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Abstract. This paper introduces lower subgradients as a generalization 
of subgradients. The properties and characterization of boundedly lower 
subdifferentiable functions are explored. A cutting plane algorithm is 
introduced for the minimization of a boundedly lower subdifferentiable 
function subject to linear constraints. Its convergence is proven and the 
relation is discussed with the well-known Kelley method for convex 
programming problems. As an example of application, the minimization 
of the maximum of a finite number of concave-convex composite 
functions is outlined. 
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1. Introduction 

One of  the earliest methods for nonlinear optimization was the cutting 
plane method of Kelley (Ref. 1) and Cheney and Goldstein (ReL 2). At 
each iteration of this algorithm, a linear program is solved obtained by the 
linearization of  the nonlinear function(s) defining the problem. The exact- 
ness and convergence of  these algorithms were only ensured for convex 
functions. It  is indeed only possible to construct linear lower approximating 
functions at each point when the source function is convex. 

However,  when a minimization problem is concerned, the only points 
of  interest are those where the objective function is less than the values 
observed previously. Based on this idea, the notion of lower subdifferential 
functions arises naturally as those functions that can be approximated 

1 The author thanks the referees for several constructive remarks. 
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below, on the set of  these points of  interest, by a linear function. It appears 
that this class of  functions is strictly larger than the class of  convex functions. 

In Sections 2 and 3, the characterization of  this class and the properties 
with respect to some operators are studied. Section 4 discusses a cutting 
plane method for the minimization of a boundedly lower subdifferentiable 
function subject to linear constraints. Kelley's cutting plane method (Ref. 
1) may be viewed as a special case of  our method when the objective is 
convex and all constraints are linear. 

In Section 5, we indicate some possible applications for our method. 
Section 6 suggests future work concerning the extension of our cutting plane 
method to problems with nonlinear constraints. 

2. Lower Subdifferentiability 

A real-valued function f defined on K C E"  is called subdifferentiable 
at the point x c K if there exists a vector x°c  E n such that, for any y E K, 
we have 

(y - x, x °) + f ( x )  <-f(y). (1) 

In this case, x ° is a subgradient o f f  at x, and the set of  all such vectors is 
the subdifferential o f f  at x, denoted by Of(x). 

If  f admits a subgradient at any point of  K, it is convex on K. 
The theory Of subgradients is well known, and Rockafellar (Ref. 3) 

gives a thorough treatment of  the subject. We extent this notion as follows. 
The function f is lower subdifferentiable at x on K C E ~ if there exists 

a vector x ° such that (1) holds for any y 6 K with f ( y )  < f ( x ) .  We will then 
call x ° a lower subgradient of f at x on K and denote the set of  all these 
by o- f  (x). A function is lower subdifferentiable (lsd) on K C E n if it admits 
at least one lower subgradient at each point of  K. 

Note the semiglobal character of lower subgradients. Their definition 
involves all points of  lo.wer functional value. This is similar to the global 
character of  e-subgradients (see, e.g., Hiriart-Urruty, Ref. 4). Other general- 
ized subgradients, as introduced by Clarke (Ref. 5) and Rockafellar (Ref. 
6), are of  local character. Therefore, there does not seem to be a close 
conversely, as the real function 141/2 shows. The class of  lsd functions is in 

It is clear that any convex function is lsd, since of (x)CO-f (x) ,  but not 
converse!y, as the real function txt u2 shows. The class of  lsd functions is in 
fact strictly enclosed between quasiconvex functions and convex functions. 

A function f is quasiconvex on K when all level sets 

S~ = {x ~ K I f (x)  <- c} 

are convex (Mangasarian, Ref. 7). 
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Theorem 2.1. I f  K is convex and closed, then every lsd function on 
K is quasiconvex and lower semicontinuous on K. 

Proof. I f  Sc is void, it is convex. I f  not, then, for any y ~ K outside 
So, we can choose a lower subgradient yO for f at y. Set 

dy = c - f ( y ) ,  

and let 

H - ( y )  = Ix  l(x - y, yO) < dy}. 

Then, y ~ H - ( y ) ;  and, for any x ~ S~, we have 

f ( x )  -<- c < f ( y ) ,  

and so 

(x - y, yO} -<. f ( x )  - f ( y )  <--- d r. 

This shows that Sc is the intersection of the closed convex sets H - ( y )  A K, 
where y ranges over K\Sc .  Hence, Sc is both closed and convex. [] 

There exist continuous quasiconvex functions that are not lsd; for 
example,  the function - ( 1 - x 2 )  ~/2, x ~ [ - l ,  i], and zero elsewhere is not 
lower subditterentiable at 1 nor at -1 .  

We say that f is boundedly lower subdifferentiable (blsd) on K, if, at 
each point of  K, there exists a lower subgradient o f f  of  norm not exceeding 
a constant N, which will be called the blsd-bound of f 

Theorem 2.2. Every btsd f u n c t i o n f  on K is a Lipschitz function on K. 

Proof. It is sufficient to consider two points x and y with different 
function values, and without loss of  generality we may suppose f ( x )  < f ( y ) .  
There then exists, by the blsd property o f f  at y, a vector y0, with tty°H _< N,  
such that 

0 < f ( y )  - f ( x )  <-- (y - x, yO} < ]lY - xll- N, 

which proves the theorem. 

Theorem2.3. Every quasiconvex function f on E ~ satisfying 
Lipschitz condition with constant N is blsd on E n with blsd-bound N. 

Proof. Let a be a point of En. Then, the strict level set 

[] 

a 

S = {x I f ( x )  < f ( a ) }  
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is convex due to the quasiconvexity of  f (see Ponstein, Ref. 8). Since f is 
Lipschitz, it is continuous, and S is an open convex set not containing a. 
There then exists a separating hyperplane for a and S: there exists u °, with 
tlu°ll = 1, s u c h  that, for any x in S, 

( x - a ,  u°) <0 .  

Set a ° = Nu °. We proceed to show that a ° ~ o- f  (a). Since []a°[[ = N, this will 
terminate the proof. 

For any x in S, call x '  the orthogonal projection of x on the hyperplane 

(z - a, a °} = 0. 

Then x '  lies outside S, or 

f (x ' )  >--f(a); 

furthermore, 

(a  - x ,  a°> = I l x - x ' l l "  tla°ll = Xllx-x'll. 

Thus, we have 

f(a) - f (x)  <-f(x') - f(x)  <- NIIx-x'll = <a - x ,  a°>, 

showing that a ° is a lower subgradient of  f at x. [] 

It follows that, for functions with domain E n, blsd is equivalent to 

being quasiconvex and Lipschitz. 
This easy characterization of blsd functions is unfortunately not true 

for a general domain K. The following function is indeed a counterexample. 
Define K = [ -1 ,  1] x E ;  and, for any i e N, call Pi the point (0, 3i). For 

any a = (al,  a2) ~ K, define ia as the integer part  of  a2/3. Denote by d~ the 
Euclidean distance of a and Pio. Consider now, if a2-> 0, 

{ i~+1, i f d ~ <  1, 

g ( a ) =  i~+d~, if 1 ~ d~<-2, 

i , + 2 ,  i f d ~ > 2 ,  

and by symmetry 

g ( a b  a2) = g(ab -a2). 

It is easy to see that g : K ~ E is quasiconvex, and the verification that 
g is Lipschitz with constant 1 is straightforward. Furthermore, this function 
possesses no quasiconvex extension to E 2, since for any m ~ N the level sets 
Sm cannot be convexly increased: for example,  at the points (1, 3(m - 1)), 
the only line of  support  to Sm is vertical! It will follow from Theorem 2.4 
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below, by taking the restriction of g to [ -1 ,  1] x[0, 6], that g then cannot 
be blsd on K. 

When f is one-dimensional, however, it is easy to see that Theorem 
2.3 is true for any K C E. 

Theorem 2.4. Let f :  K C E n-> E be bounded above. Then, f is blsd 
on K if and only if there exists a quasiconvex Lipschitz function g : E n --> E 
extending f 

Proof. If  such a g exists, it is btsd on E ~ by Theorem 2.3 ; hence, any 
restriction of g is also blsd on its domain. 

Inversely, l e t f b e  blsd on K with blsd-bound N, such that for all x ~ K, 
f ( x )  <- M. For each x e K and x ° ~ O-f (x) ,  with Nx°t] -< N, define the function 

g~,0: t?," -> E : y ~ m i n { f ( x ) , f ( x ) + ( y  - x ,  x°)}. 

Then, gx, xo is quasiconvex and bounded above by f ( x ) .  
Since f is bounded above on K, the function 

g : E "  -~ E :y  ~ sup{gx, xo(y) Ix ~ K, x ° ~ 0 ~ ( x ) ,  tlx°tl <- N }  

is defined everywhere. One easily sees that g extends f. Furthermore g, 
being a pointwise supremum of quasiconvex functions, is quasiconvex. In 
order to terminate the proof, it only remains to be shown that g is Lipschitz. 

Cons iderany  y, z e E ~, with g(y)  < g(z) .  Let us first suppose that, for 
some x~  K, we have g ( z ) = f ( x ) .  Then, there exists a x ° ~ O - f ( x ) ,  with 
Ilx°l[ ~ N, such that 

( z - x ,  x°)-> O; 

and, since g ( y ) < f ( x ) ,  

(y - x ,  x°) < 0. 

By definition of g, 

g(y)  ~ f ( x )  + (y - x, x°). 

Hence, 

g( z)  - g ( y )  = f ( x )  - g(y )  <-- (x  - y, x°). 

Let now t be the orthogonal projection of  y on the hyperplane Hx with 
equation 

(u -x~ x °} = 0 ;  
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and let s be the point of  intersection of Hx with the line segment joining z 
and y. We then have 

( x - y ,  x ° ) = ( t - y ,  x °) = t l t - y I l ,  llx°ll, 

IIt-yll ~ lls-yll-< llz-yll. 

Hence, 

g ( z )  - g ( y )  <- (x  - y ,  x °} = lit -Y[I" IIx°ll -< N .  IIz -y l l .  

In the case where g ( z ) # f ( x )  for all x ~ K, then, for every e > 0, there 
exists x ~  K and x ° ~ O - f ( x ) ,  with Hx°ll---N, such that 

0 <- g ( z )  - ( f ( x )  + ( z  - x, x°))  < E. 

However, 

g ( y )  > . f ( x )  + (y - x, x°}, 

and thus 

g ( z )  - g ( y )  < f ( x )  + (z  - x, x °) + E - f ( x )  - (y  - x, x °) 

= (z - y ,  x°}+ • 

<-}Iz-Yll" IIx°ll + "  

< - N I I z - Y l I + ' .  

Since e is arbitrary, we must have 

g ( z ) - g ( y ) < -  N I I z - Y l l ,  

and g is Lipschitz with constant N. [] 

By continuity, this result applies 'to any blsd function with compact  
domain. It remains an open problem whether the theorem is valid for 
unbounded blsd functions on unbounded domains. 

3. Properties and Examples 

Theorem 3.1. The lower subdifferential o - f  (a )  of f at a is a closed 
convex set. For any h-> 1 and any a°~cg - f (a ) ,  one has a h a ° ~ O - f ( a ) .  

0 c 0 - f ( a  ) if and only if a is a global minimum o f f  and then O-f  (a)  = E n. 

Proof. The proof  is straightforward. [] 

Since any lsd function f is quasiconvex, any strict local minimum of  
f is a global minimum (see Ponstein, Ref. 8). In order to obtain equivalence 
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of local and global minima, the lsd property has to be strengthened to strict 
lsd, where (1) holds for all y with f ( y ) < - f ( x ) .  

Theorem 3.2. If  for each i E I the function f is lsd on K, and if for 
any x~  K the supremum g(x)  o f f ( x )  over I is reached, then g is lsd on 
K. If a l l f  are blsd with blsd-bound Li, and if the Liare  uniformly bounded 
above by L, then g is blsd with blsd-bound L. 

Proof. The proof  is straightforward but requires explicitly that each 
supremum is reached. That this hypothesis is necessary is shown by the 
following counterexample. [23 

Let I = No, the set of  positive natural numbers, and define f : E -~ E by 

2 \1 /2  

0, elsewhere. 

All these f are blsd on E. Their supremum is, however, the example cited 
above of  a quasiconvex function which is not lsd. 

The following counterexample shows that all hypotheses of the second 
part are mandatory. Let I = E~-, the set of positive real numbers, and define 
f : E + - ~  E, where E + denotes the nonnegative reals, by 

i -1 /2X,  X <-- i, 

f i ( x )  = i l /2  ' X >  i. 

Every f is blsd on E + with blsd-bound i -1/2. However, 

max{fii(x) [ i ~ I} = x ~/2, 

and this function is not blsd. 

Theorem 3.3. If  f is lsd on K and g is lsd and nondecreasing on 
f ( K ) C E ,  then the composite function g o f  is lsd on K and 

O-(g o f ) ( x )  D {A°x° I A°~ O-g( f (x )  ), x ° ~ o - f  (x)}. 

If they are both btsd, then g o f is blsd. 

Proof. Let x be a point in K and x°~ a - f  (x). If f ( x )  is a minimum 
of g, then x is also a minimum of g o f ;  thus, for any a ° ~ O - g ( f ( x ) ) =  E", 
we have 

A°x°c O-(g o f ) ( x )  = E n. 
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Otherwise, let ; t°e O - g ( f ( x ) )  and y c E be such that 

g(y )  < g ( f ( x ) ) .  

But then, we have 

)tO(y - f ( x ) )  <- g ( y )  - g ( f ( x ) )  < O. 

Since g is nondecreasing, y < f ( x ) ,  which shows that ) ,°> 0. 
Now, let z ~ K satisfy 

g ° f ( z ) < g o f ( x ) .  

Since g is nondecreasing, this implies 

f ( z )  < f ( x ) ,  

and we have both 

)t ° ( f ( z )  - f ( x ) )  + g ( f ( x ) )  <- g ( f ( z ) )  

and 

(z - x, x °) <-- f ( z )  - f ( x ) .  

Since h ° >  0, it follows that 

(z - x, A°x °) + g ( f ( x ) )  <-- )t ° ( f (z)  - f ( x ) )  + g ( f ( x ) )  <-- g( f (z ) ) ,  

showing that A °x° ~ a - (g  o f ) ( x ) .  
The second part is now straightforward. E] 

In order to simplify the statement of  some of  the next theorems, we 
introduce the following notations. 

Suppose A = (A ~ , . . . ,  h e) 6 E k and, for each i = 1 , . . . ,  k, x ~ 6 E ~,. Then, 
X = ( x l , . . . , x k ) ~ E  ", with n=Y~=~ hi. We denote by [ ) t ,X]  the vector 
( ) t lXl , . . . , ) tkxk)  of  E". I f  A C E  k and B C E " ,  then 

[a ,  B] = {[)t, X]] h ~ E k, X ~ E"}.  

Theorem 3.4. I f  h : K C Ek ~ E is lsd and nondecreasing and, for each 
i = l ,  . . ,  k, f : K i C E n ~ E  is convex and subdifferentiable, and 
F :  [I~=1K~--> E k denotes the set theoretical product 1-I~=lf, then qb = h o F 
is lsd on 

L -- F -1 K~) f') K 
i 
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and, for X ~ L, one has 

k 

O-oh(X) D[o-h(F(X)) ,  [I Of(x')]. 
i=1 

Moreover, if h is blsd and all f are convex and blsd, then q~ is blsd. 

Proof. F o r a n y X ~ L ,  w e h a v e f ( x i ) c K ~ a n d F ( X ) e K .  Hence, there 
exists A°~ o-h( F( X)  ) and x ° ~ Of(x~), i= 1 , . . . ,  k. Since h is nondecreasing, 
an analogous argument as was used in the foregoing proof  shows that )t o -> 0, 
i = l , . . . , k .  

Let now Z ~ L, with ~ ( Z )  < qb(X). Then , since x ° E Of(x ~) and A o_  0, 
and since A°Eo-h(F(X))  and h(F(Z) )< h(F(X)) ,  we have 

k 

(z,  [~t °, x° ] )  = E ; 0 ( / ,  x °) 
i=1 

k 

-< E A,((x,° ' x,)+f~(~° ' ) - f , ( x ' ) )  
i=1 

= (x ,  [A °, X ° ] ) + ( F ( Z )  - F ( X ) ,  x °) 

-< (X, [A °, X°]) + h(F(Z))  - h(F(X))  

= ( x ,  [;t °, x ° ] ) +  + ( z )  - q , ( x ) .  

Hence, [A °, X °] c O-di,(X). 
The second part is immediate. [] 

Theorem3.5. I f f : K C E " + E  i s l s d a n d  T : E m + E  ~ is linear, then 
f o  T: T - I ( K ) C E m + E  is lsd; and we have, for any x with T(x )~K,  

o-( fo  T)(x) D T*(O-f(T(x))), 

where T* denotes the dual linear function of T. I f f  is blsd with blsd-bound 
N, then f o T is blsd with bound N .  U T][. 

Proof. Let x ~ E  m, with T(x)~K,  and suppose x°~O-f(T(x)).  For 
any y ~ T - I ( K ) ,  with f (T(y) )  < f (T(x)) ,  we have, on account of the defini- 
tion of T*, that 

( T*(x°), y - x)= (x °, T ( y -  x)) 

= (x °, T(y) - T(x)) 

<-f(T(y)) - f ( T ( x ) ) ,  



4 6  J O T A :  VOL.  46, N O .  l ,  M A Y  1985 

showing that T*(x °) e O ( foT) (x ) .  If Itx°ll ~ N, then 

tl T*(x°)I] <- I1T*II" Jlx°tl <- II TII" N. 

For the properties of T* and II TH, see Yosida, Ref. 9. D 

Corollary 3.1. If h : K  C E k-> E is lsd and nondecreasing and if, for 
each i = 1 , . . . ,  k, f~ : Ki C E n - E is convex and subdifferentiable, then the 
function defined by G(x) = h( f l (x ) , . . .  , fk(x)) is lsd on 

M={xei~= K i l ( f , ( x ) , . . . , f k ( x ) ) e K  }" 

I fx  ~ M, x°i e o- f  (x), for i = 1, . . . ,  k, and A ° e o-h( f l ( x ) , . . .  , fk(x)), we have 

k 

A~x~eo G(x). 0 0 - -  

i = l  

If, furthermore, h and all j~ are blsd, then G is blsd. 

Proof. We have 

G = h o F o A  

in the following diagram: 

A F k h 
E" E ---~E ---, (E~)k  ~ 

x ~ (x, . . . , x )  -~, ( f , ( x ) , . . . , f k ( x ) )  ~ G(x) ;  

or, using the notations of  Theorem 3.4, 

G = @ o A ,  

where q~ is lsd. A being linear, Theorem 3.5 applies, showing that a-G(x)  D 
A*(0-@(x)). One easily sees that A* is nothing but the sum operator 

k 

F . : ( E " ) k ~  E": (y~ , . . . ,Yk)  ~ Y~ Yi. 

Combining with the results of Theorem 3.4, one obtains the desired result. 
[] 

As with general quasiconvex functions, the class of  lsd functions is not 
closed under addition (see, e.g., Greenberg and Pierskalla, Ref. 10). 

The following examples show that no general relation seems to exist 
between pseudoconvexity and lsd. The function x 3 is lsd on every interval 
that is bounded below. If  the interval contains 0, then the function is not 
pseudoconvex (Mangasarian, Ref. 7). The function x + x 3 is pseudoconvex 
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on E but nowhere lsd on E. However, any function defined on E" which 
is Lipshitz and pseudoconvex is blsd, since, for any x, we then have 

N" Vf(x)/IIVf(x) N • o- f  (x). 

Every convex function is lsd on its domain, since Of(x)CO-f(x). In 
order to be blsd, it is sufficient that subgradients of bounded norm exist 
everywhere on the domain. Hence, by Rockafellar (Ref. 3, p. 237), every 
convex function is btsd on any compact subset of  its domain. 

Let K by any interval of E with minimum value m, and let f :  K ~ E 
be concave and nondecreasing. Then, f is lsd on K, since, for any a • K, 

( f ( m ) - f ( a ) ) / ( m -  a) • a-f(a) and O-f (m) = g. 

If  the one-sided derivative o f f  at m exists (<+oo),  then f is btsd on K. 
An application of this result is as follows. Suppose f :  K C E"  -~ E is 

r-convex (Avriel, Ref. 11) and bounded below on the compact K by the 
value m; then, f is blsd on K. Indeed, f is r-convex if and only if exp(rf) 
is convex (see Avriel, Ref. 11) or if f =  r -~ log(g), where g is convex. By 
the foregoing, both log and g are blsd on their respective domains. It follows 
from Theorem 3.3 t h a t f  is blsd on K. In order to calculate lower subgradients 
of f, it is, however, necessary to know a value for m. 

4. Minimizing a BLSD Function under Linear Constraints 

Let f be any real-valued function defined on E n that is blsd on K, a 
compact polynomial set in E ~. We develop an algorithm that constructs a 
sequence of  points in K such that any accumulation point is an optimal 
solution to the problem 

min{f(x) l x e K}. (2) 

Our algorithm is of the general cutting plane type, as defined by Eaves and 
Zangwill (Ref. 12). Other well-known cutting plane algorithms, those of 
Kelley (Ref. 1), Cheney and Goldstein (Ref. 2), and Veinott (Ref. 13) fail 
to solve our problem, since they require the objective function to be convex. 
Indeed, the problem of  minimizing f under convex or quasiconvex con- 
straints is transformed into the problem of  minimizing t under the same 
constraints and the additional constraint 

f(x)-t<--O. 

This last constraint defines a convex set if and only if f is 'convex. This 
shows that the device cannot be applied to our problem, since the objective 
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may be nonconvex. The relation between our cutting plane method and 
Kelley's method will be discussed further at the end of the present section. 

The algorithm is as follows. Let N be a blsd-bound o f f  on K. Let xo 
be any point in K. Choose any x°~O-f(xo), with Ilxo°ll <-N, and solve the 
following linear program for j = 0: 

(Pj+I) min t, 

s.t. t>- (x -xk ,  X°k)+f(xk), k : 0 , . . .  ,j, 

x E K .  

The compactness of  K ensures the existence of an optimal solution 
(tj+~, xj+~), since (Pj+O is equivalent to the minimization of  the continuous 
function 

max{(x - Xk, X °) + f(Xk)l k = 0 , . . . ,  j}. 

Choose again a x°+lco-f(xj+,), with ][x°+~H <- N, and solve (Pj+,) after 
increasing j by one. 

Each program (Pj+~) is identical to (Pj), except for one additional 
constraint: the cut which cuts off the point (tj, x~), if xj was not optimal. 
Thus, the sequence (tj)j>o is nondecreasing; and, by the definition of  lower 
subgradients and the existence of a minimum of f on K ( f  is continuous 
on K) ,  it is easy to see that every t~ is a lower bound on the minimal function 
value of f on K. Furthermore, all generated points xj are in K ;  thus, the 
sequence (xj)j>0 possesses accumulation points in K. 

Theorem 4.1. Every accumulation point of  the sequence (xj)j>0 mini- 
mizes f on K. 

Proof. Suppose x ~ K does not minimize f on K. Let M denote the 
minimal value of f on K. Then, there is an e > 0 such that 

f ( x )  - 2 e  > M. 

By the continuity of  f on K, there exists a ball with center x and radius 8 
such that, for any y ~ K in this ball, 

f ( y )  -2E  > M 

holds. Let further N denote a blsd-bound o f f ,  and define 

r /=  min{~/N, 8}. 

We will show that either no iterate xj or exactly one xj is within distance 
of x, which will terminate the proof. 
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I f  there is a k such that 11 xk - x 1I < ~, then, for any y ~ K with [[y - x Ii < ~, 
we have 

I < y - x k ,  x~>t-< t l> ' -xkl I"  tlx°lI-<- 2+7N-< 2e, 

and thus also 

f ( x k ) + ( y - x k ,  x ° ) > - f ( x k ) - 2 e >  M. 

For any m > k, however, the following holds: 

M ~ tm >- (xm - xk, X ° ) + f ( x k ) ,  

which shows that 

+1 xm - x Ii -> ,7. 

Hence, if an iterate xk is within distance 77 of  x, then no subsequent iterate 
is. [] 

Theorem 4.2. The sequence (tj)j>o converges to the minimal value M 
o f f  on K. 

Proof. Let (xk+)s be any convergent subsequence of  (Xk)k>o. This is 
a Cauchy sequence; and, for any positive value e, we can choose m > n 
such that 

tl xk,+ - x ~ l t  < ~ / N ,  

where N is the blsd-bound of ~ Now, we have 

M >- tkm >>-(xk~ - x k . ,  x ° ) + f ( x k . ) ,  

and so 

0 <<- M - tk~ <-- (Xk. -- Xk~, x O )  + M - f ( x k . , )  

+1 II II o ti < +. <- Xkn-- Xk,,, " Xk,, - 

Since (tj)j~o is a nondecreasing sequence, the result follows. [] 

The convergence proof  requires explicitly that all previously generated 
constraints should be retained, as is the case with all aforementioned cutting 
plane methods. The question whether old cuts can be dropped without 
losing convergence was studied by Eaves and Zangwill (Ref. 12) and Topkis 
(Refs. 14 and 15). The techniques proposed in the first paper  for dropping 
some of  the old cuts can be applied to our algorithm. But the strong 
properties needed in order to permit dropping all inactive cuts are not 
verified here in general, although for one-dimensional functions this may 
always be done. In Ref. 16, we discuss another technique for testing which 
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inactive constraints may be dropped. This yields a substantial reduction of 
the number of cuts that have to be retained in order to obtain the same 
sequence of approximations to the optimal solution. 

In comparison to gradient search methods and their generalizations, 
the cutting plane method seems to involve a greater computational effort 
due to the optimization step of the successive linear programs. However, 
this step is effectively carried out by way of  the dual simplex algorithm 
(Dantzig, Ref. 17), and often only one pivoting will suffice. It must also be 
observed that many recently proposed algorithms for convex programming 
require differentiability, often of second order, and include the solution of 
a linear program at each iteration (see, e.g., Bazaraa and Goode,  Ref. 18). 
Furthermore, two compensations are obtained in the cutting plane algorithm 
for the increase in the number of calculations. 

A first compensation stems from the automatic generation of the lower 
bounds tk. These permit the implementation of  good stopping rules, e.g., if  
a function value is found that is within a prespecified tolerance of the lower 
bound. We advocate the use of a marginal precision stopping rule such as 

F - t k  <--e. tk, 

where F denotes the best function value found during the iterations. 
The second compensation is obtained by the possibility to carry out a 

post-optimal analysis with respect to the near-optimal region. Let T denote 
the highest lower bound found, and define 

h~(x)=max{f(xk)+(X--Xk,  XO)lf(xk)> T+e} ,  for each x~  K. 

The intersection H~ of  the epigraph of h~ with the hyperplane t = T +  e is 
defined by linear constraints. The extreme points of  this convex polytope 
are then easily calculated by a simplex technique, such as in Dyer and Proll 
(Ref. 19). This set HE is an outer approximation of the set 

minof  = {x c g If(x) <- T+ e}. 

The maximal value of f on the set of extreme points of  He, as compared 
to T +  e, may serve to evaluate how well HE approximates min~f When not 
satisfactory, this approximation may be improved by the addition of  new 
cutting planes at the extreme points of H~, followed by a restart of the 
construction of a new H'~. 

When the objective f is convex, one may use subgradients as lower 
subgradients. In this case, our algorithm is equivalent to the Kelley method 
(Ref. 1) in the case of linear constraints, after masking the objective as a 
nonlinear constraint (see the introduction to this section). This latter version 
of the Kelley method is the one studied by Wolfe (Ref. 20) in order to 
investigate convergence rates. Wolfe's results indicate linear convergence 
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at best. Possibly, this could be improved by some interpolatory step, as 
suggested by Wolfe. It may be observed here that the rate of increase of  
the sequence of lower bounds is improved by choosing, at each xk, a lower 
subgradient of  smallest possible norm. 

5. Application 

Let f ~ , . . . ,  f~ be convex differentiable functions defined on the compact 
polyhedral subset K o f  E n. Let g~ , . . . ,  gr be concave and nondecreasing 
functions on f ~ ( K ) , . . . , f r ( K )  respectively, which are nowhere vertical. 
Consider the problem of  minimizing on K the function 

f :  K ~ E : x  ~ max{g l ( f~ (a ) ) , . . . ,  gr(f~(x))}. 

From the results of  Section 3, it follows that f is blsd on K. For each x ~ K, 
a lower subgradient to f can be calculated as follows. Denote by ix an index 
such that 

f ( x )  = gix(fi~(x)) 

and denote by mi a lower bound o f f  on K~. Then, an x ° c o - f ( x )  is given 
by 

gix(mi~) - f ( x )  
mix - f ~ ( x )  Vfx(x) '  i f f ( x )  ¢ m~. 

In the other case, when 

f ( x )  = m(~, 

x is optimal. 
Using these lower subgradients, the cutting plane algorithm easily 

applies. This can be used to solve linearly constrained minimax facility 
location problems with concave cost functions and mixed norms. This 
extends the range of the problems solved by Jacobsen (Ref. 21). Some 
computational results in this latter context have been obtained by the author 
and are described in Ref. 22. 

6. Concluding Remarks 

In this paper, we have extended the class of  convex functions to the 
class of boundedly lower subdifferentiable functions as application range 
of  a cutting plane method for minimization under linear constraints. The 
extension of  our cutting plane method to problems involving nonlinear 
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constraints, as in the Kelley method (Ref, 1), is currently under consider- 
ation. This is, however, not a trivial matter. 

Indeed, when the nonlinear constraints a re  locally linearized by the 
construction of  supplementary cutting planes, the optimal solution Xk to 
the successive linear subproblems will mostly be unfeasible. A lower sub- 
gradient at x~ to the objective may then fail to yield a useful cutting plane 
if the value f (xk)  remains below the constrained optimal value. Therefore, 
one must first construct from Xk a feasible point Yk and make use only of 
a lower subgradient o f  the objective at Yk. 

Such an extended method for nonlinearly constrained problems will 
be described in a forthcoming paper. 
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