
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: VoL 55, No. 1, OCTOBER 1987

Global Optimization Algorithms
for a CAD Workstation ~

W. L. PRICE 2

Communicated by L. C. W. Dixon

Abstract. This paper describes two new versions of the controlled
random search procedure for global optimization (CRS). Designed
primarily to suit the user of a CAD workstation, these algorithms can
also be used effectively in other contexts. The first, known as CRS3,
speeds the final convergence of the optimization by combining a local
optimization algorithm with the global search procedure. The second,
called CCRS, is a concurrent version of C RS3. This algorithm is intended
to drive an optimizing accelerator, based on a concurrent processing
architecture, which can be attached to a workstation to achieve a
significant increase in speed. The results are given of comparative trials
which involve both unconstrained and constrained optimization.

Key Words. Numerical optimization, global search, nonlinear pro-
gramming, parallel processing, concurrent algorithms, computer-aided
design.

1. Introduction

Two versions, CRS1 and CRS2, o f the control led r andom search
procedure for global opt imizat ion (CRS) have been described in previous
papers (Price, Refs. 1 and 2). The CRS procedure is a simple, general
purpose algori thm which is direct (it does not involve gradients) and is
applicable to constra ined as well as to uncons t ra ined optimization. Because
the algori thm emphasizes global search, rather than speed of convergence,

This work was funded by the Science and Engineering Research Council.
Senior Research Fellow, Electronic Systems Engineering, School of Information Systems,
University of East Anglia, Norwich, England.

133
0022-3239/87/1000.0133505.00/0 © 1987 Plenum Publishing Corporation

134 JOTA: VOL. 55, NO. 1, OCTOBER 1987

it is somewhat slower than algorithms designed for local optimization.
However, the CRS algorithm is well suited to a parallel processing environ-
ment, giving the potential for a significant improvement in speed. Research
at the Hatfield Polytechnic into adapting CRS for the ICL-DAP has pro-
duced promising results [Ducksbury (Ref. 3) and Dixon, Patel, and
Ducksbury (Ref. 4)].

Rapid developments in computer technology have led to the increasing
use of desk-top microcomputers as workstations for computer-aided
engineering design. One of the CAD tools which the design engineer requires
is an optimizing engine. The present paper describes adaptations of the
CRS algorithm tailored specifically to the needs of the user of such a
workstation.

Within the CAD environment, the principal facilities offered by a
workstation are its immediacy of action and interaction together with
high-quality graphics. In order to take full advantage of these facilities, the
user needs to enter his problem, and to observe the results, as quickly and
simply as possible. He might wish to interact with the procedure, e.g.,
choosing to stop it when he judges the optimization to have proceeded
sufficiently far. He might then wish to restart the procedure with a change
of parameters or a fresh set of data, using the workstation as a "what if?"
design tool.

In this context, the CRS algorithm has certain advantages over many
other global optimization procedures. Firstly, it requires minimum prepar-
ation of the problem: because the algorithm does not involve derivatives,
only the function definition needs to be supplied. Secondly, the data in
store at each iteration (and available to the workstation via a dynamic
graphics display) provides the user with more information than merely the
current best point. This data shows the current modality (the number of
potential global minima being searched). The data also shows the sensitivity
of the global minimum, i.e., the required tolerances on the engineering
parameters which the variables represent. This kind of information aids the
designer in his interactive decision-making. It is true that CRS requires
more storage capacity than do some other global optimizers [for a function
of n dimensions, CRS2 requires 10(n + 1) 2 floating point numbers], and
this is the price paid for the additional information which CRS offers. But,
as the cost and space requirements of storage media continue to fall, this
is not likely to be a serious problem. Thirdly, CRS can be adapted readily
for a parallel processing environment. Current research is concerned wi th
the design of a hardware accelerator, based on concurrent processors, such
as the INMOS transputer, which can be attached to a workstation. This
accelerator, when driven by a concurrent version of CRS to be known as
CCRS (concurrent CRS), could act as a fast optimizing engine. The intention

JOTA: VOL. 55, NO. 1, OCTOBER 1987 135

is to interface the accelerator with the workstation in such a way as to
conceal it from the user, so that it becomes an integral part of the workstation.

For the interactive user of a workstation, a disadvantage of the CRS
algorithm is its slowness in the final stage of convergence. Having decided
that the algorithm has attained the region of a global minimum, the user
might wish to switch to a faster, local optimization algorithm for the final
refinement of the result. A new version of CRS2, to be known as CRS3,
takes account of this need by building into the global optimizer a local
optimization procedure.

Section 2 summarizes the principal features of the CRS2 version of
CRS (CRS1, which requires more storage than CRS2, will not be discussed
further). Section 3 describes the new version, CRS3, which extends CRS2
by the addition of a local optimization procedure. The comparative perform-
ances of CRS2 and CRS3 are discussed in Section 4. In Section 5, the
concurrent version CCRS of the sequential algorithm CRS3 is described.
The performances of CRS3 and CCRS are compared in Section 6.

2. CRS2 Algorithm

Given a function of n variables, an initial search domain V is defined
by specifying limits to each variable. A predetermined number N of trial
points are chosen at random over V, consistent with the additional con-
straints (if any). The function is evaluated at each trial and the position
and function value corresponding to each point are stored in an array A.
At each iteration, a new trial point P is selected randomly from a certain
set of possible trial points. Provided that the position of P is within V and
satisfies any additional constraints, the function is evaluated at P. The
function value fe is compared with fM, M being the point which has the
greatest function value of the N points presently stored in A. If fe <fu,
then M is replaced in A by P. If either P fails to satisfy the constraints or
fP > fw , then the trial is discarded and a fresh point is chosen from the
potential trial set. As the algorithm proceeds, the current set of N stored
points tend to cluster around minima which are lower than the current value
of fM.

The CRS2 procedure achieves a reasonable compromise between the
conflicting requirements of search and convergence by defining the set of
possible trial points in terms of the configuration of the N points currently
stored. At each iteration, n + 1 distinct points RI , R~+I are chosen from
the N, N >> n, in store. The point R1 is always chosen as that point L which
has the least function value fL of the stored points. The other n points are
chosen at random from the remaining N - 1 points. These n + 1 points

136 JOTA: VOL. 55, NO. 1, OCTOBER 1987

constitute a simplex in n-space. The point R,+I is taken arbitrarily as the
pole (designated vertex) of the simplex, and the next trial point P is defined
as the image point of the pole with respect to the centroid G of the other
n points. Thus,

P= 2 G - R~+I,

where the symbols represent the position vectors, in n-space, of the corre-
sponding points.

The number of potential trial points is n x N-~ C,. This number increases
rapidly with n, provided that N >> n, and it is sufficient that N increase
linearly with n. For a given value of n, the greater the value of N the more
thorough the search and the higher the probability of discovering a global
minimum. On the other hand, the larger the value of N the greater is the
demand on computer storage and the slower the convergence of the
algorithm. The appropriate choice of N is a matter of experience, and the
empirical rule adopted by the author is to take N = 10(n + 1). Thus, the
array A, which is the database for CRS2, requires a storage capacity of
10(n + 1) 2 words.

This algorithm is summarized below. The user is free to define his own
stop criterion. A criterion based on a comparison of the worst and best
function values (fM and fL) is used in the trials described in Section 4. For
further details of CRS2, and a discussion of performance, the reader is
referred to the earlier paper (Price, Ref. 2).

CRS2 Algorithm

Step 1. Choose N points at random over V. Evaluate the function at
each point. Store the position and function value in A.

Step 2. Find, in A, the worst point M with function value fM and the
best point L with function value fL-

Step 3. Choose randomly n distinct points R : , . . . , R~+t excluding L.
Let R1 = L. Determine the centroid G of points R 1 , . . . , R~. Compute the
next trial point P = 2 G - R~+I.

Step 4. If P is within V and satisfies other constraints, then evaluate
fp and go to Step 5; else, return to Step 3.

Step 5. If re <fM, then replace 3/1 by P in A and go to Step 6; else,
return to Step 3.

Step 6. If the stop criterion is satisfied, then stop; else, return to Step 2.

JOTA: VOL. 55, NO. 1, OCTOBER 1987 137

3. CRS3 Algorithm

The CRS3 algorithm comprises the CRS2 algorithm together with a
local optimization procedure called LOC. Because CRS2 is a nongradient
algorithm based on the geometry of a simplex, it is appropriate to base
LOC on the Nelder-Mead simplex algorithm (Ref. 5). The data required
by this algorithm is explicitly available within the CRS2 database A. The
n + 1 best points of A (the bottom one-tenth of the array when arranged in
descending order of function value) constitute a simplex in n-space. Then
modified form of the Nelder-Mead algorithm adopted for LOC operates
on this simplex as shown below.

CRS3 Algorithm

Step t. Let W be the worst point of the simplex. Let G be the centroid
of the other n points. Let S be the second worst point of the simplex.
Compute three potential trial points,

P=2G-W,

Q = (G + W)/2,

R = 4 G - 3 W.

Step 2. If P fails to satisfy the contraints, then go to Step 4; else,
evaluate the function at P. I ffp <f~, then go to Step 3; else, go to Step 4.

Step 3. If R fails to satisfy the contraints, then accept P as the
replacement point and go to Step 5; else, evaluate the function at R. If
fR <fs, then accept R as the replacement point and go to Step 5; else,
accept P as the replacement point and go to Step 5.

Step 4. If Q fails to satisfy the constraints, then stop; else, evaluate
the function at Q. I f fQ <fs, then accept Q as the replacement point and
go to Step 5; else, stop.

Step 5. Update the simplex by removing W and including the replace-
ment point. Return to Step 1.

The composite CRS3 algorithm is described below.

Composite CRS3 Algorithm

Step 1. Run CRS2 until either CRS attains the stop criterion, in which
case stop, or CRS2 generates a new point which falls within the bottom
one-tenth of the ordered array A, in which case go to Step 2.

Step 2. Run LOC until LOC terminates; then, return to Step 1.

138 JOTA: VOL. 55, NO. 1, OCTOBER 1987

Two features of CRS3 should be noted.
Firstly, LOC operates only on the bottom one-tenth of A, and thus has

a minimal effect on the global search performance of the CRS2 phase,
Because CRS2 involves the best point of A (which may be improved by
LOC), such effect as exists tends to speed the convergence of the algorithm
and thus to reduce, to a small degree, the global search capability. If desired,
it is easy to counter this effect by not requiring that CRS2 should invariably
include the best point.

Secondly, LOC can operate at any stage of the CRS3 procedure. Hence,
local optimization might occur around minima which later prove to be local,
rather than global. The advantages of this feature are that it is entirely
automatic (not requiring user intervention) and that it can provide the user
with useful information concerning the progress of the search. However,
CRS3 can be modified easily so as to permit the interactive user to switch
LOC in or out as he chooses. He may then defer its use until he is satisfied
that the global search phase is nearing completion. So as to be objective,
the comparative trials described in Sections 4 and 6 made use of the CRS3
algorithm as defined by Table 3.

4. Comparative Performance of CRS2 and CRS3 Algorithms

The concurrent version of CRS3, to be described in Section 5, is written
in the concurrent programming language OCCAM. Hence, for consistency
and to achieve a fair comparison of the various algorithms, CRS2 and CRS3
have also been written in OCCAM. These programs were run on a VAX-11/730
computer.

The stop criterion used for CRS2 and for the CRS2 component of
CRS3 was defined in terms of the worst point of the array (with function
value fM) and the best point (with function value fL). When the convergence
is such that

fM/fL < 1.001

the algorithm stops. This criterion is, of course, arbitrary and can be modified
readily by the user. Indeed, the interactive user might well choose to
terminate the procedure long before the built-in stop criterion is activated.

Results are given for three problems. Two of these, Goldstein/Price
and Shekel, are standard test problems for global optimization. The third,
a problem involving contrained optimization, arises in the context of trans-
former design and will be called Transformer. These problems are defined
in the Appendix (Section 8).

JOTA: VOL. 55, NO. 1, OCTOBER 1987 139

Table 1. Resul t s fo r the G o l d s t e i n / P r i c e func t ion .

CRS2 CRS3

Global Final Global Final
minimum convergence minimum convergence

Min 480 484 86 274
Av. 536 568 239 394
Max 589 640 451 528

For each problem, the same series of five different random sequences
was used. The performances of CRS2 and CRS3 are compared in terms of
the number of function evaluations required, both to achieve the global
minimum and to achieve the stop criterion. The tables which follow show
the minimum, average, and maximum numbers of evaluations over the
series of five trials.

The results for Goldstein/Price (Table 1) and for Shekel (Table 2)
show that CRS3 is able to find the global minimum more quickly than
CRS2 (by virtue of LOC), and hence tends to be somewhat faster in achieving
final convergence. For CRS3, there is a significant difference between the
minimum and maximum numbers of function evaluations, over the set of
five trials, needed to find the global minimum. For some runs (and depending
on the particular random sequence used), LOC is fortuitously placed to
home in quickly on the global minimum, whereas for others it expends
effort on minima which later prove to be local, rather than global.

Table 2. Resul t s for the Shekel f unc t i on wi th m = 5, 7, 10.

CRS2 CRS3

Global Final Global Final
minimum convergence minimum convergence

Min 2460 2545 584 2175 m = 5
Av. 2760 2815 1335 2635 m = 5
Max 2988 3118 2217 3461 m = 5

Min 2265 2348 186 1887 m = 7
Av. 2408 2507 935 2148 m = 7
Max 2755 2788 2564 2583 m = 7

Min 2362 2463 193 t8t4 m = 10
Av. 2876 2957 659 2165 m = 10
Max 3445 3522 1411 2434 m = 10

140 JOTA: VOL. 55, NO. 1, OCTOBER 1987

Table 3. Results for the transformer function.

CRS2 CRS3

Within 4% Final Within 4% Final
of optimum convergence of optimum convergence

Min 3598 12607 1913 10719
Av. 4088 13522 3234 11737
Max 4429 14562 4765 12847

Because it involves constrained optimization, Transformer poses certain
difficulties. One way of preparing this problem so as to avoid the use of
penalty functions has been described in a previous paper (Price, Ref. 2).
In the present context, however, the intention is to minimize the amount
of problem preparation required of the interactive user. Hence, the penalty
function approach has been adopted. For the Transformer problem, it so
happens that the global minimum lies on a constraint boundary. This makes
it particularly difficult for LOC to operate effectively, even though the CRS2
phase reaches readily the neighborhood of the global minimum. In many
engineering design applications (including transformer design), a high
degree of precision in the final result is not required. The results for
Transformer (Table 3) indicate the number of function evaluations needed
to approach within 4% of the global minimum. The interactive user might
decide to stop the optimization at this stage.

The conclusions to be drawn from the comparative results for this
problem are similar to those of the two previous problems. Of the two
sequential algorithms, CRS3 is preferable to CRS2.

5. CCRS Algorithm

A high proportion of the processing time involved in running a typical
optimization procedure is spent in function evaluation. It is for this reason
that comparisons between different procedures are normally based on the
number of function evaluations required. For CRS, the amount of time
involved in data transference, updating, and control increases linearly with
the dimensionality n of the function to be optimized. In contrast, the time
involved in generating and evaluating a new trial point increases at least
polynomially with n. When optimizing complicated multi-dimensional func-
tions, it is therefore advantageous to run a number of processes concurrently.
One processor can control the input/output communications and updating

JOTA: VOL. 55, NO. 1, OCTOBER 1987 141

of the database, while the remainder concentrates on trial generation and
function evaluation.

A concurrent processing structure appropriate to CCRS is shown in
Fig. 1. Each rectangular block represents a discrete processor and intercom-
munication is via high-speed serial channels. The INMOS transputer is
designed for just such a role. However, the transputer can support a
maximum of four communication channels (each possibly bidirectional),
and the architecture of Fig. 1 reflects this contraint. Information from the
database is transmitted down pipeline A, from which it may be copied, in
passing, by any of the CRS2 processors. Each cell of this pipeline also
stores the most recent information concerning the best point L of the data-
base, and the value fM of the worst point. Information about new trials is
sent from the CRS2 processors to the database via pipeline B.

Each CRS2 processor runs three parallel processes: a cell of pipeline
A, a cell of pipeline B, and the process which generates, tests (constraints),
and evaluates a trial point P. The processor contains a random number
source which enables the generator to copy, in addition to L, a randomly
chosen set of database points in transit down pipeline A.

This random number source is seeded differently for each of the CRS2
processors so that it is highly improbable that any two will generate the
same trial point. Having evaluated fp, the processor compares this value
with fM (copied from pipeline A) and then either rejects the trial or forwards
the result down pipeline B. A further acceptance test is made by the database
processor on entry because, as a result of pipeline delay, the current value
offM in the database might be less than that value on which the generating
processor's decision was based.

Local i
optimiscr I

out

d *~1 ~

o n ~,t'o

- 1

" data in

I
U S ~ / "

inpub/ou~.puf;

----'--71
piFeAI

pil~ B t

CRSP-/1

Fig. 1. A concurrent structure for the CCRS algorithm.

142 JOTA: VOL. 55, NO. 1, OCTOBER 1987

The processor devoted to LOC operates as described in Section 3. It
waits until the database processor sends the relevant data; then, after each
iteration, it returns a result to the database. The LOC process continues
until the stop criterion is satisfied, after which the processor waits for a
fresh set of data.

The database processor controls the input /output communications and
manages the updating procedure. The priorities which this processor
attaches to each of the four communication channels are shown in Fig. 1:
here, 1 is the highest priority and 4 the lowest.

In principle, the upper limit to the number of CRS2 processors which
can run concurrently is determined by the ability of the database controller
to handle the data flows without bottlenecks occurring in the pipelines.
However, this number increases with n (for the reasons discussed above),
and in practice the maximum number is likely to be set by economic
considerations. For the series of trials described in Section 6, ten CRS2
processors were simulated, making a total or twelve for the complete CCRS
structure. The choice of ten was arbitrary: a hardware implementation would
probably use a greater number of processors.

6. Comparative Performance of CRS3 and CCRS Algorithms

The CCRS algorithm is written in OCCAM, thus permitting the concur-
rent structure to be simulated on the VAX-11/730 computer.

Results are given in Tables 4, 5, 6 for the same series of test trials as
was described in Section 4. The results for CRS3 are repeated for ease of
comparison. The numbers of function evaluations quoted for CCRS are the
sum totals for all ten CRS2 processors together with those evaluations
performed by the LOC processor.

These results suggest that, in terms of the numbers of function evalu-
ations, the performance of CCRS is statistically similar to that of CRS3.

Table 4. Results for the Goldstein/Price function.

CRS3 CCRS

Global Final Global Final
minimum convergence minimum convergence

Min 86 274 73 172
Av. 239 394 325 433
Max 451 528 580 685

JOTA: VOL. 55, NO. 1, OCTOBER 1987 143

T a b l e 5. R e s u l t s fo r t he S h e k e l f u n c t i o n w i t h ra = 5, 7, 10.

CRS3 CCRS

Global Final Global Final

minimum convergence minimum convergence

Min 584 2t75 718 2392 m = 5

Av. 1335 2635 1524 2796 m = 5

Max 2217 3461 2501 3120 m = 5

Min 186 1887 210 2045 m = 7

Av. 935 2148 896 2286 m = 7

Max 2564 2583 2722 2895 m = 7

Min 193 1814 253 2078 m = 10
Av. 659 2165 719 2426 m = t0

Max 1411 2434 1090 2813 m = 10

For Transformer, the agreement is remarkably close. It should be remem-
bered that the dimensionalities of Goldstein/Price, Shekel, and Transformer
are respectively 2, 4, and 6. The benefits of concurrency are likely to be
more pronounced as the dimensionality increases. It is to be expected that
CCRS would achieve about a tenfold improvement in speed if it were run
on multi-processor hardware incorporating twelve processors (assuming, of
course, that processing activity is dominated by trial generation and function
evaluation).

7. Conclusions

For the interactive user of a CAD workstation, CRS3 and CCRS offer
distinct advantages over CRS2. The CRS3 algorithm provides the user with

T a b l e 6. R e s u l t s fo r the t r a n s f o r m e r func t i on .

CRS3 CCRS

Within 4% Final Within 4% Final
of opt imum convergence of opt imum convergence

Min 1913 10719 1923 10033

Av. 3234 11737 3307 11620
Max 4765 12847 4965 15138

144 JOTA: VOL. 55, NO. 1, OCTOBER 1987

a local, as well as a global, search facility. The local optimization procedure
can operate automatically, under control of CRS2, or can be switched in
under user control. Because CRS3 is a sequential algorithm, it will run on
a conventional microcomputer.

An optimizing accelerator, implemented in concurrent processing hard-
ware, can be integrated with the workstation to achieve a significant improve-
ment in speed. A concurrent version CCRS of the CRS3 algorithm has been
simulated on the VAX-1t/730 computer. The results of this simulation
suggest that the speed-up factor should increase linearly with the number
of discrete processors incorporated in the accelerator, provided that com-
munication overheads are relatively insignificant.

Note Added in Proof. Since this paper was written, a small prototype
accelerator, involving five transputers, has been built and tested. This
accelerator achieves the expected fourfold reduction in running time.

8. Appendix: Test Functions

Goldstein/Price Function. It is required to minimize

f (x l , x2) = [1 + (xl + x2+ 1)2(19-14xl + 3x~ - 14x2 + 6xlx2 + 3x~)]

x [30+ (2x~ - 3x2)2(18 - 32x~ + 12x~ + 48x2- 36x~x2 + 27x~)].

The search domain is

-2_<x~, x2_<2.

There are four local minima. The global minimum occurs at (0, -1) .

Shekel Function. It is required to minimize

f (x) = - ~ { 1 / [(x - a ,) r (x - ai) + c/]},
i = 1

x = (x , , . . , x .) ~, ai = (a , , . . . , a,°) ~, c, > o.

The search domain is

0-<xi-< 10 , j = l , . . . , n .

Three cases are considered, using the data from Table 7 with n = 4 and
m = 5 , 7, 10.

JOTA: VOL. 55, NO. 1, OCTOBER 1987 145

Table 7. Data for the Shekel function.

i a i c i

1 4 4 4 4 0.1
2 1 1 I 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

Transformer Function. This s ix-var iable p r o b l e m arises in connec t ion
with t r ans fo rmer des ign [Bal la rd , Jel inek, and Schinz inger (Ref. 6)]. It is
r equ i red to min imize

f = O.0204XlX4(Xl + x2 + x3) -~- 0.0187X2X3(X 1 q'- 1.57x 2 -k- X4)

+ O.0607x~x4x~(xl + x2 + x3) + O.0437x2x3x~(x~ + 1.57x2 + x4),

subject to the inequa l i ty cons t ra in ts

xi>-O, i = 1 , . . . , 6 ,

XlX2X3X4X5X 6 - - 2.07 x 103 = f l >- 0,

1 - O.O0062XlX4Xs(X~ + x2 + x3) - O.O0058x2x3x6(xl + 1.57x2 + x4) =f2 -> 0.

Using the pena l t y func t ion technique , an objec t ive funct ion was def ined by

F = f + {1000 min[0 , f l]}2 + (1000 min[0, f2]} 2

and was op t imized wi thin the search d o m a i n

Xl~ • . . ~ X 6 ~ > O .

R e f e r e n c e s

1. PRICE, W. L., A Controlled Random Search Procedure for Global Optimization,
Toward Global Optimization 2, Edited by L. C. W. Dixon and G. P. Szego,
North-Holland Publishing Company, Amsterdam, Holland, pp. 71-84, 1978.

2. PRICE, W. L., Global Optimization by Controlled Random Search, Journal of
Optimization Theory and Applications, Vol. 40, pp. 333-348, 1983.

3. DUCKSBURY, P. G., The Implementation of a Parallel Version of Price's (CRS)
Algorithm on an ICL-DAP, Hatfield Polytechnic, Technical Report No. 127, 1982.

146 JOTA: VOL. 55, NO. 1, OCTOBER 1987

4. DIXON, L. C. W., PATEL, K. D., and DUCKSBURY, P. G., Experience Running
Optimization Algorithms on Parallel Processing Systems, Hatfield Polytechnic,
Technical Report No. 138, 1983.

5. NELDER, J. A., and MEAD, R., A Simplex Method for Function Minimization,
Computer Journal, Vol. 7, pp. 308-313, 1965.

6. BALLARD, D. H., JELINEK, C. m., and SCHINZINGER, R., An Algorithm for the
Solution of Constrained Generalized Polynomial Programming Problems, Computer
Journal, Vol. 17, pp. 261-266, 1974.

