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Global Optimization Algorithms 
for a CAD Workstation ~ 

W. L. PRICE 2 

Communicated by L. C. W. Dixon 

Abstract. This paper describes two new versions of the controlled 
random search procedure for global optimization (CRS). Designed 
primarily to suit the user of a CAD workstation, these algorithms can 
also be used effectively in other contexts. The first, known as CRS3, 
speeds the final convergence of the optimization by combining a local 
optimization algorithm with the global search procedure. The second, 
called CCRS, is a concurrent version of C RS3. This algorithm is intended 
to drive an optimizing accelerator, based on a concurrent processing 
architecture, which can be attached to a workstation to achieve a 
significant increase in speed. The results are given of comparative trials 
which involve both unconstrained and constrained optimization. 

Key Words. Numerical optimization, global search, nonlinear pro- 
gramming, parallel processing, concurrent algorithms, computer-aided 
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1. Introduction 

Two versions, CRS1 and CRS2, o f  the control led r andom search 
procedure  for  global opt imizat ion (CRS) have been described in previous 
papers (Price, Refs. 1 and 2). The CRS procedure  is a simple, general 
purpose  algori thm which is direct (it does not  involve gradients) and is 
applicable to constra ined as well as to uncons t ra ined  optimization.  Because 
the algori thm emphasizes global search, rather than speed of  convergence,  
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it is somewhat slower than algorithms designed for local optimization. 
However, the CRS algorithm is well suited to a parallel processing environ- 
ment, giving the potential for a significant improvement in speed. Research 
at the Hatfield Polytechnic into adapting CRS for the ICL-DAP has pro- 
duced promising results [Ducksbury (Ref. 3) and Dixon, Patel, and 
Ducksbury (Ref. 4)]. 

Rapid developments in computer technology have led to the increasing 
use of desk-top microcomputers as workstations for computer-aided 
engineering design. One of the CAD tools which the design engineer requires 
is an optimizing engine. The present paper describes adaptations of the 
CRS algorithm tailored specifically to the needs of the user of such a 
workstation. 

Within the CAD environment, the principal facilities offered by a 
workstation are its immediacy of action and interaction together with 
high-quality graphics. In order to take full advantage of these facilities, the 
user needs to enter his problem, and to observe the results, as quickly and 
simply as possible. He might wish to interact with the procedure, e.g., 
choosing to stop it when he judges the optimization to have proceeded 
sufficiently far. He might then wish to restart the procedure with a change 
of parameters or a fresh set of data, using the workstation as a "what if?" 
design tool. 

In this context, the CRS algorithm has certain advantages over many 
other global optimization procedures. Firstly, it requires minimum prepar- 
ation of the problem: because the algorithm does not involve derivatives, 
only the function definition needs to be supplied. Secondly, the data in 
store at each iteration (and available to the workstation via a dynamic 
graphics display) provides the user with more information than merely the 
current best point. This data shows the current modality (the number of 
potential global minima being searched). The data also shows the sensitivity 
of the global minimum, i.e., the required tolerances on the engineering 
parameters which the variables represent. This kind of information aids the 
designer in his interactive decision-making. It is true that CRS requires 
more storage capacity than do some other global optimizers [for a function 
of n dimensions, CRS2 requires 10(n + 1) 2 floating point numbers], and 
this is the price paid for the additional information which CRS offers. But, 
as the cost and space requirements of storage media continue to fall, this 
is not likely to be a serious problem. Thirdly, CRS can be adapted readily 
for a parallel processing environment. Current research is concerned wi th  
the design of a hardware accelerator, based on concurrent processors, such 
as the INMOS transputer, which can be attached to a workstation. This 
accelerator, when driven by a concurrent version of CRS to be known as 
CCRS (concurrent CRS), could act as a fast optimizing engine. The intention 



JOTA: VOL. 55, NO. 1, OCTOBER 1987 135 

is to interface the accelerator with the workstation in such a way as to 
conceal it from the user, so that it becomes an integral part of the workstation. 

For the interactive user of a workstation, a disadvantage of the CRS 
algorithm is its slowness in the final stage of convergence. Having decided 
that the algorithm has attained the region of a global minimum, the user 
might wish to switch to a faster, local optimization algorithm for the final 
refinement of  the result. A new version of CRS2, to be known as CRS3, 
takes account of this need by building into the global optimizer a local 
optimization procedure. 

Section 2 summarizes the principal features of  the CRS2 version of  
CRS (CRS1, which requires more storage than CRS2, will not be discussed 
further). Section 3 describes the new version, CRS3, which extends CRS2 
by the addition of a local optimization procedure. The comparative perform- 
ances of  CRS2 and CRS3 are discussed in Section 4. In Section 5, the 
concurrent version CCRS of the sequential algorithm CRS3 is described. 
The performances of CRS3 and CCRS are compared in Section 6. 

2. CRS2 Algorithm 

Given a function of n variables, an initial search domain V is defined 
by specifying limits to each variable. A predetermined number N of trial 
points are chosen at random over V, consistent with the additional con- 
straints (if any). The function is evaluated at each trial and the position 
and function value corresponding to each point are stored in an array A. 
At each iteration, a new trial point P is selected randomly from a certain 
set of possible trial points. Provided that the position of P is within V and 
satisfies any additional constraints, the function is evaluated at P. The 
function value fe is compared with fM, M being the point which has the 
greatest function value of the N points presently stored in A. If fe <fu, 
then M is replaced in A by P. If either P fails to satisfy the constraints or 
fP > fw ,  then the trial is discarded and a fresh point is chosen from the 
potential trial set. As the algorithm proceeds, the current set of  N stored 
points tend to cluster around minima which are lower than the current value 
of fM. 

The CRS2 procedure achieves a reasonable compromise between the 
conflicting requirements of  search and convergence by defining the set of  
possible trial points in terms of  the configuration of the N points currently 
stored. At each iteration, n + 1 distinct points RI . . . .  , R~+I are chosen from 
the N, N >> n, in store. The point R1 is always chosen as that point L which 
has the least function value fL of  the stored points. The other n points are 
chosen at random from the remaining N - 1  points. These n +  1 points 
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constitute a simplex in n-space. The point R,+I is taken arbitrarily as the 
pole (designated vertex) of  the simplex, and the next trial point P is defined 
as the image point of the pole with respect to the centroid G of the other 
n points. Thus, 

P= 2 G -  R~+I, 

where the symbols represent the position vectors, in n-space, of the corre- 
sponding points. 

The number of potential trial points is n x N-~ C,. This number increases 
rapidly with n, provided that N >> n, and it is sufficient that N increase 
linearly with n. For a given value of n, the greater the value of N the more 
thorough the search and the higher the probability of  discovering a global 
minimum. On the other hand, the larger the value of  N the greater is the 
demand on computer storage and the slower the convergence of the 
algorithm. The appropriate choice of N is a matter of experience, and the 
empirical rule adopted by the author is to take N = 10(n + 1). Thus, the 
array A, which is the database for CRS2, requires a storage capacity of  
10(n + 1) 2 words. 

This algorithm is summarized below. The user is free to define his own 
stop criterion. A criterion based on a comparison of the worst and best 
function values (fM and fL) is used in the trials described in Section 4. For 
further details of  CRS2, and a discussion of  performance, the reader is 
referred to the earlier paper (Price, Ref. 2). 

CRS2 Algorithm 

Step 1. Choose N points at random over V. Evaluate the function at 
each point. Store the position and function value in A. 

Step 2. Find, in A, the worst point M with function value fM and the 
best point L with function value fL- 

Step 3. Choose randomly n distinct points R : , . . . ,  R~+t excluding L. 
Let R1 = L. Determine the centroid G of  points R 1 , . . . ,  R~. Compute the 
next trial point P = 2 G -  R~+I. 

Step 4. If P is within V and satisfies other constraints, then evaluate 
fp and go to Step 5; else, return to Step 3. 

Step 5. If re <fM, then replace 3/1 by P in A and go to Step 6; else, 
return to Step 3. 

Step 6. If  the stop criterion is satisfied, then stop; else, return to Step 2. 
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3. CRS3 Algorithm 

The CRS3 algorithm comprises the CRS2 algorithm together with a 
local optimization procedure called LOC. Because CRS2 is a nongradient 
algorithm based on the geometry of a simplex, it is appropriate to base 
LOC on the Nelder-Mead simplex algorithm (Ref. 5). The data required 
by this algorithm is explicitly available within the CRS2 database A. The 
n + 1 best points of A (the bottom one-tenth of the array when arranged in 
descending order of function value) constitute a simplex in n-space. Then 
modified form of the Nelder-Mead algorithm adopted for LOC operates 
on this simplex as shown below. 

CRS3 Algorithm 

Step t. Let W be the worst point of the simplex. Let G be the centroid 
of  the other n points. Let S be the second worst point of the simplex. 
Compute three potential trial points, 

P=2G-W, 

Q = (G + W)/2, 

R = 4 G - 3  W. 

Step 2. If  P fails to satisfy the contraints, then go to Step 4; else, 
evaluate the function at P. I ffp <f~, then go to Step 3; else, go to Step 4. 

Step 3. If  R fails to satisfy the contraints, then accept P as the 
replacement point and go to Step 5; else, evaluate the function at R. If 
fR <fs, then accept R as the replacement point and go to Step 5; else, 
accept P as the replacement point and go to Step 5. 

Step 4. If  Q fails to satisfy the constraints, then stop; else, evaluate 
the function at Q. I f fQ <fs, then accept Q as the replacement point and 
go to Step 5; else, stop. 

Step 5. Update the simplex by removing W and including the replace- 
ment point. Return to Step 1. 

The composite CRS3 algorithm is described below. 

Composite CRS3 Algorithm 

Step 1. Run CRS2 until either CRS attains the stop criterion, in which 
case stop, or CRS2 generates a new point which falls within the bottom 
one-tenth of the ordered array A, in which case go to Step 2. 

Step 2. Run LOC until LOC terminates; then, return to Step 1. 
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Two features of CRS3 should be noted. 
Firstly, LOC operates only on the bottom one-tenth of A, and thus has 

a minimal effect on the global search performance of the CRS2 phase, 
Because CRS2 involves the best point of A (which may be improved by 
LOC), such effect as exists tends to speed the convergence of the algorithm 
and thus to reduce, to a small degree, the global search capability. If desired, 
it is easy to counter this effect by not requiring that CRS2 should invariably 
include the best point. 

Secondly, LOC can operate at any stage of the CRS3 procedure. Hence, 
local optimization might occur around minima which later prove to be local, 
rather than global. The advantages of this feature are that it is entirely 
automatic (not requiring user intervention) and that it can provide the user 
with useful information concerning the progress of the search. However, 
CRS3 can be modified easily so as to permit the interactive user to switch 
LOC in or out as he chooses. He may then defer its use until he is satisfied 
that the global search phase is nearing completion. So as to be objective, 
the comparative trials described in Sections 4 and 6 made use of the CRS3 
algorithm as defined by Table 3. 

4. Comparative Performance of CRS2 and CRS3 Algorithms 

The concurrent version of CRS3, to be described in Section 5, is written 
in the concurrent programming language OCCAM. Hence, for consistency 
and to achieve a fair comparison of the various algorithms, CRS2 and CRS3 
have also been written in OCCAM. These programs were run on a VAX-11/730 
computer. 

The stop criterion used for CRS2 and for the CRS2 component of 
CRS3 was defined in terms of the worst point of the array (with function 
value fM) and the best point (with function value fL). When the convergence 
is such that 

fM/fL < 1.001 

the algorithm stops. This criterion is, of course, arbitrary and can be modified 
readily by the user. Indeed, the interactive user might well choose to 
terminate the procedure long before the built-in stop criterion is activated. 

Results are given for three problems. Two of these, Goldstein/Price 
and Shekel, are standard test problems for global optimization. The third, 
a problem involving contrained optimization, arises in the context of trans- 
former design and will be called Transformer. These problems are defined 
in the Appendix (Section 8). 
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Table  1. Resul t s  fo r  the  G o l d s t e i n / P r i c e  func t ion .  

CRS2 CRS3 

Global Final Global Final 
minimum convergence minimum convergence 

Min 480 484 86 274 
Av. 536 568 239 394 
Max 589 640 451 528 

For each problem, the same series of five different random sequences 
was used. The performances of CRS2 and CRS3 are compared in terms of 
the number of function evaluations required, both to achieve the global 
minimum and to achieve the stop criterion. The tables which follow show 
the minimum, average, and maximum numbers of evaluations over the 
series of five trials. 

The results for Goldstein/Price (Table 1) and for Shekel (Table 2) 
show that CRS3 is able to find the global minimum more quickly than 
CRS2 (by virtue of LOC), and hence tends to be somewhat faster in achieving 
final convergence. For CRS3, there is a significant difference between the 
minimum and maximum numbers of function evaluations, over the set of 
five trials, needed to find the global minimum. For some runs (and depending 
on the particular random sequence used), LOC is fortuitously placed to 
home in quickly on the global minimum, whereas for others it expends 
effort on minima which later prove to be local, rather than global. 

Table  2. Resul t s  for  the  Shekel  f unc t i on  wi th  m = 5, 7, 10. 

CRS2 CRS3 

Global Final Global Final 
minimum convergence minimum convergence 

Min 2460 2545 584 2175 m =  5 
Av. 2760 2815 1335 2635 m = 5 
Max 2988 3118 2217 3461 m =  5 

Min 2265 2348 186 1887 m = 7 
Av. 2408 2507 935 2148 m =  7 
Max 2755 2788 2564 2583 m =  7 

Min 2362 2463 193 t8t4 m =  10 
Av. 2876 2957 659 2165 m = 10 
Max 3445 3522 1411 2434 m =  10 



140 JOTA: VOL. 55, NO. 1, OCTOBER 1987 

Table 3. Results for the transformer function. 

CRS2 CRS3 

Within 4% Final Within 4% Final 
of optimum convergence of optimum convergence 

Min 3598 12607 1913 10719 
Av. 4088 13522 3234 11737 
Max 4429 14562 4765 12847 

Because it involves constrained optimization, Transformer poses certain 
difficulties. One way of preparing this problem so as to avoid the use of 
penalty functions has been described in a previous paper (Price, Ref. 2). 
In the present context, however, the intention is to minimize the amount 
of problem preparation required of the interactive user. Hence, the penalty 
function approach has been adopted. For the Transformer problem, it so 
happens that the global minimum lies on a constraint boundary. This makes 
it particularly difficult for LOC to operate effectively, even though the CRS2 
phase reaches readily the neighborhood of  the global minimum. In many 
engineering design applications (including transformer design), a high 
degree of  precision in the final result is not required. The results for 
Transformer (Table 3) indicate the number of function evaluations needed 
to approach within 4% of the global minimum. The interactive user might 
decide to stop the optimization at this stage. 

The conclusions to be drawn from the comparative results for this 
problem are similar to those of the two previous problems. Of the two 
sequential algorithms, CRS3 is preferable to CRS2. 

5. CCRS Algorithm 

A high proportion of the processing time involved in running a typical 
optimization procedure is spent in function evaluation. It is for this reason 
that comparisons between different procedures are normally based on the 
number of function evaluations required. For CRS, the amount of time 
involved in data transference, updating, and control increases linearly with 
the dimensionality n of the function to be optimized. In contrast, the time 
involved in generating and evaluating a new trial point increases at least 
polynomially with n. When optimizing complicated multi-dimensional func- 
tions, it is therefore advantageous to run a number of processes concurrently. 
One processor can control the input/output  communications and updating 
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of the database, while the remainder concentrates on trial generation and 
function evaluation. 

A concurrent processing structure appropriate to CCRS is shown in 
Fig. 1. Each rectangular block represents a discrete processor and intercom- 
munication is via high-speed serial channels. The INMOS transputer is 
designed for just such a role. However, the transputer can support a 
maximum of  four communication channels (each possibly bidirectional), 
and the architecture of  Fig. 1 reflects this contraint. Information from the 
database is transmitted down pipeline A, from which it may be copied, in 
passing, by any of the CRS2 processors. Each cell of this pipeline also 
stores the most recent information concerning the best point L of the data- 
base, and the value fM of the worst point. Information about new trials is 
sent from the CRS2 processors to the database via pipeline B. 

Each CRS2 processor runs three parallel processes: a cell of pipeline 
A, a cell of  pipeline B, and the process which generates, tests (constraints), 
and evaluates a trial point P. The processor contains a random number 
source which enables the generator to copy, in addition to L, a randomly 
chosen set of database points in transit down pipeline A. 

This random number source is seeded differently for each of the CRS2 
processors so that it is highly improbable that any two will generate the 
same trial point. Having evaluated fp, the processor compares this value 
with fM (copied from pipeline A) and then either rejects the trial or forwards 
the result down pipeline B. A further acceptance test is made by the database 
processor on entry because, as a result of pipeline delay, the current value 
offM in the database might be less than that value on which the generating 
processor's decision was based. 
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Fig. 1. A concurrent structure for the CCRS algorithm. 
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The processor devoted to LOC operates as described in Section 3. It 
waits until the database processor sends the relevant data; then, after each 
iteration, it returns a result to the database. The LOC process continues 
until the stop criterion is satisfied, after which the processor waits for a 
fresh set of  data. 

The database processor controls the input /output  communications and 
manages the updating procedure. The priorities which this processor 
attaches to each of the four communication channels are shown in Fig. 1: 
here, 1 is the highest priority and 4 the lowest. 

In principle, the upper  limit to the number  of  CRS2 processors which 
can run concurrently is determined by the ability of  the database controller 
to handle the data flows without bottlenecks occurring in the pipelines. 
However, this number  increases with n (for the reasons discussed above), 
and in practice the maximum number is likely to be set by economic 
considerations. For the series of  trials described in Section 6, ten CRS2 
processors were simulated, making a total or twelve for the complete CCRS 
structure. The choice of  ten was arbitrary: a hardware implementation would 
probably use a greater number  of processors. 

6. Comparative Performance of CRS3 and CCRS Algorithms 

The CCRS algorithm is written in OCCAM, thus permitting the concur- 
rent structure to be simulated on the VAX-11/730 computer. 

Results are given in Tables 4, 5, 6 for the same series of  test trials as 
was described in Section 4. The results for CRS3 are repeated for ease of 
comparison. The numbers of function evaluations quoted for CCRS are the 
sum totals for all ten CRS2 processors together with those evaluations 
performed by the LOC processor. 

These results suggest that, in terms of the numbers of function evalu- 
ations, the performance of  CCRS is statistically similar to that of  CRS3. 

Table 4. Results for the Goldstein/Price function. 

CRS3 CCRS 

Global Final Global Final 
minimum convergence minimum convergence 

Min 86 274 73 172 
Av. 239 394 325 433 
Max 451 528 580 685 
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T a b l e  5. R e s u l t s  fo r  t he  S h e k e l  f u n c t i o n  w i t h  ra = 5, 7, 10. 

CRS3 CCRS 

Global Final Global  Final 

minimum convergence minimum convergence 

Min 584 2t75 718 2392 m = 5 

Av. 1335 2635 1524 2796 m = 5 

Max 2217 3461 2501 3120 m = 5 

Min 186 1887 210 2045 m = 7 

Av. 935 2148 896 2286 m = 7 

Max 2564 2583 2722 2895 m = 7 

Min 193 1814 253 2078 m = 10 
Av. 659 2165 719 2426 m = t0  

Max 1411 2434 1090 2813 m = 10 

For Transformer, the agreement is remarkably close. It should be remem- 
bered that the dimensionalities of  Goldstein/Price, Shekel, and Transformer 
are respectively 2, 4, and 6. The benefits of  concurrency are likely to be 
more pronounced as the dimensionality increases. It is to be expected that 
CCRS would achieve about a tenfold improvement in speed if it were run 
on multi-processor hardware incorporating twelve processors (assuming, of 
course, that processing activity is dominated by trial generation and function 
evaluation). 

7. Conclusions 

For the interactive user of a CAD workstation, CRS3 and CCRS offer 
distinct advantages over CRS2. The CRS3 algorithm provides the user with 

T a b l e  6. R e s u l t s  fo r  the  t r a n s f o r m e r  func t i on .  

CRS3 CCRS 

Within 4% Final Within 4% Final 
of  opt imum convergence of opt imum convergence 

Min 1913 10719 1923 10033 

Av. 3234 11737 3307 11620 
Max 4765 12847 4965 15138 
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a local, as well as a global, search facility. The local optimization procedure 
can operate automatically, under control of  CRS2, or can be switched in 
under user control. Because CRS3 is a sequential algorithm, it will run on 
a conventional microcomputer. 

An optimizing accelerator, implemented in concurrent processing hard- 
ware, can be integrated with the workstation to achieve a significant improve- 
ment in speed. A concurrent version CCRS of  the CRS3 algorithm has been 
simulated on the VAX-1t/730 computer. The results of  this simulation 
suggest that the speed-up factor should increase linearly with the number 
of  discrete processors incorporated in the accelerator, provided that com- 
munication overheads are relatively insignificant. 

Note Added in Proof. Since this paper was written, a small prototype 
accelerator, involving five transputers, has been built and tested. This 
accelerator achieves the expected fourfold reduction in running time. 

8. Appendix: Test Functions 

Goldstein/Price Function. It is required to minimize 

f ( x l ,  x2) = [1 + (xl + x2+ 1)2(19-14xl + 3x~ - 14x2 + 6xlx2 + 3x~)] 

x [30+ (2x~ - 3x2)2(18 - 32x~ + 12x~ + 48x2-  36x~x2 + 27x~)]. 

The search domain is 

-2_<x~, x2_<2. 

There are four local minima. The global minimum occurs at (0, -1) .  

Shekel Function. It is required to minimize 

f (x )  = - ~ { 1 / [ ( x -  a , ) r ( x -  ai) + c/]}, 
i = 1  

x = ( x , , . . ,  x . )  ~, ai = ( a , , . . . ,  a,°) ~, c, > o. 

The search domain is 

0-<xi-< 10 , j = l , . . . , n .  

Three cases are considered, using the data from Table 7 with n = 4 and 
m = 5 ,  7, 10. 
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Table 7. Data for the Shekel function. 

i a i c i 

1 4 4 4 4 0.1 
2 1 1 I 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 
7 5 5 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 

Transformer  Function. This s ix-var iable  p r o b l e m  arises in connec t ion  
with t r ans fo rmer  des ign [Bal la rd ,  Jel inek,  and  Schinz inger  (Ref. 6)]. It is 
r equ i red  to min imize  

f = O.0204XlX4(Xl + x2 + x3) -~- 0.0187X2X3(X 1 q'- 1.57x 2 -k- X4) 

+ O.0607x~x4x~(xl + x2 + x3) + O.0437x2x3x~(x~ + 1.57x2 + x4), 

subject  to the  inequa l i ty  cons t ra in ts  

xi>-O, i = 1 , . . . , 6 ,  

XlX2X3X4X5X 6 - -  2.07 x 103 = f l  >- 0, 

1 - O.O0062XlX4Xs(X~ + x2 + x3) - O.O0058x2x3x6(xl + 1.57x2 + x4) =f2  -> 0. 

Using  the pena l t y  func t ion  technique ,  an objec t ive  funct ion  was def ined  by  

F = f +  {1000 min[0 , f l ]}2  + (1000 min[0,  f2]} 2 

and  was op t imized  wi thin  the search d o m a i n  

Xl~ • . . ~ X 6  ~ >  O .  
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