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A Differential Game of Approach 
with Two Pursuers and One Evader 1 

A. G. P A S H K O V  2 A N D  S.  D .  T E R E K H O V  3 

Communicated by N. V. Banichuk 

Abstract. A differential game of approach with one evader and two 
pursuers with a nonconvex payoff function is considered. The duration 
of the game is fixed. The payoff functional is the distance between the 
object being pursued and the pursuer closest to it when the game 
terminates. An explicit form of the game value is found for all possible 
game positions. The paper is closely related to Refs. 1-12. 
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1. Introduction 

Differential games o f  approach-evas ion  with many  players have attrac- 
ted the growing attention o f  specialists (Refs. 6-12). In the present paper ,  
we consider  a concrete differential game o f  approach  with a nonconvex  
payoff  function. Such a kind of  payoff  funct ion occurs frequently in many 
applied problems;  however,  the solution process can meet well-known 
mathemat ical  difficulties. 

In the differential game under  considerat ion,  the value funct ion 
coincides with the p rog rammed  maximin function,  which is a cont inuous,  
piecewise-smooth function,  made  up of  four  smooth  functions.  In the game, 
there is a singular surface on which the value funct ion is nondifferentiable.  
This fact does not allow the use o f  the Bel lman-Isaacs  fundamenta l  
equation.  In proving the fact that  the piecewise-smooth funct ion o f  program- 
med maximin is the value o f  the game under  considerat ion,  we use a 
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generalization of the Bellman-Isaacs fundamental equation (see Refs. 4 
and 5). 

2. Problem Formulation 

The motion of the pursuers P(y(~)) is described by the equations 

)~'~ = u~ °, ~(2 ' )= u(2 '), (la) 

((u~'))~+(u~'~)~)'/~, ~>0,  /--1,2. (lb) 

The evader E(z) moves in accordance with the equations 

~, = vl, z2 = v2, (2a) 

(v~+v2,)'/2<~v, . > ~ .  (2b) 

Here, u (°, v are the control vectors. The time O at which the game ends is 
fixed. The game payoff cr is the distance between the object being pursued 
and the pursuer closest to it at the instant O; i.e., 

cr = min[(zl(O) -y]~)(o))Z+(z2(O) -y(2°(0))2] ~/2. (3) 
i = 1 , 2  

Strategies and motions of  players are defined in accordance with Ref. 2. 
Suppose that, at the initial instant to, the pursuers's coordinates do not 

coincide. In a plane, we set up a fixed rectangular system of coordinates 
with axes q~, q2- We direct the abscissa axis q~ from the initial position of 
the first pursuer P°(y(ol)) to the initial position of the second pursuer P°(y~o2)). 
We direct the ordinate axis q2 through the midpoint of the segment [P~P2],° o 
perpendicular to it, so as to obtain a right-oriented system of coordinates 
(see Fig. 1). The domain of  attainability G(~)(t, y(i), O) of (he pursuers 
P~, i = 1, 2, from the position {t, y(~)(t)} at the instant O is a circle of radius 

J 

E,  

Fig. 1 



JOTA: VOL. 55, NO. 2, NOVEMBER 1987 305 

r(t) =/x (0  - t), with center at the point {y(~(t)}. The domain of attainability 
G(t,  z, O) of the evader E from the position {t, z(t)} is a circle of radius 
R( t )  = v ( O -  t), with center at the point {z(t)}. Due to the choice of the 
coordinate system, the pursuers's positions Pi{y]°(to), y(2i)(t0)}, i =  1, 2, at 
the initial instant to are such that 

y]')( to) = -y~2)( to), y(21)( to) = y(22)(to). 

Suppose that, at the instant to, the evader E is at the position 
{zl(to), z2(to} and the attainability domain G(to, zoo), O) of the evader 
intersects the axis q2 at the points A~(0, d~) and A2(0, d2) (see Fig. 2), with 

dl.2 = z2(to) ± (R2(to) - z2(to)) '/2. (4) 

We see that the distance between the pursuers Pi and the points A~, A 2 

satisfy the following relations: 

sign(I PiAll - IP,  A21) = sign(z2(to) - y~2i)(to)). 

It can be shown that the optimal programmed strategy for E to evade 
the pursuers P~ at the instant 0 from an initial position {to, z(to)} located 

P,A1P:A2  (see Fig. 2) will be the extremal control v(t),  in the quadrangle o 0 
to<~ t <  O, directed toward the point A~ if 

z2(to) - y(2°(to) > 0 

and directed toward the point A2 if 

z2( to) - y(2~)( to) < O. 

The points for which 

z2(t)=y~i)(t), Izi(t)l<~ly]i)(t)t, to<~t<o,  (5) 

A~ 

Fig. 2 
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form a singular set S. The two extremal aiming points A~ and A2 correspond 
to points of  the set S. In this case, the optimal programmed evasion strategy 
of E consists of the  two extremal controls vt (t) and v2(t), to ~< t < O, directed 
toward the points A~ and A2, respectively. Player E can choose any one 
of them. 

3. Programmed Maximin Function 

First, let us determine the programmed maximin function 3'. for the 
differential game ( t ) - (3) .  We introduce the notation 

qJ(R, zl) = (max(0, R2( t )  - z~))'/z, 

Q -- {(t, x): t0<~ t < O, O(R, Z~)lzal -x ~ (O(R,  z ,)  + fzz-y~'~l)ly]~l-~}. 

If (t, x) ~ Q, then the programmed maximin function has the form 

Y. = max rain o- = max(y~, Y2), (6a) 
v(l) u(t) 

y j ( t , x ) = ( ( y ~ l ) - d j ) 2 + ( y ~ ' ) ) 2 ) ~ / 2 - l ~ ( O - t ) ,  j = l , 2 .  (6b) 

If (t, x )~  Q (in particular, this case holds if the attainability domain of E 
does not intersect the q2 axis), the game (1)-(3) degenerates into a game 
with one evader and one pursuer, considered in Ref. 2. In this case, we find 
that the programmed maximin function has the form 

y .  = rain(y3, Y4), 

yi+ 2( t, x )  = ( ( zl - y]'))2 + ( z 2 -  y~'))2) '/2 + ( u - p. )( O -  t ), 

(7a) 

i = 1 , 2 .  

(7b) 

Finally, if lP~ P2I = 0, then 

y ,  = ((zl - y]~))2 + (z2 -y(2~)) z) ' /z+ ( u - /~ ) (O - t). (8) 

It can be verified that, for positions (t, x ) ~  aQ, the functions (6) and (7) 
are equal together with all of their derivatives. Thus, the expressions (6) 
and (7) define a continuous function y , ,  continuously differentiable for 
to ~< t < O, everywhere except on the set S. 

Below, we shall prove that the programmed maximin function y .  is 
identical with the value of  the differential game (1)-(3). When proving this 
fact, we take advantage of  the following circumstance. Consider a differential 
game in which (1) is replaced by the equations 

~}~1) .~_ Ul ' y(2|)= i,,/2 ' ~ ]2 )=  __b/l ' y(2 2)= U2; (9) 

i.e., in (1), we set 

U] 1)~" --U] 2 )=  N1, U(21)-~ U(2 2)• ~2" 
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If  we compute the programmed maximin function 3'** for the differential 
game (9), (2), (3), we obtain 

y** = y , .  (10) 

Let p .  be the value of the differential game (1)-(3), and let p** be the value 
of the differential game (9), (2), (3). In the game (9), (2), (3), there are 
additional constraints on the first pursuer. There, 

p .  ~ p**. (1 I) 

It is well known that the value cf  a differential game and the programmed 
maximin function are related by the inequality 

p ,  I>- 3',, p** t> 3'**. (12) 

If the equation 

P** = 3'** (13) 

holds, then from (10)-(13) it follows that 

p ,  = 3'.. (14) 

Let us prove (t3). The equations 

y~l)(t)  = -y~lZ~(t), y~'>(t) =y(22)(t) 

always hold for the system (9). The function 3'** is smooth everywhere in 
the space of positions, except on the singular set S, where its partial 
derivatives have discontinuities. In the domain where the function 3'** is 
differentiable, it satisfies the fundamental equation. For example, let the 
player E at the initial instant be located inside the triangle P,A~P2; then, 
3'** = 3"~ [see (6)]. We introduce the notation 

r = ( ( u ( O - t ) ) 2 - z 2 )  1/2, d 1 = z2-k r , 

R ,  = ( ( d  I - y 2 ) 2 + y ~ )  '/2, 3", = R , - I . r ( O  - t). 

We find the partial derivatives of  these thnctions, 

orlot = - ; ~ ( 0 -  t)/r, 

ocl~/o~ = - u ~ ( u -  l)/r, 

ORl/Oyl  = y l /  R , ,  

OR~/Od~ = ( d ~ -  y2) /  R~,  

OR, /oz2  = ( d, - y2) /  R , ,  

Oy~/Oy, = y , / R , ,  

03"1/ 0z~ = - (  d, - y 2 ) z l /  ( R l  r), 

Or/Ozl = z~/r,  

ad l /Oz ,  = - z , / r ,  ad,/Oz2 = 1, 

oR,/Oy2 = - (  dl - y2) /  R1, 

ORl/Oz~ = - ( d r  - y2)z~/  ( R ,  r), 

aye~at  = I~ - v2( O - t )(  d, - Y2)/  ( R~/  r),  

03"~/0y2 = - (  d, - y2) /  R~,  

Oy~/Oz2 = ( d l - y 2 ) / R , .  
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The fundamental equation has the form 

03"~/ Ot + min( ( O3"~/ Oyl)ul + ( 03"l/ Oy2)u2) 
u 

+ max(  ( a3"l/ Ozl)v~ + ( 07~/ Oz2)v2) = O. 

Since z2 > Y2, we have dl - Y2 ~> 0. Hence, it follows that 

min( (Oyl/ OyOu~ + (03"l/Oy2) ua) = -Ix,  
u 

max( (O3"l/OzOvl + (a3"~/Oz2)v2) = z,2( O -  t)( d~ - y2)/ ( Rar). 
v 

Thus, the fundamental equation is satisfied. Similarly, we can verify that 
the fundamental equation is satisfied for positions of E, located inside the 
triangle PIAzP2. 

We consider the other case for the game (9), (2), (3). Let the positions 
of players Pi and E be such that (t, x )~  Q; i.e., the evader E is outside the 
quadrangle P1AIPzA2. Then, the game (9), (2), (3) degenerates into a 
one-to-one game for which the function 3', [see (7)] is the value of the 
game (see Ref. 2). 

4. Case of a Singular Surface 

Let us consider further the positions of the game belonging to the 
singular set S defined above. In Refs. 4 and 5, necessary and sufficient 
conditions are formulated for the nonsmooth maximin function to be the 
value function of the differential game. For the programmed maximin 
function 3'** to be the value of game, it is sufficient to prove the inequality 

max rain max(d71/dt, dy2/dt)  <~ O, (15) 
v u 

i.e., that is a u-stability function (see Refs. 2, 4, 5). 
We put 

r = ( ( ~ ( 0 -  0 )  2 -  _2 ,1 /2  - 2 , , / 2  ~lJ , R = (r2±3q) . 

We find the partial derivatives of the functions 

Oyl/Ot = Oy2/Ot = IX - (v2( O - t ) ) /  R, 

o71/ay, = a 7 2 / 0 y l  =ydR, a3,1/azl = a 7 2 / a z l  = -zl/R, 

Oyl/Oy2 = -Oyz/Oy2 = - r / R ,  Oy~/Oz2 = -Oy2/Oz2 = r/ R, 

d7i/ dt = ayi/  Ot + ( Oyj/ Oyl)ul + ( Oyj/ Oy2)u2 

+ ( o y J a z l ) v l  +(O3"Jaz2)v2, j =  1, 2. 
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The inequality (15) has the form 

/x - (~,2(0- t )+max  rain q~(y~, z~, u, v ) ) /  R <~0, 
u u 

~ ( Y l ,  Z1, U, V) = y l U l  - -  ZII.) 1 -t- r l u  2 - v21. 

Thus, it is necessary to prove the inequality 

max rain ~(y~, z~, u, v) <~ v2( O - t) - Rtz. (16) 
O u 

We note that (see Fig. 2) 

y~<~0, r~O. 

The inequality 

~ ( O -  t) < R (17) 

follows from (2) and (5). It follows from (17) and from the inequality 

r < ~ v ( O - t )  

that 

v ~>/xrR-t. 

Let v2 ~ [~rR -~, vj. Then, 

max rain ¢(y~, Z1, H, V) = max(rv2 - zlvl) - R/x 
u U ~) 

= v(r2+ z~) 1/2- R ~  = v2(O - t) - Rtx. 

Let v2 6 [0, I~rR-1]. Then, 

max rain ~0'~ z~, u, v )=  max(yl(~ 2 -  v~) ~/2- zlv~) 

= ( (  ~ ' ~ R  2 - .2/)'/~Iz,t- ~ f y d ( R  2 - r2)~/~)/R. 
So, we need to prove the inequality 

lzd(v2/2 2 2,1/2 2 --IX r )  - y d ~ ( v 2 ( O - t ) - R l x ) R .  

The validity of this inequality follows from the relations 

R > ~ l x ( O - t ) ,  R v 2 ( O , t ) > ~ r 2 # ,  

tztl( p2 R 2 -  Ix2r2) 1/2 <~ Rp2( O - t) - r2¢z. 

In this way, the proof of Inequality (15) is completed. We have proved that 
the programmed maxirnin function y ,  is the value of the differential game 
(1)-(3). 
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5. Remark 

For the case when ~z ~> ~, i.e., the pursuers have the advantage in speed 
[see (2)], it can be proved that the value function has the form [see (6), (7)] 

y = m a x ( y , ,  0). 

This fact can also be proved by using the results of Refs. 4 and 5. All the 
constructions in the paper can be ge0eralized easily to this case: 

6. Conclusions 

We have found the value function in the game of approach with two 
pursuers and one evader, in which the players have simple motions. 

In Refs. 11 and 12, the value function of the differential game of 
approach with two pursuers and one evader was constructed for other 
concrete problems of approach with a nonconvex payoff function. The value 
function was found for all possible positions. 

In Ref. 11, the differential game of approach im/olving two inertial 
pursuers and a noninertial evader was considered. In this problem, the 
value function does not coincide with the programmed maximin function. 
The value of the game is determined from the solution of a system of 
nonlinear algebraic equations. 

In Ref. 12, a similar differential game of approach for dynamical players 
is considered. In this problem, the motion of the players is caused by the 
action of control forces and friction. A numerical example of pursuit- 
evasion is described. 

Knowing the value of the differential game, we can construct e-optimal 
player's feedback strategies which provide the saddle point of the game 
within a prescribed accuracy e. This question is considered in Ref. 3. 
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