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Penalty-Proximal Methods in Convex Programming 

A.  A U S L E N D E R ,  l J .  P. C R O U Z E I X ,  2 A N D  P. F E D I T  3 

Communicated by O. L. Mangasarian 

Abstract. An implementable algorithm for constrained nonsmooth 
convex programs is given. This algorithm combines exterior penalty 
methods with the proximal method. In the case of a linear program, 
the convergence is finite. 
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1. Introduction 

Let f be a real-valued convex function defined on R N, not necessarily 
differentiable; and let C be a nonempty closed convex subset of  R N. We 
shall consider the convex program 

(P) a=inf(f(x)tx~C). (1) 

Methods given initially by Lemarechal (Refs. 1-2) and Wolfe (Ref. 3) 
for solving unconstrained problems have been extended to the constrained 
case by several authors [Mifflin (Ref. 4), Lemarechal, Strodiot, and Bihain 
(Ref. 5), and Kiwiel (Ref. 6)], especially when C is defined by 

C = {x: f / (x)  ~< 0, i =  1 , . . . ,  m}, (2) 

where f~ are convex real-valued functions defined on R N. 
The method that we propose here is related with a method given by 

Auslender in Ref. 7, where the author proposes a new class of algorithms 
for (P).  We refer to Ref. 7 for a discussion about the relations of these 
algorithms with the classical methods in convex optimization and with the 
proximal method studied by several authors [Martinet (Ref. 8), Rockafellar 
(Refs. 9-10), Fukushima (Ref. 11)]. 
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Let 2 be a fixed vector in R N, e > 0, and let h be a real-valued convex 
function defined on RN; consider the following optimization problem: 

(Q(~,h,g)) Find :~eRN: 

h(;)+½ll~-gtl=<~h(x)+½1lx-gll2+~, V x ~ R  ~. (3) 

The result that we shall use is the following: there exists an implement- 
able algorithm (Algorithm A) which computes in a finite number of steps 
such a point £; such an algorithm is described in Ref. 7. Let us denote this 
point by 

= A(~, 2, h). (4) 

Then, for solving Problem (P),  we shall combine Algorithm A with 
other methods. This idea was used already in Ref. 7 with the method of 
centers (Ref. 12). In this case, C is given by (2), and the minimizing sequence 
is obtained by the induction formula 

Xn+ 1 = A(e,, xn, m a x ( f ( - )  - f ( x , )  - 2 a n , f (  ")l i = 1 , . . . ,  m), 

where the sequence {~,} satisfies 

~. > 0, (5) 

co 

_< 1 (6) e n < q - o o ,  E . +  l ~ ~ e  n .  
n = 0  

The starting point x0 is taken in int(C), the interior of C; then, the whole 
sequence {x,} is in int(C). 

In this paper, we combine Algorithm A with exterior penalty methods, 
and we do this under weaker convergence assumptions. In particular, (6) 
is replaced by 

l i m e ,  = 0. (7) 
t l . ~ o o  

As in Ref. 7, we assume that f is inf-compact on C; that is, for each 
),, the set {x ~ C:f(x)~< A } is compact, but now we require no assumptions 
about the existence of  int(C),  and it is not necessary to have C defined by 
(2). We try to give minimal assumptions; in particular, the penalty functions 
d~. are functions satisfying the following conditions: 

(HI)  ~ .  is a real-valued convex function on R N, for all n ~ ~; 
(H2) O~dP.(x)<~dP.+l(x),VxeRN, Vne~;  
(H3) d~. (x) = 0, if x e C; l i m . ~  qb (x) = +oo. Vx ~ C. 
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Then, the proposed 
sequence {x,} such that 

f (x .+0  + alP. (x.+l) +½1Ix.+, - x .  II = 

<~f(x)+'~,,(x)+½llx-x,,ll2+e,,, V x e n  N, (8) 

starting from an arbitrary point Xo e R u. 
The computation of xn+l can be performed by Algorithm A, and in 

this case we have 

x.+. = A( e., x . , f  + dp.). (9) 

We must remark that such a kind of method was already given by Kaplan 
(Ref. 13). But his penalty functions are different from ours and not exterior; 
they have to satisfy the following conditions: 

l i m . ~  qb (x) = j'o, i fx~  intC, ( H * )  
t +co, i fx~  C; 

(H*) ~ . ( x ) ~ c > O ,  f o r x c O C = C \ i n t  C; 
(H*) dP.+l(x)<~d).(x),Vx~C. 

In fact, Kaplan has proved that, for n sufficiently large, x. ~ int C. 
When C is given by (2), it is easy to see that the classical exterior penalty 
function 

dP.(x)=k.  ~ [f+(x)] 2, (10) 
i = 1  

with a += max(a, 0), and the exact penalty function 

~b.(x) = k. ~ f+(x),  ( l l )  
i = l  

with 

0 <  k. ~< k.+l, lim k. = +c% (12) 
n ---~ c ~  

do not satisfy assumptions (H*), but satisfy assumptions (Hi). 
Furthermore, Kaplan supposes that int C # ;~, C is compact, f is 

differentiable, Y..~=0 e. < +0o, whereas we shall suppose that f is inf-compact 
and that {e.} satisfies only (5) and (7). Then, of course, the convergence 
tools are completely different from those used by Kaplan, but are also 
different from those introduced in Ref. 7 for the method of centers. 

We shall also give additional results under supplementary assumptions. 
More precisely, suppose additionally that: 

(i) Z.~=o,/~. < + ~ ;  (13) 

method consists in computing by induction a 
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(ii) a technical assumption (H), exposed in the next section (in 
particular, Slater's condition implies this assumption for the classical penalty 
method), holds. 

Then, we shall prove that the sequence {x,} converges to a single 
optimal point. 

Penalty methods are considered as ill conditioned, because the penalty 
parameter k, tends to infinity. In the exact penalty case, we shall overcome 
this default by limiting the parameter growth. 

Finally, we shall consider the case where (P) is a linear program; i.e., 
f (x)  = (c, x), and C is defined by 

C={x:(a~,x)<~bi, i= l ,2 , . . . ,m; (a~ ,x )=b i ,  i = m + l , . . . , r } .  (14) 

Here, (x, y) denotes the usual inner product in R u o f x  and y. Under Slater's 
condition, we shall prove in that case that the method converges in a finite 
number of  steps when: 

(i) e. =0,  Vn; (15) 
(ii) ~ ,  is the exact penalty function given by 

* ° ( x ) - - n  ~ [(ai, x)-bi]++ Y I(a,x)-b~ . (16) 
i = 1  i = m + l  

This can be considered as a promising result. Indeed, in this case, at each 
step n the problem to be solved can be transformed into a quadratic 
programming problem by introducing some artificial variables. Then, if one 
uses a finite quadratic method, the new algorithm will solve a linear program 
in a finite number of steps. The efficiency of the whole method will be 
dependent of course on the quadratic method employed. 

2. Theoretical Results 

Throughout the section, f is a real-valued convex function on R N, C 
is a closed nonempty convex subset of R N, (P) is the convex program defined 
by 

(P) ~ =inf(f(x)lx~ C). 

We assume that S, the set of optimal solutions of (P),  is compact and 
nonempty. This last assumption (Theorem 27.1, Ref. 14) is equivalent to 
requiring the inf-compactness of the function f with respect to C, that is, 
the compactness of the set {x~ C[f(x)<~A}, for all h ~R. 

Also, let {e,} be a sequence of nonnegative reals which converges to 
O, and let {~,} be a sequence of penalty functions satisfying assumptions 
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(H1), (H2), (H3). For the sake of simplicity, we set f ,  = f + @ , .  Then, we 
have the following lemma. 

Lemma 2.1. There exists fi such that, for each n/> fi, f ,  is inf-compact. 

Proof. For all n, define 

s .  = {x ~ R N I L ( x )  ~ 4}. 

From Theorem 27.1 of  Ref. 14, f ,  is inf-compact, if S, is a nonempty 
compact set. 

Assumptions (H1) to (H3) imply that S, is convex and closed, 

SCS.+ICS., for all n. 

Besides, 

s:f~s.. 
n 

By assumption, S is nonempty, so that it is enough to prove that Sn is 
bounded for n large enough. 

Assume for contradiction that S, is not bounded for all n. Let g be 
fixed in S and define, for all n, 

K , = { d ~ N I  IIdlt=l,g+td~S,, for all t>0}.  

Then, K,, is the set of points having norm one which belong to the recession 
cone of S,; K, is compact and nonempty, because S, is unbounded. On 
the other hand, 

K,+I C K, ,  for all n. 

This implies the existence of some d c •N such that d # 0 and d ~ (-'], K,.  
By definition of  K, and by virtue of the relation 

s=A.s~, 
g + td belongs to S for all positive t. This contradicts the boundedness of S. 

[] 

For the following, we shall denote as in Ref. 14 by prox(y[ f )  the point 
that minimizes on R N the mapping 

x ->f(x) +-~11 x - y  II = 

Consider now a sequence {x,} satisfying relation (8), and set 

y,  = prox(x,  tf~ )- 

Then, we have the following lemma. 

Lemma 2.2 

[[yp-xp+l[[<~2x/~p, for a l l p > 0 .  (17) 
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Proof. Set 

~ , (Y)  = L ( Y )  + ½ll Y - x, II 2 

Since ~p is uniformly strongly convex, the optimality conditions at yp, 
Proposition 6 of Ref. 10, and relation (8) imply that 

~11 x,+, -Yp 112 +'I'p (y~) <~ %(x~+1) ~< *p(yp) + ep, 

from which (17) follows. [] 

For all n I> ri and 6 > 0, define 

S ~ = { x e N N l f , ( x ) < - a + 6 } ,  S ° ~ = { x e C l f ( x ) < . a + 6 } .  

Then, S~ is convex and compact (Lemma 2.1) and, from assumptions (H1) 
to (H3), 

s c s~, s°2 = N s~. 
n 

Lemma 2.3. There exist reals M" satisfying 

n M8/> Ma > 0, for all n I> fi, 

such that 

(x*, x - y )  >t M~l lx -y l l ,  (18) 

for all x~: S'~, y e  S, x* e Ofp(x),p>~ n. 

Proof. Let z be the point where the line segment between x and y 
intersects the boundary of S~. Then, 

fp(z) = f ( z )  + ¢Pp(z) >~ f ( z )  + dp. (z) = a + & 

We consider the restriction of  f to the line passing through x and y. It 
results from the ditterentiability properties of convex functions of one real 
variable that 

a <~L(z) - f p ( y )  <-f'p(z, z - y )  <~f'p(x, z - y )  

= f~(x, x -y ) [ l l z -y l l / [ [x  -y[[] ,  

where f'v(a, d) denotes the one-sided directional derivative offp at a with 
respect to d. Hence, 

f'p(x, x - y )  >i MNllx -YlI, (19) 

where 

M~ =inf(a/Hy'-z '[I  [y' E S, z' E bd(S~)), 

where bd(S~) denotes the boundary of S~. 
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Since " n S~ C S~, and since S is strictly included in S~,~ then M~" 1> M~n > 0. 
Now, let y be fixed in S; and let Ep be the set of points where fp is 
differentiable. We have proved that (18) holds for all x c Ep. Let x ~ Ep and 
x* ~ ofp( x ). From Ref. 14, Theorem 25.6, there exist m, Ai > O, x*, x~ c Ep, i = 
1, 2 . . . . .  m, such that 

x* = ~ Aix*, x* = lim Vf(x~), 
i = 1  J - ~ ¢ ~  

x = !im x{, i = l , . . . m ,  ~ ,~.i = 1. 
j + o o  i = 1  

F o r j  large enough, since Sg is closed, x ~  Sg. Hence, from (18), 

(Vf (x j ) ,x [ -y )1>  " J m llx,-yll, 
and, passing to the limit, we obtain 

(x*, x - y )  >~ M~llx-YlI .  [] 

Theorem 2.1. The sequence {x ~} is bounded and all its limit points 
belong to S. 

Proof. (i) Set, for n >t if, 6 > 0, 

r,(8) = sup inf I lx-yll ,  
y~S~ x~S 

r~(8) = sup inf  l lx-y]l.  
ycS~ 

Observe that rn(6) [resp., r~(6)] is the Hausdorff distance between S 
and S~ [resp., S~]. Since 

s t = f 3  sL s = 0 s z  
l 6 > 0  

it follows that 

ro~(~) = lim r~(3), lim rco(6) = 0. 
l ~ c o  ~_~0 + 

Then, let us define 

T~ = { x 6 R N :  f ( x ) + C b . ( x ) ~  1 2 " ee + ~ r . ( 6 )  }, 

T~ = {x E C: f ( x )  <~ a + ½ro~(6)2}, 

~ n n oo oo co A ~ - S a w T a ,  A~ = S a u T e ;  

(20) 
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and let q,,(6) [resp., q~(6)] denote the Hausdortt distance between S and 
n oo A~[resp., As ], 

q.(6) = sup inf IIx-yI1, 
x~A~ x~S 

qoo(6) = su.p inf t lx-yll .  
yEA,~ xES 

From (20), it follows that 

T~ = 0 T~, 
l 

so that we have 

qoo(6) = lira q,(t~), liom + qo~(6)= 0. (21) 
I~oo 

Let p(n) >- n be such that 

ep(.) = max ej, 
j>n 

and set 

A~ "p = A~ + B(0, v ~ p ) ) ,  

where B(0, r) is the closed ball centered at 0 with radius r. Let q.,p(8) be 
the Hausdorff distance between the compact sets A~ 'p and S; then, 

q.,p(6) = sup inf I lx-yl l ;  
xEA~,p yES 

and, since 

lira ep¢~) = 0,  
I~oo 

we have from (21) that 

qoo(6) = lira q~.p~l)(6). (22) 
l-~oO 

Finally, set 

Ws,.=S+B(O,q.,p(.)(6)), Ws,~=S+B(O,q~(t~)). 

We shall prove that x, belongs to the compact set W~,. for p large enough. 
Then, letting first n--> +oo and next 3--> 0, we shall obtain Theorem 2.1 as 
a consequence of (22) and (21). 

(ii) We shall now prove that xp belongs to Ws,. forp large enough. Since 
n fi Ms1>Ms a n d l i m e p = 0 ,  

p->oo 

there exists i0 I> p(n) such that 
1 ( ~ , )  - M ~  < - ~ M ~ ,  Vp ~>/~. (23 )  

For the following, let p t> i0. 
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(a) If xp ~ S~, then, by definition of yp, 

f(yp)+dpp(yp)+½Hyp-xpI[z~f(x)+½llX-Xpll z, for all x c S ;  
consequently, since p/> n, 

l 2 f(y,,)+~°(y,,) <~f(y,,)+,t,,,(y,,)+½1ly,~ - x ,  tl 2<~ o~ +~r,,(8). 

By definition of T~, yp belongs to T~; and, by Lemma 2.2, it follows that 

xp+l ~ T~ + B(0, X/~p)). (24) 

(b) If xp ~ S~ and yp ~ S~, apply Lemma 2.2. Then, 

xp+~ ~ S~ + B(O, x/-~p) ). (25) 

(c) If xp ~ S~ and yp ~ S~, by definition of yp one has 

x p - y p e @ ( y p ) .  

Apply Lemma 2.3. Then, 

(xp-yi , ,yp-y)>~M'~l lyp-yl l  , fo r a l l ye  s. 

It follows straightforwardly that, for all y ~ S, 

(xp - y, y, - y) >~ M~ll yp - yll + ll y p -  ytl 2, 

IIx, -Ylt 11Yp -Yll ~> Mill yp - Yll + Il Yp - Yll ~, 

IIx.-yll ~> M~+ HYp-Yll- 

Apply Lemma 2.2 and (23). Then, 

IIx,,+~-yll<~llx,,-ylt+~(2~)-ML fora l ly~ S, 

[[xp+~-y[[ < [Ixp-Yll 1 fi - sM~,  for all y e S. (26) 

(d) We have already seen that the theorem will be established if we 
prove that xp belongs to W~,n for p large enough. For this, we shall prove 
the following: 

(dl) the existence of some integer p such that xp ~ W~,,; 
(d2) xp ~ W~., ~ xp+l e W~,,. 

Let us introduce 

K = {p~>p: xp~ S~ and yp ~ S~}, 

K ~ = { p ~ p :  p ~ K } .  

Observe that 

A~ '~("~ C Ws... 

From the definition of K ~ and relations (24) and (25), we have 

xp+~A'~'PCA~"(")C W~,,,, Vpa  K ~. (27) 
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Furthermore, it follows from (26) that K c is infinite; hence, (dl) is proved. 
On the other hand, we see from (27) that (d2) is valid for p e KC; for p e K, 
this is a consequence of (26), since 

d(Xp+l, S) < d(xp, S) <~ q,,,1,~,o( 6 ), 

where d(x, S) denotes the distance of x to S. [] 

Remark 2.1. It can be seen easily that Theorem 2.1 remains true when 
replacing in the formula (8) the regularizing function k l l x - x . l l  2 by 
(1/2c.)11x- x," 112, with 

0 < c ,  ~ c~< +oo, 

subject to 

lim c,'E, = 0, 
, ' -+o~ 

which is satisfied in particular when coo<+oo. 
Now, we shall give two supplementary conditions in order to obtain 

the convergence of the whole sequence {x,'} to an unique optimal point. 
The first condition is 

oo 

E (28) 
, ' = 0  

A counterexample given by Rockafellar in (Re£ 10) for an uncon- 
strained problem shows that this condition is necessary for obtaining the 
convergence of {x.}. 

The second condition concerns the choice of the penalty functions ~ . .  
We assume that, for each convex program (P) defined as in the introduction, 
there exists a positive constant L and a sequence {k.} of positive reals 
(depending only on f, C, qb), such that 

1 / V ' ~ <  + ~ ,  (29) 
, ' = 0  

ot <~f(y*) + L /k , ,  (30) 

where y* minimizes f + ~ ,  on R N, that is, 

f(y*,)+cb,,(y*)<~f(y)+dp,,(y),  V y e R  N. (31) 

This assumption is satisfied, for example, for the classical penalty function 
given by (10) when C is given by (2) and when the Slater's condition is 
satisfied. This is a consequence of formula (8.11) of Theorem 8.3 of Ref. 
15, L= (5/4)11~112, where fi is a Kuhn-Tucker multiplier, k," = n 2+°, with 
0>0 .  
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Theorem 2.2. Under the above assumptions, the sequence {x,} conver- 
ges to an optimal solution. 

Proof. (a) Let 37~R N, and consider the following optimization 
problem: 

(P (y ) )  ~ =min(F(x)lx~ C), 
where 

F(x)=f(x)+½llx-)7tl 2, Vx~R  N. (32) 

Let y.(37) be the point that minimizes F + ~ .  on RN; and let y*(37) be the 
point that minimizes F on C. From (30), there exists a constant L()7) and 
a sequence {k.(37)} such that 

F( y*( 37) ) <~ F(y.(  37) ) + L(37)/ k.(37). (33) 

Now, since qb.(y*()7))=0 and since F is strongly convex, the necessary 
optimality conditions for minimizing F + q b .  on R N give 

F(  y*(37)/> F ( y .  (37)) + 1 II Y*(37) - Yn ( ) 7) [I 2. 

Combining this inequality with (33), we obtain 

II Y*(37) - Y, (37)]1 <~ ~/[2 L( )7)/kn ( )7)]. (34) 

(b) Now, we choose )7 in the optimal set S. Then, observing that in 
this case 37 minimizes F on C, we conclude that y*(37)=37, so that (34) 
becomes 

11 37 - Y. ( 3 7) l/<~ v/[2L( 37)/k. ( 37)1- (35) 

Furthermore, taking the notation given before Lemma 2.2, we observe that 

y. = prox(x. If.), Y. (37) = prox(371f.); 

and then, since the mapping prox(. If.) is nonexpansive (page 340, Ref. 
14), we obtain 

lly. - y . ( f i ) l l  <~ 1137- x.  II. (36) 
Finally, we have 

IlX,+l- 3711 ~< IIx°+~ -Y ,  II + I[ Yn - Y .  (37)11 + 11 y.  (37) -3711. 
Using Lemma 2.2, (28), (29), (35), and (36), this gives 

IIx,+,-3711<~llx,-)TIl+o,, with 0 , > 0 ,  ~ 0 , < + ~ .  (37) 
n=l 

(c) The end of the proof  is now classical (see, for example, the proof 
of Theorem 1 of Ref. 10). Relations (37) imply, for each )7 ~ S, the existence 
of 

lim fix. - 37I[ =/x ()7) < +c~. 
n~co 
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We have then to show that there cannot be more than one cluster point of 
{x,}. Suppose that there are two, Yl # Y2. Then, from Theorem 2.1, Yl, Y2 
belong to S and 

llxn --Y1112 --llxn -y2112 = - 2 ( x , ,  Yl -Y2) + Ily1112- I1 y2ll 2. 

Passing to the limit, we obtain, respectively, 

a =/z  (y l )2- /z (y2)  2= - 2 ( y l ,  Y l - y 2 ) +  [I y, II 2 -  II y2ll 2= - [ l y l - y = l l  2 

= -2(y2 ,  Yl-Y=)+ 11 y,[I 2 -  II y211= = +ll y~-y21l 2, 

so that y~ = Y2. F] 

We now give some additional properties for exact penalty functions. 
Suppose that C is defined by 

C = { x : f ( x ) ~ O ,  i--- 1 , 2 , . . . ,  m; (a,, x ) =  b~, i =  r e + l , . . . ,  r}. 

Theorem 2.3. Suppose that the following regularity assumptions hold: 

(a) the vectors a~, i = m + 1 , . . . ,  r, are linearly independent; 
(b) there exists ~ such that 

(a~,~)=bi ,  V i = m + l  . . . .  ,r, f ( ~ ) < O ,  V i = l , 2 , . . . , m .  

Consider the classical exact penalty function ~ ,  (x) = k, Cb(x), with 

~ ( x ) =  ~ f,+(x)+ Z I(a.x)-b,t, 
i = 1  i = m + l  

0~< k.  ~< kn+l, l im k . =  +oo.  
r l ~ o o  

Suppose that 

4(E°) < +co. 
n = O  

Then, 

(i) there exists n* such that, for n i> n*, we have y. ~ C, and the 
sequences {y.}, {xn} converge to an unique optimal solution; 

(ii) i f f ( x ) = ( c , x ) , f ( x ) = ( a ~ , x ) - b i ,  and if e. =0,  for each n, then 
the algorithm gives an optimal solution in a finite number of steps. 
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Proof. (i) Denote by (p, q} the set of  integers included in [p, q], 
and set 

I(x) = {i ~ (1, m): f ( x  )=O} u { i ~ (m + l, r): ( al, x) = bi}, 

I_(x) = {i ~ (1, m): f ( x )  < 0}. 

(a) Let us prove that y.  ~ C, for n large enough. In the contrary case, 
from Lemma 2.2 and Theorem 2.1, there would exist y* ~ S, x* s S, a non- 
empty constant set I C l(y*), and subsequences {y.,}, {x.,}, such that: 

y* = lira y.,, x* = lim x.,; 
1 ~ o o  I ~ o z  

f ( y . ) > 0 ,  ic(1, m)c~I; (a~,y.,)-bi¢O, i ~ ( m + l , r ) n I ;  

f ( y . ) ~ < 0 ,  ic(1, m}c~P; (a~.y.)-b~=O, i~(rn+t,r}nI¢; 

here, U is the complementary set of I in (1, r). Set 

I~=Ic~(1, m}, I2=Ic~(rn+l,r), 

I3=UnI_(y*),  I4=UnI (y*)n (1 ,  m), I s=Un(m+l , r ) .  

For l large enough, observe first that 

f ( y . , )  <0 ,  forieI_(y*); 

then, the necessary optimality conditions at y., imply the existence of  reals 

hT'~[O, l ] ,  /x" ~ [ - 1 , 1 ] ,  ~ :~{1 , - I} ,  

and vectors 

d"'~of(y.~), cT'~Of(yn,), 

such that 

0 = d  '+(y,,-x. ,)+k,,  c7'+ 2 ai~,+ 2 h~'c; '+ Y. tx~ a, (38) 
i I i ~ t 2  i E l a  i ~ l s  

Referring to local boundedness and upper semicontinuity of  subditterentials, 
without loss of generality we can suppose that there exist 

/xi c [ - 1 ,  1], d~Of(y*), ci~ofi(y*), Xi~ [0, 1], 

such that 

A~ = l i m  h~', 
t---~ cO 

- nf /xi = hm/xl  , d = lim d ~', c~ = lim c7'. 
l--+oO 1--~oO l~*zO 

Then, if we divide both sides of  (38) by k~, and take the limit, we obtain 

0=  5~ ci+ ~ ai~i+ Y~ h~ci+ ~ /xia;. (39) 
i E [  I i c l 2  i ~ l n  i ~ l  5 
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Let us prove now that this equality yields a contradiction with the 
regularity assumptions. Since E and y* belong to C, ! C I(y*), and since f 
is convex, we obtain, when taking the inner product of both members of 
(39) with E - y ,  

0=  ~ (c,,E-y*)+ ~ Ai(ci, E-y*)<~ ~ f ( E ) +  ~ A~(E). 
i E l  I i ~ l  4 i c l  I i ~ l  4 

Recall now that 11 w 12 is nonempty; there are two possibilities: 

(al)  11#Q or 1 1 = ~  and a i>0 ,  for some ic14; then, the second 
member of the last inequality is strictly negative, which is impossible; 

(a2) 1t = Q and ;t~ = 0, Vi c 14; then, 12 # O and 

ai#~+ E rea l=0 ,  
i ~ I 2  i~15 

which is impossible, since a~ are linearly independent and ~i ~ O. 
(b) Let 6(-]C) the indicator function of  C, that is, 

6 (x lC)=0 ,  ifx~C, 

6(x lC)=+oo  , ifx~C. 

Then, from part (a), it follows that 

y, = prox(x, l f +  6(. [C)). (40) 

Since by Lemma 2,2 

I ly.-x.+,l l  ~ < ~ ,  (41) 

the convergence of the whole sequence {y,} is a consequence of Theorem 
1 of Ref. 10, and the sequence {x,} converges to the same point by (41). 

(ii) Suppose now that E,=0,  for each n, and that f , f  are affine 
functions. Then, from (40), we have 

x,+l = prox(x, l f +  6(. ]C)), 

and the announced result is a consequence of Proposition 8 of Ref. 10. 
[] 

Remark 2.2. As said in Remark 2.1 for Theorem 2.1, the regularizing 
function (1 /2) l lx-  x. [I 2 can be multiplied by a controlling parameter 1/c~; 
the condition 

c o  

E 4(~.c.) < +oo 
n = l  

ensures the validity of Theorem 2.3. 
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From a practical point of  view, penalty methods such as (10) and (11) 
tend to be ill conditioned when the penalty parameter k, tends to infinity. 
However, in the case of  the exact penalty method, this can be remedied. 
In all that follows, ~b denotes the penalty function of Theorem 2.3. Let us 
begin with some preliminary remarks. 

Remark 2.3. For k I> 0, let A(k) be the optimal set of the optimization 
problem 

(P(k)) inf(f(x)+kek(x): x~RN). 

Let {e.} be a sequence of positive numbers verifying 

, / (E . )  < +oc. 
n = l  

Starting from an arbitrary point xo, let 

y. = p r o x ( x . l f +  kcb), 

and let x._~ be such that 

f (x .+ l )  + kqS(Xn+l) + ½llX.+l - x. I[ 2 <~f(x) + k~(x) +½1Ix - x. 112+ ~.. 

As in Lemma 2.2, 

112,+1-y,[12~< 2E,. 

Applying Theorem 1 of Ref. 10, it follows that: 

(a) the sequence {x,} is bounded iff A(k) ¢ Q; 
(b) if A(k) ~ 0, the sequence {x,} converges to a point of A(k). 

Lemma 2.1 implies the existence of some /~>0 such that, for all 
k/>/q f +  k~b is inf-compact and A(k) is nonempty. On the other hand, there 

A 

exists (Ref. 16) k ~  > k such that 
A 

A(k)=S, for alI k~> k. 
A 

It follows that, if one replaces, in Theorem 2.3, k, by min(k,,  k), then the 
sequence {x,} remains convergent and converges to a point of S. 

Unfortunately,/~ is not known. For this reason, we shall design a new 
algorithm where the penalty parameter remains constant after a finite 
number of  steps. For this algorithm, we suppose that either C is compact, 
and we take /~ = 0, or/~ is a value such that f+/~q~ is inf-compact. 

Algorithm A1. Let y e ]0, ½ [be fixed. Starting from ko =/~, the sequence 
{k,} is generated as follows: 

k.+l = 2k. + 1, if .4.[ ~t > ~(1/2)--'y t l l k X n ]  On--1 , 

k,+l = k,, otherwise. 
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Theorem 2.4. Suppose that the regularity assumptions (a) and (b) of 
Theorem 2.3 hold and the sequence {e.} verifies 

n=l  

Then: 

(a) there exists k* and no such that k* = k .Vn >t no; 
(b) the sequence {x.} converges to a point of $. 

Proof. (a) Suppose for contradiction that (a) is false. Then, k. -~ oo. 
By Theorem 2.3, y. ~ C for n large enough, and the sequences {x.} a n d  
{y.} converge to the same optimal solution x*~ C. Since & is convex, & is 
locally Lipschitzian and there is a neighborhood V of  x* and L >  0 such that 

16(u)-,~(u')l~Lllu-,'lt, Vu, u'~ V. 

On the other hand, there is n* such that x, ~ V and y,,_~ ~ V• C for all 
n/> n*. But then, ~b(y,-O = O; and, from Lemma 2.1, it follows that 

0 ~ ~b (x,,) ~< LII y._~ - x. II ~< L ~ , ) .  

Since e. -~ O, 

~1/2--y 4 , ( x . ) >  ~°-~ , 

for n large enough, which leads to a contradiction. 
(b) Now, for n large enough, k, = k*, and $ (x , )  -~ O. We shall distin- 

guish two cases. 
(bl)  C = {x/& (x) <~ O} is compact. Since $ is convex, it is inf-compact. 

Hence, {x, } is bounded and, from Remark 2.3, converges to some x* ~ A(k*). 
Since $ ( x , ) ~ 0 ,  then &(x*)=0 .  It follows that x*~ S. 

(b2) The function f + / ~ b  is inf-compact. Since k * ~  >/~, then f +  k*~b 
is also inf-compact. It follows from Remark 2.3 that {x,} converges to some 
x* ~ A(k*).  Proceed as above. [] 

Remark 2.4. It remains to determine/~ when C is not compact. This 
is trivial when f is inf-compact; in this case, /~ can be taken equal to 0. 
Another easy case is when f is bounded from below; then, any /~> 0 is 
suitable. Indeed, there i s /~> 0 such that f + / ~ b  is inf-compact. Let {z,} be 
a sequence such that 11 z .  II -~ +~o, then, 

f ( z , )  + Ic6(z,,)'-) oo. 

Since f is bounded from below, then 

either f ( z . ) -*  +oo or ~b(z.)--> +co. 
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In both cases, 

f(z,)+kcb(zn)-+oo, for all k > 0 .  

Thus, f +  k~b is inf-compact for all k > 0. 

Remark 2.5. The idea of  controlling the growth of the penalty pa- 
rameter is not new; .see, for example, Kiwiel (Refs. 17 and 18). One can 
try to replace the test 

,~(1/2)--/ 
¢ ( x ° )  > . . _~  

by 

¢(xo)>a.(x.), 

where 6n(x,) is a value related to Algorithm A. Such a kind of test has 
already been used in another framework by Auslender (Ref. 7) for the 
method of centers and by Kiwiel (Refs. 17 and 18) for the penalty method. 
Notice also that, in Kiwiel, the penalty parameter stays constant after a 
finite number of steps. 

Remark 2.6. Under the Slater condition, the solution set B of  the dual 
problem of  (P) is known to be compact. Consider, for simplicity, a problem 
with only inequality constraints, and let 

ks = min[llu[l~: u e B]. 

Then, Proposition 1 of Ref. 16 says that 

A(k)=S, f o r k > k s .  

If ks is not too large, it is reasonable to think that k* in Theorem 2.4 is 
close to ks, so that the function f +  k*& is not ill conditioned. 

3. Computational Efficiency 

In this discussion, we consider only the exact penalty method 
(Theorems 2,3 and 2.4), for which we can expect a good computational 
efficiency. For simplicity, we suppose that we have only inequality con- 
straints. 

3.1. In Theorem 2.4, we have given a rule for controlling the parameter 
k,,  and there is a large class of  problems for which one can expect a good 
computational behavior. Another reason for thinking that the penalty aspect 
would not trouble the behavior of the method is suggested by an algorithm 
given by Mangasarian (Ref. 19) for linear programs. 
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Consider the linear program 

(P) min[(c,x): Ax>~b]. 

Mangasarian has pointed out that there exists g > 0 such that, for e ~ ]0, g[, 
the perturbed quadratic program 

(P(e)) min[(e/2)]lxl lZ+(c,x):  ax>~b] 

has a unique solution if, not dependent on E, which solves (P). 
Taking the dual of (P), he obtains 

(Q(e)) max[(b, u)- (1 /2e)]]A 'u-c]]2:  u ~ 0 ] .  

Then, he notices that Q(e) is exactly the exterior penalty problem associated 
to the dual linear program (Q). 

(Q) max[(b, u): a 'u  = c, u~>0], 

with the penalty parameter c~ = l / e .  Usual results on exterior penalty 
methods require that a-~ +co. Sharper results taking advantage of the 
linearity of the problem require merely that 

a/> ~, for some ~ > O. 

Mangasarian gives an algorithm for solving (Q(e)) which, under Slater's 
condition, generates a sequence {u,(e)} having cluster points. Let u(E) be 
such a point; then, u(e) is an optimal solution of (Q(E)) and 

Y~ = (1 /e ) [A 'u (e )  - c]. 

Notice that the sequences {u,(~)} and u(E) depend on e ~ ]0, g[, but g is 
unknown. 

A common feature appears in Mangasarian's method and ours. 
Mangasarian uses the Tikonov method to regularize the objective function, 
whereas we use the proximal method. But, in Theorem 2.4, we are able to 
determine k*, whereas this is not done for g. It seems that the conditioning 
of both methods is equivalent. Since the Mangasarian method has a good 
computational behavior, we have then confidence that our method is efficient 
as well. 

3.2. Augmented Lagrangian methods have been introduced to avoid 
the numerical instability of the classical penalty method. The usual aug- 
mented Lagrangian is defined by 

~, , +  f 2 y , f ~ ( x ) + ( c / 2 ) f ~ ( x )  2, ify,+cf~(x)~0, 
L(x, y, c) = y t x )  ~_(1/2c)y~,  ifyi + c f (x )  ~ O. 
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Multiplier methods compute sequences {xk}, {yk} via  the formulas 

x k+~ = arg rain L(x, yk, Ck), (42) 

y~+I=max(O,y~+ckf~(xk+l)), i = l , 2 , . . . , m ,  (43) 

0< Ck ,~ c~<~ + oe. (44) 

The efficiency of such methods has been improved by Rockafellar, who 
regularizes the function L by introducing the proximal method (Refs. 9-20). 
The function L in (42) is replaced by Fk, where 

Fk(X, yk, Ck) = gCx, yk, Ck) + Oz~/2ck)llx_ x,,ll2. 
In Ref. 9, /x = t; the multiplier /z was introduced in Ref. 20 to restore 
flexibility. Indeed, numerical experiments have disclosed that, for /x = 1, 
the proximal method moves rather slowly in the initial steps by comparison 
with the usual multiplier method, despite its ultimate convergence proper- 
ties. Rockafellar explains in Ref. 19 that, "when ck is too low, the quadratic 
term in Fk dominates and does not allow the Lagrangian term to have a 
strong enough effect in the selection of x k+l. On the other hand, when Ck 
is tOO high, the penalty aspects of the augmented Lagrangian are too strong 
and the prime advantage over penalty methods gets lost." We do not need 
to introduce the parameter/z to restore flexibility, since the sequences {k,} 
and {c,} are independent. A penalty aspect exists in Theorem 2.4, but there 
is no reason to believe that this aspect would be worse than for the augmented 
Lagrangian, so that, if kB defined in Remark 2.6 is small, one can hope that 
our method is competitive. 

Stopping rules for the proximal method need the computation of 
dist(0, oFk(Xk÷~)). Such a computation is easy for ditterentiable functions; 
actually, Rockafellar assumes that functions f are of this kind. Such an 
assumption is not needed for Algorithm A (Ref. 7). Besides, no result of 
finite convergence for linear programs is given for the proximal point 
algorithms (Refs. 9-20). Such a result exists only for the multiplier method 
and the primal proximal minimization problem (Ref. 9). Finally, notice 
that, if Rockafellar obtains, under the assumptions of Theorem 2.4, the 
convergence both in primal and dual problems, in counterpart, in our 
method, k~ becomes constant after a finite number of steps. 

3.3. Finally, the efficiency of the method would depend on Algorithm 
A and on the size of the parameter k*. For Problems (P), in which k* is 
not too high, the method would not be ill-conditioned. Concerning the 
efficiency of Algorithm A, for the general case we think that the algorithm 
described in Ref. 7 is efficient [this algorithm is close in spirit to the classical 
methods given as a subroutine for obtaining a descent direction in non- 
smooth optimization (bundle, aggregate methods)]. Nevertheless, it can be 
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improved and replaced by other ones. In the linear case, we have at each 
iteration to minimize on R N a function 

x ( c ,  x )  + ½ 1 t x  - xo  [ I 2 +  • • • 

+k° [(ai, x)-bi]++ 2 I ( a i ,  x ) - b i l  . 
i ~ l  i = m + I  

Efficiency finite algorithms could give a finite algorithm competitive with 
the simplex method or with the method given by Mangasarian (Ref. 19), 
in particular when k* is small. 

References 

1. LEMARECHAL, C., An Extension of Davidon Methods to Nondifferentiable Prob- 
lems, Mathematical Programming Study, Vol. 3, pp. 93-109, 1975. 

2. LEMARECHAL, C., Bundle Methods in Nonsmooth Optimization, Nonsmooth 
Optimization, Edited by C. Lemarechal and R. Mifflin, Pergamon Press, Oxford, 
England, 1978. 

3. WOLFE, P., A Method of Conjugate Subgradients for Minimizing Nondifferentiable 
Functions, Mathematical Programming Study, Vol. 3, pp. 145-173, 1975. 

4. MIFFLIN, R., A Superlinearly Convergent Algorithm for One-Dimensional Con- 
strained Minimization Problems with Convex Functions, Mathematics of 
Operations Research, Vol. 8, pp. 185-195, 1983. 

5. LEMARECHAL, C., STRODIOT, J. J., and BIHAIN, A., On a Bundle Algorithm 
for Nonsmooth Optimization, Nonlinear Programming 4, Edited by O. 
Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, 
New York, pp. 246-282, 1981. 

6. KIWIEL, K. C., An Algorithm for Linearly Constrained Convex Nondifferentiabte 
Minimization Problems, Journal of Mathematical Analysis and Applications, 
Vol. 105, pp. 446-452, 1985. 

7. AUSLENDER, A., Numerical Methods for Nondifferentiable Convex Optimization, 
Mathematical Programming Study, Vol. 30, pp. 102-127, 1987. 

8. MARTINET, B., Regularization d'Indgalit~s Variationnelles par Approximations 
Successives, Revue Frangaise de Recherche Operationnelle, Vol. 3, pp. 154-159, 
1970. 

9. ROCKAFELLAR, R. T., Augmented Lagrangians and Applications of the Proximal 
Point Algorithm in Convex Programming, Mathematics of Operations Research, 
Vol. 4, pp. 97-116, 1976. 

10. ROCKAFELLAR, R. T., Monotone Operators and the Proximal Point Algorithm, 
SIAM Journal on Control and Optimization, Vol. 14, pp. 877-898, 1976. 

11. FUKUSHIMA, M., A Descent Algorithm for Nonsmooth Convex Programming, 
Mathematical Programming, Vol. 30, pp. 163-175, 1984. 

12. HUARD, P., Programmation Mathematique Convexe, Revue d'Informatique et 
de Recherche Operationnelle, Vol. 7, pp. 43-59, 1968. 



JOTA: VOL. 55, NO. 1, OCTOBER 1987 21 

13. KAPLAN, A. A., On Convex Programming with Internal Regularization, Soviet 
Mathematics, Doklady Akademii Nauk, Vol. 19, pp. 795-799, 1975. 

14. ROCKAFELLAR, R. T., Convex Analysis, Princeton University Press, Princeton, 
New Jersey, 1970. 

15. PCHENITCHNY, B., and DANILINE, Y., Mdthodes Numdriques dans les Prob- 
t~mes d'Extremums, MIR, Moscow, USSR, 1977. 

16. BERTSEKAS, D. P., Necessary and Sufficient Conditions for a Penalty Method to 
Be Exact, Mathematical Programming, Vol. 9, pp. 87-100, 1975. 

17. KIWIEL, K, C., Descent Methods for Constrained Nonsmooth Optimization, 
Abstracts of the IIASA Meeting on Nonditterentiable Optimization, Sopron, 
Hungary, 1984. 

18. KlWlEL, K. C., An Exact Penalty Function Algorithm .[or Nonsmooth Convex 
Minimization Problems, INA Journal of Numerical Analysis, Vol. 5, pp. 111-119, 
1985. 

t9. MANGASARIAN, O, L., Iterative Solution of Linear Programs, SIAM Journal 
on Numerical Analysis, Vol. 18, pp. 606-614, 1981. 

20. ROCKAFELLAR, R. T., Monotone Operators and Augmented Lagrangian 
Methods, Nonlinear Programming 3, Edited by O. Mangasarian, R. R. Meyer, 
and S. M. Robinson, Academic Press, New York, New York, pp. 1-15, 1978. 


