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Robust Control of Base-Isolated Structures 
under Earthquake Excitation I 

J. M. KELLY, 2 G. LEITMANN, 3 AND A. G. SOLDATOS 4 

Abstract. We propose the use of robust control in conjunction with 
base isolation in order to assure arbitrarily small motion of a seismically 
excited structure. The proposed method requires control force applica- 
tion only at the base (first) floor. The etficacy of the scheme is illustrated 
by extensive simulations for a prototype six-story building. 
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I. Introduction 

Conventional  methods of earthquake protection for buildings and other 
structures rely on the strength of  the structure and its capacity to dissipate 
earthquake-produced energy. This energy absorbing capacity is produced 
by inelastic action in the structural frame and can, if many cycles of  loading 
are involved, result in damage to the frame of  the building, and could also 
lead to damage to nonstructural components  and internal equipment.  

It is the horizontal components  of the ground motion that are the most 
damaging to a building and to its contents. In a new approach to earthquake 
protection, called base isolation, the building rests on a system of isolators, 
which act to uncouple the building from the horizontal ground motion. The 
building is isolated at the base, and not only are the loads on the structural 
system reduced but occupants and contents are also protected. The concept 
of  base isolation is not new, but it has become a practical reality in recent 
years through developments in rubber technology. 

Rubber  bearings offer the simplest method of  isolation and are relatively 
easy to manufacture.  Long experience with bridge bearings which are very 
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similar has provided confidence in their longevity and reliability. The 
bearings used in seismic isolation systems are made by vulcanization bond- 
ing of the thin sheets of natural or artificial rubber (usually neoprene) to 
thin reinforcing steel plates. The bearings have the mechanical characteristic 
o(being very flexible in the horizontal direction and very stiff in the vertical 
direction, and their action under seismic loading is to isolate the building 
or structure from the horizontal components of the ground motion. The 
vertical components of the earthquake ground motion are transmitted 
unchanged into the structure, although the bearings will provide isolation 
against higher frequencies of ground motion such as are caused by traffic 
and underground transit systems. These bearings are suitable for buildings 
which are rigid and low-rise, up to about seven stories, for which uplift on 
the bearings will not occur and for which wind loading will be relatively 
unimportant. 

Buildings have been built on base isolation systems in France and New 
Zealand. The first base-isolated building in the United States has been built 
in California, and there are plans to start construction in 1986 of a second 
base-isolated building in California. The nuclear industry is conducting 
studies of the potential application of base isolation to liquid-metal fast 
breeder reactors in the United States and to conventional reactors in Japan. 

The simple elastomeric base isolation system is limited to low-rise 
structures, because of the possibility of uplift forces being generated in the 
isolator when the building is tall. Although the isolation system has the 
effect of reducing the absolute horizontal acceleration of the structure below 
that for the conventionally based structure, there will be some acceleration 
at each level of the building and these accelerations will, if the building is 
tall enough, produce an overturning moment which might produce tension 
in corner bearings. Furthermore, there have been proposals to use base 
isolation for large individual components in nuclear power plants to reduce 
the seismic hazard of these components, but many of these components are 
tall and slender and have thus the same problems for isolation as tall 
buildings. 

These problems can be overcome by combining base isolation and 
active control. 

The use of active control to reduce the damage to buildings and other 
structures caused by earthquakes has become an area of considerable 
theoretical interest in recent years. Control techniques applicable to the 
seismic problem have been developed although most of the research was 
directed to other environmental disturbances. The seismic problem has 
features which make it signicantly different from control of vibrations caused 
by, for example, wind loading. The loading may not occur for many years 
following a long period of quiescence. The nature of the disturbance (its 
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intensity and frequency content for example) cannot be accurately predicted 
at the design stage. 

In addition, the loading is applied to the structure at the base and for 
this reason many of the methods suggested or developed to provide control 
forces for wind and other types of excitation cannot be used. For example, 
the use of an active mass damper at the top of a building is not appropriate. 
Several of the control force methods which might be used are: 

(a) the generation of internal control forces by the use of tendons; 
(b) the generation of external control forces by, for example, jets at 

each floor level; 
(c) the modification of structural stiffness by, for example, changing 

the stiffness of internal bracing. 

At best all of these methods can be used to control the relative acceler- 
ation of the structure with respect to the ground. If they reduce the relative 
acceleration of each floor level to zero, then relative velocity and relative 
displacement will also be so reduced. Thus the interstory stress will be 
reduced to zero. However, the building will then follow the motion of the 
ground exactly and each floor will experience from the controller a force 
equal to its mass times the acceleration of the ground. This acceleration 
will of course be much less than the acceleration of each floor without 
control, for typical high-rise structures significantly amplify at the higher 
levels the acceleration at the base. 

The peak ground acceleration will still have to be sustained by sensitive 
equipment in the buildings and by the occupants. The control forces needed 
will be of the order of the mass of the floor and the peak ground acceleration, 
and these could be unattainable for a practical system. 

When the concept of active control is combined with seismic isolation 
where the structure is decoupled at the base from the ground acceleration, 
then the goal of the control system is to minimize the absolute displacement 
and velocity, and the control forces are needed to overcome only the forces 
which would be generated by the isolation system at the base of the structure. 
These forces are an order of magnitude less than those required by the 
schemes proposed heretofore. 

2. Active Isolation Concept 

It is the combination of base isolation (e.g., Refs. 1-4) with active 
control (e.g., Refs. 5-10) which makes this scheme so attractive, as we hope 
to show here. 



162 JOTA: VOL, 53, NO. 2, MAY 1987 

The method for achieving earthquake-induced damage reduction dis- 
cussed here differs from previously proposed ones in some important 
respects. 

It is quite well known that base isolation can be efficacious in greatly 
reducing disturbances transmitted from the ground to the base (first) floor 
of a building and by reducing the natural frequency of the base floor. 
Indeed, essentially complete decoupling can be achieved in principle (say, 
by supporting the structure on ball bearings); see Appendix A. Clearly, 
such a scheme is not practical, since even small disturbances would result 
in motion of the structure; it would simply slide off the foundation. This, 
then, is where active control enters the picture, for it can be designed to 
employ information about the motion of the structure to activate forces to 
counteract this motion. Active control of structures has been proposed 
earlier (e.g., see Refs. 5-10); however, these proposals suffer from the 
drawback of requiring relatively large control forces at each floor of a 
building or for each mode of a structure. Such a requirement appears to 
be impractical. We may now ask: How does this requirement arise and how 
can it be obviated? The first part of the question can be answered readily; 
see Appendix B. It arises from the desire to keep the motion (displacement 
and velocity) of each floor relative to the ground small (and hence, of a 
given floor relative to those below and above it); if relative displacements 
and velocities are small, so are the internal stresses. Crudely speaking, in 
the previously proposed schemes, active control is employed to achieve that 
end by attempting to move the whole structure so as to follow the motion 
of the ground. Since relative coordinates are used in the system description, 
the ground acceleration acts as a disturbance at each floor; hence, control 
forces must be applied at each floor (see Appendix B). The second part of 
the question derives its answer from the realization that the philosophy of 
base isolation is one of keeping the whole structure stationary relative to 
its initial, undisturbed configuration (i.e., relative to an inertial frame of 
reference) and, again crudely speaking, letting the ground move under it. 
Thus, in this case, the appropriate description of the system is in terms of 
absolute coordinates, i.e., in inertial reference frame coordinates. Now, the 
ground-induced disturbance is in the form of ground displacement and 
velocity, and this disturbance acts only at the base floor; consequently, control 
force need be applied only at the base floor (see Appendix A). Furthermore, 
as will be shown, the maximum magnitude of the control force need not 
exceed the maximum magnitude of the disturbing force transmitted to the 
base floor in order to assure arbitrarily small motion (absolute displacement 
and velocity) of the base floor. Thus, base isolation is of great importance, 
since it permits one to make the maximum disturbance as small as desired. 
Finally, as will be seen, the possibility of reducing the natural frequency 
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of the base floor by appropriate choice of the base isolation system's 
parameters (stiffness and damping), and hence the control force frequency, 
is vital in view of time delays engendered by the time constants of sensors 
and actuators, whose dynamics are usually neglected in the mathematical 
model of the system. 

3. Controller Design 

In order to illustrate the utility of active control in conjunction with 
base isolation, we consider a linear, lumped-parameter model of an N-story 
building in planar motion. We employ absolute coordinates in the description 
of the system. Thus, the governing equations are those of Appendix A. 

Since the controller theory is based on a state space description of the 
system, it is convenient to introduce the state x = ( X a ,  x 2 ,  . . .  , X2N)  T of the 
system, where Yi denotes the absolute displacement of the ith floor, and Yo 
that of the ground (see Appendix A, Fig. 15), and 

Xi ~ Yi ,  

Xi+N = Yi, i = 1, 2 , . . . ,  N. 

The equations for the uncontrolled system (7) can then be written as 

~(t )  = A x ( t )  + Cv( t), (1) 

where 

A= 

[ (-Co-Cl)/ml cl/rnl i ( -ko-kO/ml kl/ml ] 

I---c,_,/m "(-c, ,-c,)/;c---~,/m, i"k,,/m~ (-'r~',-k,)/;.7---k,/,,,, I 

t .................. ;;-:; ................. i ................... ~-;:;- ............... -J 

I o,o, co, o, l 
c -- i____o_~__~_~____1, 

L ON×2 .1 

~(t)= [yo(t)l 
L¢o(t)J" 

Now, if a control force Ul(t) is applied to the base (first) floor, the 
controlled system equation becomes 

Yc(t) = A x ( t )  + BUl(t ) + Cv( t ) ,  (2) 
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with 

"l /ml  1 
B= ON__L~_L I. 

ON×1 3 
This equation is of the form (9a) of Appendix C, with 

AA(r) = AB(s) =-- O. 

Here, the uncertain input v(t) is due to the unknown ground motion. 
In conformity with the controller theory summarized in Appendix C, we 
assume v(t) e ~, a known compact set. This assumption is reasonable, since 
maximum values of ground displacement y~,X and velocity )~ax are known 
for the worst earthquakes on record. Thus, 

~r= {ve R211vd<- y~ "x, Iv2r<~ p~ax}. (3) 

It is readily verified that the other assumptions of Appendix~C are 
satisfied; that is, the matching conditions are met with 

F =  [ko, Co], 

and A = A is an appropriate choice, since A is stable. 
Thus, the control that assures practical stability (see Appendix C) of 

system (2), for all disturbances v(. ) whose values range in ~, given e > 0, 
is 

= ~(-BTpx/IBrPxl)p, if IB TPxl >/,, 
u~=p,(x) [(_BrPx/e)p,  if tBrpxl < e ' (4) 

where P is the solution of 

PA+ArP+Q=O,  (5) 

for given O > 0, and 

--  max 2 .max 2 p=maxHFvH-x/(koYo ) +(CoYo ) .  (6) 

Note that the scalar control given in (4) is a saturation control whose value 
cannot exceed p; indeed, if it is not saturated, i.e., if IBrPxl < e, it is a linear 
feedback control. Note also that, given the disturbance bounds y~aX and 
)~,ax, the maximum of the control p can be reduced by appropriate base 
isolation design, that is, by reducing /Co and Co. The control given by (4) 
can be readily implemented, since A and B are known a priori. Information 
about the state x can be obtained as a function of time during the earthquake 
excitation. 
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4. Simulation 

In order to investigate the efficacy of the proposed control, prior to 
the implementation of  an experimental program, a simulation program was 
carried out. The mathematical model is a linear, lumped-parameter one for 
a laboratory prototype of  a six-story building; see Refs. 11 and 12. The 
computation of the spring and damping coefficients, listed in Table 1, can 
be found in Ref. 13. 

The base isolation ststem coefficients deduced in Ref. 13 and used here 
are 

k0 = 1200 kN/m,  Co = 2.4 kNs/m.  

The floor masses are 

ml = 6800 kg, base floor, 

m~ = 5897 kg, i = 2, 3 , . . . ,  6. 

The simulated ground motion is that of  the 1940 E1 Centro earthquake; 
Figures 1-3 show ground acceleration, velocity, and displacement, respec- 
tively. The assumed maximum values of ground velocity and displacement 
are 

~a~  = 0.35 m/s,  y~"X= 0.11 m, 

determining the maximum value of  the control (4). Furthermore, the P 
matrix in the control is based on Q = 112×12 in Eq. (5). 

Finally, simulation results are presented for two values of the design 
parameter e, e = 0.001 and e = 0.0001. 

Figures 4a-4f  and 5a-5f show the velocity and displacement histories 
of the six floors of the base-isolated but uncontrolled building under the 
assumed earthquake excitation. We note that the responses of the floors 
are essentially identical. This is not unexpected in view of the relatively 
high stiffness of the building vis-a-vis that of the base isolation system. In 
other words, the base-isolated system moves essentially as a single unit. 

T a b l e  1. M o d e l  c o e f f i c i e n t s .  

Spr ing  eoefticient ( K N / r n )  D a m p i n g  coefficient ( K N s / m )  

k I = 33,732 c I = 67 

k2 = 29,093 c2 = 58 

k 3 = 28,621 c 3 = 57 

k4 = 24,954 c 4 = 50 

k 5 = 19,059 c 5 = 38 
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Figures 6 and 7 show the velocity and displacement histories of the 
first floor of the base-isolated and controlled building under the assumed 
earthquake excitation, for e=0.001. Figure 8 shows the corresponding 
control force u~(t). There is considerable improvement over the uncontrolled 
situation, both in amplitudes and frequencies of the responses. The property 
of the floors moving in unison is preserved. This latter property is very 
important, since it obviates having to determine the state of the total system 
(twelve variables); it suffices to determine the velocity xt and displacement 
x7 of the base floor. 

Figures 9, 10, and 11 show the velocity, displacement (again only for 
the first floor), and force histories for e =0.0001. As expected, further 
improvement in the responses results, albeit at the expense of a larger 
control force. 

In view of the property of the floors moving in unison, setting x,- = xl, 
i = 2 , . . . ,  6, and xi = XT, i = 8 , . . . ,  12, in control (4) should have no effect; 
simulation results (not presented here, but in Ref. 13) bear this out. 

Finally, as already mentioned, the sensors and actuators (to determine 
the system's state and to implement the control) possess their own dynamics, 
neglected in the mathematical model. In effect, the state x(t) required for 
the control u~(t) =p,(x(t)) is not available; rather, what is available at time 
t is a retarded state x ( t - A ) ,  where A> 0 is a delay due to the neglected 
system dynamics. Provided this delay is sufficiently small, the assured 
practical stability is not vitiated, except for a possible deterioration in the 
response bounds; e.g., see Ref. 14. To illustrate this, a delay of A = 0.1 sec 
was introduced in the state upon which the control is based. As expected, 
in view of the relatively low response frequencies, no discernible effect on 
the response is detected. This is shown in Figs. 12, 13, and 14 for the case 
of • = 0.001. 

Other simulation results may be found in Ref. 13. 

5. Conclusions 

We have proposed the combination of base isolation with active control 
of structures under earthquake excitation. In contradistinction to earlier 
proposals for active control of earthquake-excited structures, the scheme 
proposed here makes use of the advantages introduced by base isolation 
by seeking to keep the building stationary relative to its undisturbed 
configuration, rather than attempting to move it with the ground in order 
to keep relative motion small, which requires comparatively large control 
forces on each floor. Thus, the method of this paper permits one to utilize 
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base isolation to reduce the control force which is now required only at the 
base floor. 

A few words are in order concerning the determination of the required 
information for the implementation of the control, namely, the state of the 
system; in essence, that means the determination of the absolute  veloci ty  

and  posi t ion of the base floor. The absolute acceleration of the base floor 
is measured readily by means of an accelerometer. Velocity and displace- 
ment are then obtainable by integration, provided their initial values are 
known. In the simulation, we have taken these to be zero, x(0) = 0, supposing 
that the initial earthquake shock is used to trigger the measurement and 
integration process before the building responds to the excitation. This 
appears to be reasonable. 

Of course, the illustrative example is confined to planar motion, and 
this suffices for laboratory tests. Before a scheme, such as the one proposed 
here, can be implemented in the field, mathematical models incorporating 
the effects of nonplanar motion must be employed. Finally, the possibility 
of uncertainty in the parameter values must be explored. While the control 
scheme of Appendix C allows for uncertainty in the system parameters 
[that is, AA(r) ~ 0, A B ( s )  ~ 0], it does so at the expense of more control 
requirements; in particular, controlling for uncertainty in k; and c~, 
i = 1, 2 , . . . ,  N, requires control forces at more than just the base floor. 

6. Appendix A 

Consider a linear, lumped-parameter model of an N-story building in 
planar motion; see Fig. 15. Let Y0 be the displacement of the ground, Yi be 
the displacement of the ith floor, relative to an inertial  reference f r a m e ;  let 
mi be the mass of the ith floor, e~-i be the damping coefficient, and k~_l be 
the spring constant in the connection of the ith floor to the floor, respectively 
ground, below it. Finally, let a dot denote differentiation with respect to 
time t. Here, we shall delete the argument t, for the sake of brevity. 

Then, 

ml);1 = - Co(¢~ - rio) - ko(y ,  - Yo) + c10)2 - 3~1) + kl (Y2 - Yl), 

mtgi = -c~-10~;-))~_~) - k,_l(y,-  Yi-1) + c, 0),+1 -~9~) + ki(y~+a -y~), (7) 

mNfiN = --CN-1(¢N -- Y:N-O -- k N - I ( y N  -- Y N - O .  

Thus, we see that, in this description (i.e., in terms of absolute  coordin- 
ates  y~), the ground-motion-induced disturbance co3~o + koyo affects only the 
first (base) floor. This disturbance involves the ground displacement Yo and 
velocity ))o. It can be reduced by the design of  the base isolation system, 
i.e., by reducing Co and ko. 
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Fig. 15. Lumped parameter model, absolute coordinates. 

7. Appendix B 

Consider a linear, lumped-parameter model of an N-story building in 
planar motion; see Fig. 16. Let Yo be the ground displacement relative to 
an inertial reference frame and z~ be the displacement of the ith floor relative 
to the ground. All other quantities are as defined in Appendix A. 

Then, 

rrll(fio+Z1)---~--CoZl--kOZl-[-Cl(Z2--z1)+kl(Z2--Zl), 

mi(yo+ zi) = -c i - ,  (z.i - zi-,) - ki_,(zi - zi-,) + ci(~.i+l - z.i) + ki(zi+, - z~), (8) 

m N f f o  + ~ -  ) = - c N - , (  e~  - ~ _ , )  - k N - l (  zN - zN-~) .  

Thus, we see that in this description (i.e., in terms of coordinates relative 
to the ground z~), the ground-motion-induced disturbance m~o affects every 
floor. This disturbance involves the ground acceleration rio; it cannot be 
reduced by the design of the base isolation system. 
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8. Appendix C 

Consider a dynamical system 
~(t )  = [ A + A A ( r ( t ) ) ] x ( t )  +[B + A B ( s ( t ) ) ] u ( t )  + Cv( t ) ,  (9a) 
x(  to) = Xo, (9b) 

where 
x ~ R " ,  u ~ R  m, v ~ R  t, r c R  p, s ~ R  q, 

and 
A ~ R "×n, B r R "×m, C c R "×l 

are known constant matrices, and 
A A ( .  ) : Re-~ R n×",  A B ( .  ) : R~-~ R n×m 

are known continuous functions. 
Uncertainties in the system matrix, input matrix, and input, respectively, 

are modelled by the unknown Lebesgue measurable functions 
r ( . ) : R ~ ,  s ( . ) : g ~ 6  e, v ( - ) : R ~ ,  
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where ~ ,  5e, oF are known compact  subsets of  the appropriate  spaces. Thus, 
the only information concerning the unknown elements r(t), s(t), v(t) 
resides in their bounding sets ~ ,  fie, ~. 

Concerning system (9a)-(9b),  we assume that the uncertainties belong 
to the range  space of the input matrix B or, more precisely, there exist 
continuous functions D(.  ): RP--> R mxn, E ( .  ): RI-> R m×'~ and constant 
matrix F o R  m×~ such that the so-called matching conditions are met; 
namely, 5 

Vr ~ ~ ,  (10a) 

Vs e fie, (lOb) 

AA(r) = BD(r), 

AB(s) = BE(s),  

C = BF, 

and 

(lOc) 

maxlE(s)ll < 1. (11) 

Furthermore, we assume that the matrix pair (A, B) is stabilizable; that 
is, there exists a constant matrix K ~ R T M  such that ,4 = A + BK is stable. 6 
Of  course, (A, B) is stabilizable if  it is controllable; e.g., see Ref. 15. 

Before proceeding, we state two desirable properties to be achieved 
for the uncertain system (9a)-(9b) by appropriate  choice of  control u(t). 

Property P1. Uniform Boundedness. Given x0 6 R", there is a positive 
d(xo) < ~ such that, for all solutions x( .  ) : [to, tl) ~ R", X(to) = Xo, 

Ilx(t)ll<~d(xo), Vt c [to, tl). 

Property P2. Uniform Ultimate Boundedness. Given x o ~ R  ~ and 
s = {x R°lllxll > 0}, there is a nonnegative T(xo, S) <oo such that, 
for all solutions x( .  ): [to, oo) ~ R ~, X( to) = Xo, 

x ( t )~S ,  Vt>~to+ T(xo, S). 

Loosely speaking, uniform boundedness implies that every solution 
emanating from initial state Xo remains within a bounded neighborhood 
whose radius may depend on Xo. Uniform ultimate boundedness implies 
that every solution starting at x0 will enter and remain within a neighborhood 
of prescribed radius 8 after a finite time which may depend on Xo and & 
These two properties, sometimes stated in a slightly different but equivalent 
form, are the main ingredients of  practical stability; e.g., see Refs. 16-18. 

5 While 11.11 may be any norm, it is convenient to deal with the Euclidean norm of vectors and 
the corresponding matrix norm. 
6 The real parts of the eigenvalues of A are strictly negative. 
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Now, consider a control 

u = K x + p , ( x )  (12) 

such that, given E > 0, there holds 7 

p,(x) = ~ (-BTPx/I[BTPxII)p(x)' if Iln~Px]l/> ,, 
[ ( - B r P x / , ) p ( x ) ,  if IIBTPxll < ,, (13) 

where P c  R ~×n is the symmetric, positive-definite solution of 

p , ~ + , ~ T p + o  =0  (14) 

for given symmetric, positive definite Q c R "×~, and 

p(x )  -- I;1 - max l lE (s ) l r ] - l [max l lD( r )x l t  

+ maxll t~(s)/Cx II +maxl lFv lH.  (15) 

Now, provided the stated assumptions are met, control (12) guarantees 
practical stability for uncertain system (ga)-(9b)  and, in particular, Properties 
P1 and P2 for every possible realization of  uncertain elements r ( . ) ,  s ( . ) ,  
and v(- ); e.g., see Ref. 16, where one can also find explicit expressions for 
d(xo) and T(xo, S). Here, it should be noted that ~ = ~(E) and can be made 
arbitrarily small by choice of  E; namely, decreasing e results in a decrease 
of  the radius of  the ultimate boundedness set. Furthermore, if the initial 
state belongs to the Lyapunov ellipsoid which defines the ultimate bounded- 
ness set, the whole solution remains within it. 

References 

1. KELLY, J. M., The Influence of Base Isolation on the Seismic Response of Light 
Internal Equipment, University of California, Earthquake Engineering Research 
Center, Report No. UCB/EERC-81/17, 1981. 

2. KELLY, J. M., and BEUCKE, K. E., A Friction-Damped Base Isolation System 
with Fail-Safe Characteristics, Earthquake Engineering and Structural Dynamics, 
Vol. 22, pp. 33-56, 1983. 

3. KELLY, J. M., The Use of Base Isolation and Energy-Absorbing Restrainers for 
the Seismic Protection of a Large Power Plant Component, Electric Power Research 
Institute, Report No. EPRI-NP-2918, 1983. 

4. KELLY, J. M., Aseismic Base Isolation, Shock and Vibration Digest, Vol. 17, 
No. 8, 1985. 

7 Superscript T denotes transpose. 



180 JOTA: VOL. 53, NO. 2, MAY 1987 

5. YOUNG, J. N., Application of Optimal Control Theory to Civil Engineering 
Structures, Journal of the Engineering Mechanics Division of the ASCE, Vol. 
101, pp. 819-838, 1975. 

6. MARTIN, C. R., and SOONG, T. T., Modal Control of Multistory Structures, 
Journal of the Engineering Mechanics Division of the ASCE, Vol. 102, pp. 
613-623, 1976. 

7. GUTMAN, S., and LEITMANN, G., Stabilizing Feedback Control for Dynamical 
Systems with Bounded Unvertainty, Proceedings of the IEEE Conference on 
Decision and Control, Gainesville, Florida, 1976. 

8. YONG, J. N., LIN, M. J., and SAE-UNG, S., Optimal Open-Loop Control of Tall 
Buildings under Earthquake Excitation, Proceedings of the Third International 
Conference on Structural Safety and Reliability, Trondheim, Norway, 1981. 

9. YONG, J. N., Control of Tall Buildings under Earthquake Excitation, Journal of 
the Engineering Mechanics Division of the ASCE, Vol. 108, pp. 833-849, 1982. 

10. SOLDATOS, A. G., Analysis of Earthquake-Induced Oscillations on Multistory 
Buildings, University of California, Berkeley, MS Report, 1984. 

11. HODDER, S., A Study of Energy-Absorbing Aseismic Base Isolation Systems, 
University of California, Berkeley, PhD Dissertation, 1982. 

12. KELLY, J. M., and TSM, H. C., Seismic Response of Light Internal Equipment 
in Base-Isolated Structures, University of California, Berkeley, Report No. 
UCB/SESM-84/17, 1984. 

13. SOLDATOS, A. G., Interim Report on Actively Controlled, Base-Isolated Structures 
under Earthquake Excitation, University of California, Berkeley, California, 
1986. 

14. LEITMANN, G., RYAN, E. P., and STEINBERG, A., Feedback Control of Uncer- 
tain Systems: Robustness with Respect to Neglected Actuator and Sensor 
Dynamics, International Journal of Control, VoL 43, pp. 1243-1256, 1986. 

15. Y. TAKASHI, RABINS, M. J., and AUSLANDER, D. M., Control and Dynamics 
Systems, Addison Wesley, Reading, Massachusetts, 1970. 

16. LEITMANN, G., On the Efficacy of Nonlinear Control in Uncertain Linear Systems, 
Transactions of the ASME,'Journal of Dynamic Systems, Measurement, and 
Control, Vol. 102, pp. 95-102, 1981. 

17. CORLESS, M., and LEITMANN, Continuous State Feedback Guaranteeing Uni- 
form Ultimate Boundedness for Uncertain Dynamic Systems, IEEE Transactions 
on Automatic Control, Vol. AC-26, pp. 1139-1144, 1981. 

18. LEITMANN, G., Feedback and Adaptive Control for Uncertain Dynamical Sys- 
tems, New Mathematical Advances in Economic Dynamics, Edited by D. F. 
Batten and P. F. Lesse, Croom Helm, London, England, 1985. 


