strong 
closure coincides with its weak closure; hence, 

w-lira[lit(J)] f j  h~(t) dt 

=[1/l(J)] f ho(t)dte[1/l(J)]cl f Fg(t)dt. (12) 
JJ J~ 

This is true for any measurable set J C  I;  consequently, ho(t)e clco F~(t), 
a.e. Since F~,(t) itself is closed convex, ho(t) e F~,(t), a.e.; hence, hoe H~(g), 
proving its closure. Thus, H~,(g) e CC(Y), for each g e Y. (ciii) follows from 
the facts that x~f ( t ,  x, u) is USC on Do, uniformly in t e  I and ue  M, and 
that St is an affine continuous map from L~(0, t; X) to X with Stg e D o. 

[] 

We now present our main result of this section. We need the following 
definition. 

Definition 2.1. For each Xo e X and/x e ~ ,  an element x~ e C(/, X)  is 
said to be a mild solution of the differential inclusion (1) if there exists a 
g" e Y=- LI(I, X) such that g~'(t) eft(t ,  x~(t)), a.e., and x~, is a mild solu- 
tion of the evolution equation 

~= -A( t ) x+g  ~, x(0) = Xo. 

Theorem 2.1. Suppose that the hypotheses of Lemma 2.1 and Lemma 
2.3 hold, and let Xo e X be given. Suppose that, for each/z e M, there exists 
a nonempty set K~, e WCC(Y), the class of closed convex and weakly 
sequentially compact subsets of Y, such that K, c~ H~,(g) # 0, for all g e K~,, 
where 

H~,(g) =- {h e Y: h(t) eft(t ,  Stg), a.e.}. 

Then, the system (1) has a mild solution for each/z e ~ .  

Proof. Let Xo e X and /z e M be given. Then, by virtue of (cii) and 
(ciii) of Lemma 2.3, for each g e Y, H~,(g)e CC(Y) and g ~ H~, (g) is USC 
from Y to 2 Y Further, under the assumption of the theorem, there exists 
a K~, e WCC(Y) such that H~,(g) c~ K~ ~ Q, for all g e K~,. Hence, it follows 
from a version of the Kakutani-Fan fixed-point theorem (Ref. 15, Corollary 
2 of Theorem 6.3, p. 75) that H~ has at least one fixed point in K, .  Let 



JOTA: VOL. 50, NO. 2, AUGUST I986 221 

g " e  K.  be any such fixed point, i.e., g"e  H. (g ' ) .  Then, clearly, gt.(t)E 
f~(t, Stg"), a.e. Define x ~" with values x~'(t)=S,g ~', t e l  Clearly, x " e  
C(I, X),  with x~'(0) = Xo; and, by Lemma 2.2, it is the unique mild soiution 
of the evolution equation 

5c= -A( t )x+g~( t ) ,  t>__O. 

Since x~'(0) = xo and g~'(t) ~f .( t ,  x~'(t)), a.e., it follows from Definition 2.1 
that x ~' is a mild solution of the differential inclusion 

2 c - a ( t ) x + f . ( t , x ) ,  x(O)=xo, t e l  

This completes the proof. [] 

It is evident that differential inclusions need not have unique solutions. 
Hence, the following result has meaning. 

Corollary 2.1. Let Xo e X and/x e A/ be fixed, and suppose that the 
assumptions of Theorem 2.1 hold. Then, the set of all solutions of the 
differential inclusion (!) corresponding to the given )Co and/z, denoted C,.~o, 
is a closed subset of C(I, X). 

Proof. Let 

G.,xo-{g~ K.: g~ H~(g)} 

denote the set of all fixed points of H~. This is a closed set. Indeed, let 
{g'} be any sequence in G~,xo converging weakly (in Y) to gO. Clearly, 
gO~ Kg; and, by USC (upper semicontinuity) of H~, we have H~(g")C 
H',(g °) [e-neighborhood of Hg(g °) in Y], for all n sufficiently large. Hence, 
go~ H,(go), for any e>0 .  Since H,(g °) is a closed convex set, we have 
gO~ H,(gO), and hence gO~ G~,xo. By Theorem 2.1, the set of mild solutions 
of the system (1) corresponding to/z and Xo is given by 

C.,~o--- {x ~ C(I, X): x(t) = Stg,, t e I, g ~ a.,~o}. (13) 

Being the image of a closed set under affine continuous mapping, C~,,~ o is 
a closed subset of C(I, X). [] 

The following remark gives an elementary sufficient condition for the 
existence of a weakly compact convex set K~ of Y satisfying the hypothesis 
of Theorem 2.1. 

Remark 2.3. Suppose that X is a reflexive Banach space, p ~ [0, 1), 
and 1 < p  < (I /p) ;  and take Lp(I, X)  for Y. Clearly, Y is a reflexive Banach 
space. For this choice of p and p, it is readily verified, using inequality (8), 
that t ~ AP( t)S,g belongs to Lp( I, X)  for each g ~ Lp( I, X). Hence, it follows 
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from inequality (9) that H~(g)C Lp(I, X)  = Y and that there exists a con- 
stant C2 such that 

IlH, Ag)ll°=sup{llhlly: he n~,(g)} ~ C2(1+ Ilgll v). 

Under this situation, a sufficient condition for the existence of a weakly 
compact convex set K~, C Y such that K~, c~ H~,(g) ~ ~ is that there exists 
a finite number ro = ro(/Z)> 0 and a number a = a ( ~ ) ~  [0, 1] such that 

IIn, Ag)ll°<-aIlgllY, for all g e  Y, with llglIy> ro. 

Letting Br denote the closed ball of radius r in Y, it is clear that 

sup{[[H, (g)][ °, g ~ Bro} A rl <- C2(1 q- r0). 

Hence, for ~-max{ro,  rl}, it follows that H, (g )C  B~, for all g c Bz. Since 
B7 is weakly compact, the existence of Kg follows. 

Remark 2.4. In general, differential inclusions do not have unique 
solutions. However, if the multivalued operator - fg  is hypermaximal 
accretive, and if  both X and X* are uniformly convex, then uniqueness 
may hold (Ref. 15, Theorem 9.23, p. 152). 

3. Existence of Optimal Controls 

In this section, we present an existence theorem for optimal relaxed 
controls. Define, for each t E Io-= (0, T] and x E D,,  the set-valued map Q 
with values 

Q ( t , x ) = - { ( A , y ) ~ R x X :  A >-L(t,x, ~ ) , y~ f ( t , x ,  u), 

for some t, c M(F)}. (14) 

For any subset N C Do, define 

Q(t, N) = U  {Q(t, ~), ~ N}; 

and, for any x*c  Do, let N,(x*) denote the intersection of D o with E- 
neighborhood of x*. Q is said to satisfy the weak Cesari property at x* if  

c lcoQ( t ,N , (x*) )cQ( t , x*) ,  for t c  Io. (15) 
E>0  



JOTA: VOL. 50, NO. 2, AUGUST 1986 223 

Theorem 3.1. Consider the optimal control problem (1)-(3), and sup- 
pose that the following assumptions hold in addition to the hypotheses of 
Theorem 2.1: 

both X and its dual X* satisfy the Radon-Nikodym property (ai) 
(RNP); 

(aii) for each ball B, C X, the set-valued map Fr with values 

Fr(t)=-{y~ X: y~ f (  t,x, ~,), for some x~ E ~  Brc~ Dp 
and u~ M(F)}=f(t,  E~, M) 

is measurable; and, for each Lebesgue measurable set J C/ ,  the set 

{ I t  h(t)dt: he Yand h(t)E F~(t), a.e.} 

is a relatively weakly sequentially compact subset of X; 
(aiii) for each ball B~CX, there exists an h~L~(I, R), possibly 

dependent on Br, such that L(t,x, v)>__h(t), a.e. for all xcB ,  and v~M, 
and such that L is measurable in t, for each {x, v} ~ X x M, and, for almost 
all t ~/, it is continuous in x on B~ and continuous in v on M (with respect 
to its w*-topology); 

(aiv) the set-valued map Q satisfies the weak Cesari property on 
Iox (Do ~ B~) for every finite r >  0. 

Then, there exists an optimal control for the problem (1)-(3). 

For the proof of this result, we shall use the following intermediate 
results. 

Lemma 3.1. Let ~ denote the set of all solutions of the system (1) 
corresponding to the admissible (relaxed) controls At. Then, ~ is a bounded 
subset of C(/, X). 

Proof. By Theorem 2.1, for each ~ ~ ~t, there exists at least one g" c Y 
such that g~(t)~f(t,  S~g ~', ix,), a.e., where t~  S,g ~ is the mild solution of 
the evolution equation 

Yc= -A( t ) x+g  ~, x(0) =Xo. 

Clearly, by assumption (av) of Lemma 2.3, 

IIg"(t)llx<-k(l+[lAP(t)S,g"llx), a.e., for a l l / z ~ .  (16) 

It follows from (16) and (8) that there exists a constant C~ independent 
of/z such that the function ~b~,, with values ~b,,(t)---tlA°(t)S~g~'tlx, satisfies 
the inequality 

Io ebb(t)<_ C1/tP+ C, 1 / ( t -  O)P49,(O) dO, (17) 
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for t ~ I0 = (0, T]. From this, it follows that there exists a constant C2, 
independent of/z,  such that 

(a,(t)<-C2/t p, for all t~(0,  T] a n d / z ~ .  (18) 

Using this estimate in (16) and integrating over / ,  one can verify that there 
exists a constant C3 < m, independent of/x, such that 

sup{Ior llg"(t)llxdt, tz ~ dl} <- C3. (19) 

Clearly, by virtue of (19), the set 

G -  {g" ~ Y: g"( t) ~ f(  t, S,g ~, tz,), a.e. for some/~ c JR} (20) 

is a bounded subset of Y=- LI(I, X). Since S, is an affine continuous map 
from LI(0, t; X) to X, and since t-+ S,g is a continuous X-valued function 
on I for each g ~ Y, and G is bounded, the result follows. [] 

Remark 3.1. It is clear from (18) and the definition of ~b~ that 

Stg"cDp=D(AP(t)), for all t ~ (0, T] and for all /z c JL 

Therefore, the attainable set S,(G)C Dp, 0 < t <- T; and also it follows from 
the above lemma that there exists a ball 

Bro = {Y c X: IlYll < ro} 

of finite radius ro such that &(G) C Bro for all t ~ I = [0, T]. 

Remark 3.2. Note that, as a consequence of the above results, the ball 
Br in assumptions (aii)-(aiv) can be taken as B~o. 

Lemma 3.2. Under the assumptions of Theorem 3.1, the set G given 
by (20) is a relatively weakly sequentially compact subset of Y = LI(/, X). 

Proof. Since both X and X* satisfy the RNP, by a theorem due to 
Dunford (Ref. 12, Theorem 1, p. 101), it suffices to show that (i) G is a 
bounded subset of LI(I, X), (ii) G is uniformly integrable, and (iii) for 
each measurable set JCI, the set {Sjg(t)dt, gc G} is a relatively weakly 
compact subset of X. Boundedness of G follows from (19) as in Lemma 
3.1. Uniform integrability follows from (16), (18), and the definition of ~b~. 
Indeed, for any measurable set J C/ ,  

I ,  IIg~'(t)]]xdt<- KI(J)+ KC2 I,  (1/tP)dr, (21) 

for all/~ ~ ~ ,  with K, (72 independent of/~. Consequently, 

lim f j  IIg(t)]lxdt=O, 
I(J)->O 
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uniformly with respect to g e G. For (iii), we take any Lebesgue measurable 
set o-C I and define 

G(tr) = { I  ~ h(t)dt, heG} .  

Since G is a bounded subset of Y and S,(G) CBroCX for all t e l  (see 
Remark 3.1), we take Ero = B,oc~ Dp [see (aii) of Theorem 3.1] and define 
the set-valued map Fro with values 

F~o(t)=U{f(t,x , v): xeEro, veM},  

which, by (aii), is measurable. Define 

h(t) dt: he Y and h(t)e Fro(t),a.e.}, 

and note that, by assumption (aii) of Theorem 3.1, this is a relatively weakly 
(sequentially) compact subset of X. Since G(tr) C H(tr) for any measurable 
set o-C I, it follows that G(o-) is also a relatively weakly compact subset of 
X. This concludes the proof. [] 

Remark 3.3. In case X is a reflexive Banach space, condition (iii) in 
the above lemma can be omitted; in that case, assumption (aii) of Theorem 
3.1 is also not required. In other words, for reflexive Banach spaces, the 
sufficient condition for weak sequential compactness of a subset K C 
LI(I, X) is precisely the same as for finite-dimensional spaces X. 

With this preparation, we can now prove Theorem 3.1. For ~ ~ A~ and 
g ~ Y, define 

n(/z, g) - L(t, S,g,/z,) at, (22) 

where St is the operator as defined in Section 2 [see Eq. (7)]. Clearly, ~ is 
an extended real-valued function, defined on Ag × Y. Define 

-{(/z,  g) e ~ x Y: 0 e H~(g)- g} C ~ x G, (23) 

where H~(g) is as given in Lemma 2.3 (cii). Note that the cost functional 
J(/z) is the restriction of *7 to ~.  Therefore, for the existence of an optimal 
control in ~t, it suffices to prove the existence of a pair (/z °, gO) e ~ such that 

r/(/~°, g°) ----- ~7 (/x, g), for all (/z, g) e ~ .  

Proof  of  Theorem 3.1. Let ( /~,  g~) e ~ /be  a minimizing sequence for 
the functional r/restricted to ~/. That is, 

lim n(/x ~, g~) =Jo--- inf{n(/z, g), (t~, g) e ~¢}. (24) 
n 
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If  Jo = ~ ,  there is nothing to prove; so, we assume jo < 0o. Since {gn} ~ G 
and since, by Lemma 3.2, G is a relatively weakly sequentially compact 
subset of  Y, there exists a subsequence of the sequence {g"}, relabeled as 
{gn}, and an element gO~ y such that gn _~ gO. Then, by Mazur's theorem, 
there exists a finite convex combination of {g"} that converges strongly to 
gO. In particular, for each integer j, there exists an integer nj, a set of  integers 
i = l , 2 , . . . , m ( j ) ,  and a set of nonnegative numbers {%i , i=  
1, 2 , . . . ,  re(j)}, with 

m ( j )  

aji = 1, for all j, 
i = l  

such that 

m ( j )  . s 
~bj(t)--- ~ ~+, gO, ajig J -> in Y. (25) 

i = 1  

Corresponding to the above sequence, define 

l,j+,(t) =-- L(t, Stg"J +', tz'~J+'), t c I, (26) 

re(j) 
hi(t)----- ~ aj,l,j+,(t), t e l ,  (27) 

i = 1  

where t-~ S,g~ +i is a mild solution of the differential inclusion (1) corre- 
sponding to the control /z~ +i. Define 

ho(t) --- lim Aj(t). (28) 
J 

It follows from Lemma 3.1 and the following remark (Remark 3.1) that 

{Stg~ +', i = 1 , 2  . . . .  , m ( j ) , j =  I ,2, .  .. }CBro CX,  

for sufficiently large to. Combining this with the fact that/~ 7 ~ M(F) ,  a.e., 
it follows from our assumption (aiii) (see Theorem 3.1) that there exists an 
h z LI(/, R) such that Aj( t )_  h(t), a.e.; consequently, lim hi(t) is defined 
a.e. Therefore, by Fatou's lemma, 

I A°(t) d t : f I  i limA~(t) d t ~ l i m I j  , Aj(t) dt. (29, 

Clearly, by virtue of (24), 
~+i g~+i) lira r/(/~ , =Jo, 

j-~co 

and hence also 

r e ( j )  

lim Y. ..+i gnj+i) ajirl(t x J , =jo. 
j ~ c o  i = 1  

(30) 
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Thus, it follows from (27), (29), (30) that 

f Ao(t) dt~-jo; (3t) 
I 

and, since Ao(t)~ h(t), a.e., and h c LI(I, R), it is clear that Ao~ LI(I, R). 
Now, we show that 

(,~o(t), g°(t)) c Q(t, S~g°), a.e. 

Define 

/1 = {t ~ I: [Ao(t)t < oo} c~ {t ~ I: limll ~0j(t) - g°(t)tlx = 0}, 
y 

N k = - { t ~ l : ~ M ( r ) } ,  N o =UN k ,  
k 

and set 

h =  1\No,  I3=Itr~I2. 

Due to (25) and the fact that A0 ~ L1, it is clear that the Lebesgue measure 
I(I\I1) = 0 and, by our definition of admissible controls, 1(I\I2)= 0 also. 
Thus,/3 has full Lebesgue measure. Therefore, for t c I3\{0, T}, there exists 
a subsequence, possibly dependent on t, of  the sequence {A j}, again denoted 
by {As}, such that 

Xj(t)~ ;~o(t), for t~ I3\{0, T}. 

Choosing the corresponding subsequence for the sequence {¢j}, we have 

6j(t) -~ g°(t), in X, for all t c I3\{0, T}. 

Thus, for every t e 13\{0, T} and every E > 0, there exists an integer f - -  f(t ,  E) 
such that, fo r j  > ~ Stg~ +~ E N~(Stg°), where again we use N~(Stg °) to denote 
the intersection of the E-neighborhood of S~g ° with D p -  D(AP(t)). Since 
~ L(t, ~, v) is continuous and ~ f ( t ,  ~, v) is an USC (upper semicon- 
tinuous) multifunction on D o for (t, v)~ I x M, and since 

{S,g', S,g°}C B,o~ Do, 

we have 

Q( t, S,g's+~) c Q( t, N,( Stg°) ), f o r j > f  and t~/3\{0, T}. 

It follows from the definition of (2 that 

(l,j+~(t), g~+*(t)) ~ O(t, S,g"s+~), a.e. in L 
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Consequently, due to (25) and (27), 

(Aj(t), ~bj(t)) ~ co Q(t, S,g"J+i); 

and hence, for j > 

(;tj(t), ~bj(t))E co Q(t, N,(S,g°)). 

In view of the above facts, 

lim(Aj(t), Oj(t)) = (Ao(t), g°(t)) ~ clco Q(t, N,(Stg°)), 
J 

for every e > 0, and hence 

(Ao(t), g°( t))e ~ clco Q( t, N,(Stg°)). 

Therefore, by the weak Cesari property [see (aiv), Theorem 3.1], 

(Ao(t), g°(t)) e Q(t, S~g°), for all t e I3\{0, T}, (32) 

and hence almost everywhere in I = [0, T], This implies that, for every 
t c 13, there exists a/2t e M such that 

Ao(t)>-L(t, Stg°,/2,) and g°(t)ef(t,S,g°,/2t). 

Since/3 has full Lebesgue measure, we have 

Ao(t)>-L(t, Stg°,/2,), a.e. i n / ,  

g°(t) ef(t ,  Stg °,/2,), a.e. in I. 

This defines a function t ~/2, with values/2, c M - M(F),  a.e. The question 
that remains to be settled is whether or not a measurable (w*-measurable) 
substitute for /2 can be found. At this point, essentially we follow the 
arguments given in Refs. 1 and 2. Define, for t e Ia\{O, T}, the set-valued 
map V with values 

V(t) = {v ~ M(F): Ao(t) -> L(t, Stg °, u) 

and 

g°(t) of(t,  Stg °, ~)} C M(F). (33) 

I f  we can show that t ~ V(t) is a measurable multifunction with closed 
values, then it will follow from the Ryll-Nardzweski selection theorem (Ref. 
2, Theorem 1.4.5, p. 40) that there exists a measurable substitute/z ° (i.e., 
/z°c ~/) for/2. But, if a set-valued function has closed values, then, by a 
theorem due to Himmelberg-Jacobs-Van Vleck (Ref. 2, Theorem 1.4.3, p. 
39), it is measurable if and only if, for each E > 0, there exists a closed set 
I, C I--- I3\{0, T} such that the graph of V restricted to ~ is a closed subset 
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of I, x M. The fact that, for each t ~ I0, V(t) has closed values follows easily 
from the facts that 

(i) v~  L(t, Stg °, u) is continuous on M; 
(ii) v~ f ( t ,  S~g °, v) is USC on M; 

(iii) f(t ,  S~g °, u) ~ CC(X). 

For measurability of V, we consider its graph 

7(V) - { ( t ,  v)~ Iox M: v~ V(t)}, (34) 

and show that, for each e > 0, there exists a closed set I, C I such that the 
restriction of V to I,, denoted V~, has a closed graph. Since ho~ L1, 
gO~ LI(I, X),  and since L satisfies assumption (aiii) of Theorem 3.1 and f 
satisfies assumptions (aii)-(aiv) of Lemma 2.3, it is clear that, for every 
E > 0, there exists a closed set I, c I such that: 

(i)' t ~ho ( t )  is continuous on I.; 
(ii)' t - g ° ( t )  is continuous on I,; 

(iii)' (t, v)-~ L(t, Stg °, v) is continuous on I, x M;  
(iv)' (t, v )~ f ( t ,  S,g °, v) is USC on I ,×M. 

Let 11, denote the restriction of V to I~, and let 3'(V,) denote its graph. 
We show that .3,(V,) is a closed subset of I, x M. Let (t,, v,) c 3"(V,) and 
t. ~ to and v, X v0 [or, equivalently, in the metric topology of M(F)].  Since 
I, is closed, to~ I,; and, due to (i)' and (iii)', 

ho( to) = lim ho( t,) >--lim L( t., Sing °, v,) = L( to, S~g °, Vo). (35) 
n 11 

By virtue of (iv)', there exists no = no(e) such that, for n > no, 

f ( t , ,  St,,g °, v~)Cf'(t0, S~g °, Vo), 

where f "  denotes the e-nbh of the set f(to, S~g °, vo) in X. Since 

g°(t~) ~f( t , ,  Stag °, v,), for all n, 

and, by (ii), 

g°(t,)og°(to), inX,  on I,, 

it follows from the above that 

g°(to) ~ f ' ( to,  S~og °, Vo). 

Since ~ > 0 is arbitrary and f(to, S~g °, Vo) ~ CC(X),  

g°(to) ~ f (  to, S~og °, Vo). (36) 

Hence, it follows from (33)-(36) that (to, Vo)~ 3'(V~) and, consequently, V, 
has a closed graph. Thus, by the results mentioned above, V is a measurable 
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set-valued map with closed values in M(F). Hence, by the Ryll-Nardzweski 
theorem mentioned above, there exists a measurable selection of V, denoted 
/x °, i.e., o ~  j//. Consequently, 

ho(t) >- L( t, Stg °, tx°t ), a.e., 
and 

g°(t) ~f(t, Stg °,/z°), a.e.; 

and hence, ( o, gO)~ M. Consequently, jo = 7/(/z °, gO), and hence (/z °, gO) is 
an optimal pair and/z ° is an optimal (relaxed) control. This concludes the 
proof. [] 

The following corollary follows from the Dunford-Pettis theorem that 
justifies the equivalence 

(Ll(t, C(F)))* ~ Lo~(Z, M(r) ) ,  

where/I~/(F) is the space of finite Radon measures on F, with M(F) C hdr(F) 
and ~ C Loo(l, M(F)) furnished with the w*-topology. 

Corollary 3.1. Let 

inf{r/(/z, g), (/z, g)~ M} =jo, 

and define 

S¢o--- {(~, g) c ~¢: ~(~, g) =jo}. 
Then, under the hypothesis of Theorem 3.1, the set J o  is closed. 

Remark 3.4. Our results on existence theorems also extend for the 
space of control measures M with variable supports F. For example, in 
case F: I -~ 2 B with values F(t) ~ CC(F°), where F ° is a fixed compact subset 
of the Polish space B and t -  F(t) is both upper and lower semicontinuous 
(i.e., simply continuous), then both Theorem 2.1 and Theorem 3.1 remain 
valid. However, for feedback controls, the problem becomes more difficult. 
The major difficulty lies in the proof of existence of (mild) solutions for 
the inclusions of evolution 

~c(t)+A(t)x(t)cf(t ,x(t) ,#,) ,  t e l ,  
Iz, ~ M ( F ( t ,  x( t ) ) ) ,  t C I, 

where F: I x (Dp ~ Br)-~ 2 B (for r sufficiently large) and M is the space of 
bounded positive Radon measures on F. For the existence of mild solutions, 
this problem can be reformulated as a family of fixed-point problems in 
Yx A~, 

g( t )  ~ f ( t ,  Stg, ]£t), t E [, 

t.~,~M(F(t, Stg)), t~I,  
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where Y =  L~(I, X) and ~ is the space of w*-measurable functions on I 
with values in the space of bounded positive Radon measures with support 
F. Given that the fixed-point problems have solutions, and assuming that 
F(t, x) c CC(I  "°) for some fixed compact F ° in B, for all (t, x) ~ I x (Dp c~ B~) 
(for r sufficiently large), and given that (t, x ) ~ F ( t ,  x) is both upper and 
lower semicontinuous with respect to inclusions, one can prove Theorem 
3.1. Probably, the continuity conditions and the compactness of F ° may be 
relaxed. In general, it would be desirable to relax the regularity assumptions 
(aiii) and (air) of Lemma 2.3. 

4. Examples 

In this section we present two examples, one involving distributed 
controls and the other involving boundary controls, to which our results 
apply. 

Example 4.1. Distributed Control. Consider the parabolic control 
problem 

OCb/Ot+ Y, a,(t, £)D"ch =f(t, ~; dp, D,(~,... ,  D2,,-,th; u), 
1~1<_2m 

in (0, T) x f ~ -  Q, (37a) 

rch-{Bjga ==- • bJ,~(~)D~qS, 0<-j<-rn-1}=O, 
I~d<mi 

in (0, T) x 012, (37b) 

~b(0, £ )=  ~b0(£), inf / ,  (37c) 

where 12 is an open bounded subset of R" with C 1 boundary aft, 

D~=-D~,D ~2... D",, Oj=-{D",lal=j}, 
o~i, j nonnegative integers, 

i = 1  

and mj is the order of  Bj. Define 

Ao(t)6==- Y. a~(t,')D~ch, 
I,~l<_2m 

and assume that the system {Ao(t), z,f~} constitutes a regular elliptic 
boundary-value problem, with principal coefficients a~(l~l = 2 m ) ~  C((~) 
and lower-order coefficients a~(lal <-2m - 1) ~ Loo(Q), and further they are 
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all Hrlder continuous in t uniformly with respect to x c ~.  Let 1 < p < oo, 
and define the operator A(t),  t ~ I = [0, T], by 

D(a( t ) )  = {~b ~ Lp(fU: Ao(t)4~ ~ Lp(l~) and r~b = 0}, 

and assume that the coefficients of Bj belong to Cm-~(OfD. Then, under 
the above assumptions, for each t ~ I, A(t)  is a closed densely defined linear 
operator in X --- Lp(fU, and - A ( t )  is the generator of an analytic semigroup 
in X (Ref. 16, p. 140). For the nonlinear operator f we may choose B to 
be Loo(f/) furnished with the w*-topology, and consider F to be a closed 
bounded convex subset of B with the relative w*-topology, thereby making 
it into a compact Polish space, since LI(f~) is separable. Define 

{,7°, f l--j}c 
for some suitable Nj, and 

~7---{~j,j=0, 1 . . . .  , 2 m - 1 } C R  u , N = ENj. 

We consider the function f :  I x f~x  R U x F ~ R ,  and suppose that it is 
measurable on I x f~ for each (~7, o-)~ R u x F and continuous on R U x  F 
for almost all (t, ~)c I ×f~; also, we suppose that there exists a constant 
Co -> 0 and a nonnegative function w ~ Lv(12) such that 

[f(t,(,Tl,~)l<<_w(~)+Co y~ [~j[5, a.e. in Q, (38) 
0~j~2m--1 

uniformly with respect to o" E F. 
The admissible values for the exponents rj are determined by the use 

of Sobolev's embedding theorem which (partly) states that W 2"'p ~ WJ'PJ, 
provided 

(1/pj) = ( j /n )  + ( l /p )  - (2m/n) ,  

giving 

=(pjp). 
In order that r~-> 0, we require that n >-2mp. Under these assumptions, it 
is easily verified that there exists a constant C~ > 0 such that, for all o- c F 
and t e l ,  

Ilf( t, "; ~, D16, . . . .  D2m-!~b; cr)Itr,(c~) 

- C 1 { 1 +  ~ It D~4~ IIL,/~)}, (39) 
O_<j_<2rn--t 

for all ~b c w:m'P(~). Using this inequality, with slight abuse of notation, 
one can conclude that there exists a constant k, 0 < k < ~ ,  such that, for 
all t E I and o" ~ F, 

[]f(t, x, tr)[lx ----- k(1 + [[AP(t)X]lx), (40) 
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for any p c [ ( 2 m -  1)/2m, 1) and x ~ D(AP(t)) (constant). It follows from 
the above discussion that we can reformulate the system (37) as a relaxed 
evolution equation 

dx/ dt + a (  t)x = f (  t, x, v), (41a) 

x(0) = x0--- ¢o, u ~ M(F),  (41b) 

in the Banach space X, with 

f (  t, x, 9)=- I r  f( t ,  x, o')u( dcr). 

Obviously, our general results apply to the optimal control problem (41) 
and (3). In case the function (t, ~, 7/, o-) ~ f ( t ,  ~, 7, tr) is multivalued in any 
one of the variables {7/, tr}, we obtain a differential inclusion. In that case, 
the continuity condition is replaced by the upper semicontinuity with respect 
to set inclusions retaining, however, the growth condition (38) or 
equivalently (40). 

In a recent paper, Seidman and Zhou (Ref. 17) have studied the question 
of the existence and uniqueness of optimal controls for a class of quasilinear 
parabolic equations of the form given in this example. 

Example 4.2. Boundary Controls. Here, we give an example illustrat- 
ing that our abstract results also apply to boundary control problems. For 
simplicity, we shall consider only second-order elliptic operators, though 
our results apply equally to higher-order problems. 

Consider a control problem of the form 

O~b/Ot + Ao~b =0, 

O~b/Ov +/3i(¢) ~ hi(t, ui), 

6(o,  ~) = 0o(~), 

with 

0121 u 0122 = 012, 

in Q = (0, T) x 12, (42a) 

in ~i = (0, T) × 012~, i = 1, 2, (42b) 

~ 12, (42c) 

0121 n a122 = ;~. 

Here, 12 is an open bounded subset of R", Ao is a second-order elliptic 
operator, and/3i is a multivalued function from R to dosed convex subsets 
of R with monotone graphs. The controls ui c L2(/, U~), while Ui are certain 
separable Hilbert spaces and hi are continuous bounded operators from 
L2(/, Ui) to L2(/, Hi), where Hi are certain Sobolev spaces over 012i, i = 1, 2. 
More specific assumptions will be introduced shortly. We can write this 
boundary-value problem as an abstract differential inclusion in a Banach 
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space, in particular, the Hilbert space H ~ L2(~'~ ) or  (H1)  *. For definiteness, 
let 

Ao¢ --= -.~. (ao(¢)¢e,)ej + ao(~:) ¢, 
l , J  

where 

ao c C l ( ~ ) , ao ~ L~(  l)  ) , aij ~- aji, 

and, for some a > 0, 

E ao(¢)'rhv]j >- o~l~] 2, 

for almost all ( c f~ and all 77 ~ R", and ao -> 0, a.e., on 1). Define the bilinear 
form 

a(¢, ~,)=-- ~ fa ao(¢)¢#,e~ d,+ f, ao(V)¢~O d,, (43) 

for ¢, 0 e H 1, and the operator A such that 

(A¢, 0) = a(¢ ,  0), 

with 

D ( A ) = { ¢ c H : A ¢ c H }  or D ( A ) = { C c ( H 1 ) * : A ¢ ~ ( H 1 )  *} 

and 

A¢ = A o ¢ ,  f o r q b ~ H ~ n H Z o r H ~ .  

Under these assumptions, A is the generator of an analytic semigroup both 
in H and (HI)*;  in the first case, D(A) = He; in the second case, D(A) = H I. 
We define the multivalued operator f as follows. Let B =/-]1 x Uz and 
F - - F a x F 2  a closed bounded convex subset of B, and take M(F)-= 
M ( F 0 x M ( F 2 ) .  Let t--> hi(t, tr) be (strongly) measurable on I for each 
o-~ Fi, and o---> hi(t, tr) continuous and bounded on Fi for almost all t ~ I 
with range in Hi. Define, for each vi ~ M(Fi) ,  

~'i(hi)(. ) =-- f h,(., o-)~,i(do-), 
J F  i 

amd suppose that vi( hl) e L2( I, Hi). 
For X = H, we have D ( A ) =  H 2, and it follows from integration by 

parts of (42) that a natural choice of Hi is H1/2(O~i), i = 1, 2, and that the 
multifunction fll determines a multivalued operator (again denoted by fli) 

18i: H I ( ~ )  --~ 2H,. 
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The multivalued operator f :  I x H 1 x M(F)  ~ 2 H is then determined by the 
relation 

} ( f ( t ,  oh, v), ~P)H == - vi(h,)(t), l ~ ) H i , H ~ :  W i e /3i((~) , (44) 
i 

which holds for all 

~b e H (  ~b]aa, e H*  = H- ' /2 (a~ , )  ), 

for each given (t, ~b, v) e I x H 1X M. Taking ~ as in the introduction, we 
can rewrite Eq. (42) as a differential inclusion in H, 

d y / d t + A y ~ f ( t , y ,  tz,), y(O)=yo=-ChoeH, 

with/~ e ~ .  Assuming that there exists a constant K, independent of t, such 
that, for all vi e M(Fi) ,  i = 1, 2, 

II /3,(6)-  v,(hi) I[ °, 

--- sup{ll w , -  vi(h,)ll.,, w, ~ /3 , (6 )} -  < g (1  + 11611.'), (45) 

it follows from (44) that there exists a constant /~, dependent on K and 
the bounds of a 0 and ao, such that, for all v • M(F),  

IIf(t, 6, v)ll°<-I~(l+llAO61ln), w i t h p = l / 2 .  (46) 

Similarly, for X = - ( H I )  *, we have D ( A ) = H 1 ;  and it follows from 
similar arguments as above that a natural choice for Hi, in this case, is 
H-1/2(af~i). If /3 is a multivalued operator mapping H to 2 n', then 

f :  I x H x M(F)-> 2 (H')*. 

Assuming a similar estimate as in (45), with H replacing H ~, one has, for 
all v e M(F) ,  

IIf(t, 4~, v)ll~'H')*-</~(1 + [IAOII~H')*), for p = 1/2. (47) 

In this case, the corresponding differential inclusion is defined in (H1) * 
with Yo -= ~boe (H~) *. For practical applications, one would prefer to take 
Ui =- L2(Ki) for the control space, where Ki is any nonempty Lebesgue 
measurable subset of 012i and h i :L2(Ki )~  Lz(al2i) is a Urysohn operator, 
given by 

h,(tr)(~') = f R,(~, s~; o-(~)) d~:, ~ •OlIi. 
d K  i 

Assuming that the Lebesgue (n - 1) measure of Of~i is finite and that there 
exists an mi • L~(Of~i x Ki) and a constant Ci -> 0 such that 

]Ri( ~, ~; v )] <- mi( ~, ~) + Ci[v I, 
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for all (~', ~:)~ 01-1i x Ki and v ~ R, one can show that hi is a continuous 
bounded operator from L2(Ki) to LE(0fli). The operator fli may be con- 
sidered to be given by the composition of the trace map z~ : ~b -> ~bIaa, and 
a multifunction/3~ from R to closed convex subsets of R, so that 

I/~(r)[°--sup{[O[, 0 6/3(r)}--- C(1 +[r[), for some 0_< C<oo.  

Clearly, for each ¢J ~ L2(OOi), 
E(¢,) e 2 L2 °% 

hence, for 4 e/-/1/2(0), 

- 2 

Then, for any closed bounded convex subset Fi C U~, there exists a constant 
C, such that 

0 < o r  Ilfl,(~b)-h,(o')I[t=(m,)-<(l+llqbl[nl/2m)), for all eF, ;  

consequently, for the corresponding multivalued operator f, there exists a 
constant k such that 

]If(t, 6, ~')ll~w)*-< &l + [[A°6ll(nb*), with p =3/4.  

In any case, our results apply to the boundary control problem (42) and (3). 
In a recent paper, Barbu (Ref. 18) has developed the necessary condi- 

tions of optimality for convex control problems involving systems of the 
form (42). 

Remark 4.1. For recent results on the necessary conditions of optimal- 
ity and the existence of time-optimal control for distributed and boundary 
control problems, the reader is referred to Refs. 18-21. In a recent paper 
(Ref. 21), the author has studied the questions of complete controllability, 
including the necessary conditions of optimality for a very general class of 
linear evolution equations on a Banach space including applications to 
distributed boundary control problems. 
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