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SURVEY PAPER 

Mean, Variance, and Probabilistic Criteria 
in Finite Markov Decision Processes: A Review ~ 

D, J. W H I T E  2 

Communicated by P. L. Yu 

Abstract. This paper is a survey of papers which make use of nonstan- 
dard Markov decision process criteria (i.e., those which do not seek 
simply to optimize expected returns per unit time or expected discounted 
return). It covers infinite-horizon nondiscounted formulations, infinite- 
horizon discounted formulations, and finite-horizon formulations. For 
problem formulations in terms solely of the probabilities of being in 
each state and taking each action, policy equivalence results are given 
which allow policies to be restricted to the class of Markov policies or 
m the randomizations of deterministic Markov policies. For problems 
which cannot be stated in such terms, in terms of the primitive state set 
I, formulations involving a redefinition of the states are examined. 

Key Words. Markov decision processes, infinite horizon, finite horizon, 
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I. Introduct ion 

In  this paper,  we will discuss par t icular  aspects of criteria for finite 
Markov decis ion processes. We will formal ly  define our  f ramework  later 

on,  bu t  for the m o m e n t  concent ra te  on  the raison d'etre for the paper  in 

general  terms, in the context  of f inding opt imal  control  policies over a finite 

or infinite t ime horizon,  where r a n d o m  elements  enter  into the p rob lem in 
a specific manner .  
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For the vast majority of  work in the area of Markov decision processes, 
standard criteria have been the expected total return over the time horizon, 
the expected discount total return over the time horizon, or the limiting 
return per unit over an infinite time horizon where this limit exists, as it 
will for the class of finite problems with which we deal, providing we restrict 
ourselves to particular classes of policies. 

However, the use of  expected total (discounted or not) return or limiting 
return per unit time may be quite insufficient to characterize the problem 
from the point of view of  the decision maker, and it may be necessary to 
select a criterion (or criteria, if more than one needed) to reflect the 
variability-risk features of  the problem. For example, perhaps the best 
known approach stems from the earlier work of  Markowitz (see Ref. 1) on 
portfolio analysis, where mean and variance of return are used to character- 
ize the problem. Alternatively, one might formulate the problem in terms 
of the probabilities of certain outcomes, and optimize, for example, the 
expected return subject to constraints on these probabilities (see Charnes 
and Cooper, Ref. 2, for the earlier work, and Hogan, Morris and Thompson, 
Ref. 3, for the list of  references where these ideas have been applied). These 
references relate to single-period optimization, whereas the present paper 
deals with multi-period optimization, and specifically with problem formula- 
tions involving means, variances (in different senses, viz., variances of  total 
discounted reward and variances of rewards in each period), probabilistic 
constraints, and threshold probabilities. 

Before doing so, there is one fundamental issue which has to be 
considered. For those analysts who prefer to work in terms of  expected 
utility theory, it may, in principle, be possible to establish the existence of 
a utility function over the realizable histories of  the process being studied. 
In such cases it may be possible to establish equivalent results to those 
which exist for the standard criteria mentioned earlier on. We will not 
concern ourselves with this approach in this paper, and the reader is referred 
to work of  this kind specifically in the Markov decision process area in 
papers such as those of Jacquette (see Refs. 4, 5), Porteus (see Ref. 6), 
White (see Ref. 7), Howard and Matheson (see Ref. 8), Kreps (see Refs, 
9, 10), and Rothblum (see Ref. 11). 

Central to the standard Markov decision process theory are five con- 
cepts, which we will define formally later on, but must be mentioned here 
(viz., stationarity, uniformity, pureness, history independence, and the prin- 
ciple of optimality), all of  which hold for our class of problems and for 
some of the utility-oriented work referred to earlier on, but some or all of 
which fail for the approaches that we will discuss in this paper. 

Stationarity requires policies to be specified independently of the time 
of  the decision to be made. Uniformity requires policies to be specified 
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independently of the starting state and seeks policies which are uniformly 
optimal for all initial states. Pureness requires that neither policies, nor 
actions, be randomized. History independence requires policies to be 
specified only in terms of current state at the time of the decision (although, 
of course, past history may be formally incorporated into the state descrip- 
tion). The principle of optimality, in effect, requires that any residual 
subpolicy of an optimal policy is also optimal for the residual duration of 
the process beginning at any time of the process. 

These are all extremely useful features from a computational point of 
view, which make standard Markov decision process theory attractive, 
although even then, not always computationally feasible. The failure of 
these properties to hold, collectively or individually, in the approaches to 
be considered does raise serious computational issues in some cases and 
merits serious consideration of the utility point of view. The determination 
of utility functions in practice, and even the acceptance of utility ideas by 
decision makers, pose difficulties. In addition, many analysts work with 
nonutility-based problem formulations and many decision makers, in prac- 
tice, work with mean variance and probabilistic approaches in their decision 
making. Of course, it is not necessary to actually obtain an explicit utility 
function to obtain the characteristic features referred to earlier on and, 
under suitable conditions, one might be able to restrict one's attention to 
stationary, pure, nonhistory-dependent, uniformly optimal policies. The use 
of the principle of optimality would pose problems without a utility function, 
since somehow the preferences over probability distributions of returns 
would have to be structured in a computationally useful way (Sobel, Ref. 
12, touches upon this briefly, but the ideas remain to be developed). Even 
without the principle of optimality, the other features would be useful, but 
the actual search procedure for an optimal policy would be hampered. Of 
course, if we knew that we could restrict ourselves to a finite number of 
pure, history-independent, stationary policies, we might just determine the 
probability distributions of returns for each and just leave the decision 
maker to choose, but this could be computationally impracticable. 

One particular point which has a bearing on the following material is 
that of pure policies. Given the existence of a utility function (such as a 
linear or exponential one), we need consider neither randomized actions 
nor randomized policies. For some problem formulations (e.g., see Kallen- 
berg, Ref. 13), optimal policies have randomized actions. There is, therefore, 
some conflict with the implications of utility theory. For example, in Section 
4.2 a problem formulation of Kallenberg (see Ref. 13) is given in terms of 
the steady-state probabilities of being in a given state and using a given 
action. Constraints are placed upon these probabilities, and it is required 
to maximize the expected return per unit time subject to these probabilities. 
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It is possible that no pure optimal policies will exist or indeed pure feasible 
policies. However, for utility functions which are a function of the proba- 
bilities, a nonrandomized optimal policy would exist. Thus, the Kallenberg 
formulation conflicts, in policy selection, with the existence of such utility 
functions. At the same time, restriction to pure policies will, for some 
problem formulations, add significantly to the computational work. We will 
not, in this paper, deal with this quite vital issue, but merely put it on record. 

There exist various examples which illustrate the failure of some or all 
of  the attributes referred to. We do not have the space to reproduce them 
here, and refer the reader to Sobel (see Ref. 14), Miller (see Ref. 15), White 
(see Ref. 16) (for examples where the principle of optimality fails for specific 
problems), Kallenberg (see Ref. 13), White (see Ref. 16) (who gave examples 
where nonuniformity applies, for probabilistically constrained problems in 
the first reference, and for variance minimization in the second reference), 
Kallenberg (see Ref. 13) (for an example where only randomized action 
optimal policies exist for a probabilistically constrained problem), and 
White (see Ref. 16) (where no stationary optimal policy exists for a variance 
minization problem). 

Let us now specify the framework for the remainder of the paper. 
Although this is quite a limited one, it is to be expected that some results 
will carry over to more general classes of problem. 

2. The Framework 

Decisions will be made at the beginning of each of a sequence of unit 
time intervals, t = 1, 2, 3 , . . . ,  where the time horizon may be deterministic, 
finite, or infinite (although we will make some observations on other cases). 

The state at the beginning of  each unit time interval t will be a random 
variable S,, taking one of  a finite number of values {i} = / ,  i = 1, 2 , . . . ,  m. 

For each pair (i, t), there wilt be a finite feasible action set {k} = K(i ,  t). 
We let Z, be the random variable representing the action at time t. 
In each unit time interval t there will be a return Y~, which is a random 

variable, depending upon i, k, t. 
We will now superimpose the Markov requirement. First of all, the 

history of the process up to unit time interval t takes the form 

ht = (ia, k l ,  i2, k 2 , . . . ,  it_~, kt-a, it). 

Let Ht be the set of all such realiazable histories, t = 1, 2 , . . . .  
The Markov requirement is that the probability distributions of 

(S,+~, Yt) depend only on St( = it) and on Zt (= kt). For the marginal 
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distributions of  S,+~ and Y.  we will require 

P(St+I = j l S t  = i, Z, = k) = p~(t) ,  

P( Yt <- yjS~ = i, Zt = k) = F~(y, t). 

A comment  on the state-history framework is required here. The state 
i is a primitive state, and the process is assumed to be Markov in terms of  
i. The history h is the standard history description used in the theories of 
Derman (see ReL 17) and Van der Wal (see Ref. 18) used in this paper. It 
must not be assumed that, because the process is Markov in i, the history 
can be ignored. The main purpose of Section 3 is to show that, where 
problems may be formulated in terms of  the probabilities {xk(t)}, we may 
ignore this history, but not necessarily otherwise. We do not formally 
incorporate the individual returns up to time t in the history. This may be 
done, in effect, by redefining the primitive state to be a new state s = (i, r), 
where r is the realized return in the previous period. To fit within our 
framework, r must take a finite set of  values, although this is clearly not 
necessary to get some results. This approach is used in some of the papers 
cited later on. In addition, we may wish to include the total reward or the 
total discounted reward to date in the state description, again giving a new 
state s = (i, r), where r is defined appropriately. We will make reference to 
such approaches later on. Again, strictly speaking, to fit within our 
framework, r must take a finite number  of  values, although, for infinite- 
horizon problems, this will not be the case. 

Finally, we could redefine a state to include all relevant historical 
information, and then the state becomes the history. We wilt not do this, 
because we wish to separate out the primitive state i, (which is all that is 
required in some problem formulations) and because infinite-horizon prob- 
lems would then require the state space to be infinite. 

Let us now turn to decision rules and policies. 
A decision rule is a function 6, f rom H, to the set of  all probabili ty 

distributions over K(i , ,  t) [noting that K(i , ,  t) depends only on the present 
state i,, part  of  the history, with a redefinition of "state" if dependence on 
earlier history is required]. Let z~t be the set of  all such decision rules, 
t =  1 , 2 , . . . .  

A policy ~r is a sequence of  decision rules ~r= (31,62 . . . .  , 3 , . . . )  
covering the time horizon of the process, which effectively gives us the 
probabili ty distribution of actions to be taken at epoch t in terms of  the 
history to date. 

For problems with unbounded time horizon (even though termination 
may arise at a finite epoch), we let C be the set of  all such policies. For 
problems when the time horizon is a deterministic number  n, we let C ( n )  
be the set of  all such policies. 
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Within these universal classes of  policy, we will wish to consider 
particular subsets. The first subset is the set of Markov policies, where the 
decision rules at time t are functions of the current state it only. We label 
these CM, CM(n) respectively, noting that the decision rules may be time 
dependent. 

Within the set CM, we will wish to consider policies made up of infinite 
repetitions of a single decision rule ~, independently of the time. This class 
is labelled Cs, the class of stationary policies. 

We will wish to consider policies made up of decision rules which 
assign a specific action to a specific state and not use randomization of  
actions. The appropriate subset of  Cs will be labelled CD, and the appropri- 
ate subset of CM(n) will be labelled CD(n). These are the deterministic 
policies. 

We also mention the class CMD of all Markov deterministic, but not 
necessarily stationary, policies. This set does not appear to be mentioned 
in the literature. We use CMD(n) for the finite-horizon case. 

A key concept in the development will be the probability of being in 
a certain state i and taking action k at epoch t, which will run throughout 
the paper. Formally, let 

x~(t) be the probability that (S, = i, Z, = k), 

for a given initial state il and a given policy 7r. 
We will suppress (i~, 7r) for notational convenience, but stress that, in 

view of  the nonexistence of  the uniformity property in general, the depen- 
dence on the initial state must always be borne in mind. 

For infinite-horizon problems, we will require the following limit, as 
a representation of the long-run proportion of times state i and action k 
are realised. In such cases, we restrict ourselves to the case when 
{pk(t), F~(y, t), K (i, t)} are stationary (i.e., independent of  time). Thus, we 

define 

for a given initial state il and policy ~ (both suppressed), and where this 
limit exists (as it will, for example, always exist for 7r ~ Cs). 

Let 

X(t) be the vector (x~(t))eN q', qt = • #K(i ,  t). 

For the stationary, infinite-horizon case, let X be the set of  all limit 
points, taken over all policies (again for a given initial state il) of the vector 



JOTA: VOL. 56, NO. 1, JANUARY 1988 7 

sequence {Y.7=~ x(t)/n}, noting that, for some policies, a single sequence 
may have more than one limit point. 

For some policies, such a sequence may have only one limit point. Let 
(~ be the set of  all such policies, and let Jf  be the corresponding set of 
(unique) limit points. Finally, let XM, Xs, XD, XMD be the corresponding 
sets of  (multiple if necessary) limit points for the policy sets CM, Cs, Co, 
CMO, respectively. 

For the infinite-horizon case we will also discuss discounted problems. 
We will assume the random variables { Y,} to be bounded uniformly in t, 
but will retain time dependence. The discount factor will be p < t. We will, 
instead of  studying the problem in terms of  the limiting vectors discussed 
above, discuss the problem in terms of the infinite sets of vectors 
(x(1), x(2),..., x(0.. .).  

We define X(cc), XM(OO), Xs(OO), XD(OO), XMD(OO) tO be the sets of 
all such infinite vectors for the discounted processes beginning in a given 
state and using any of the policies in sets C, CM, Cs, Co, CMD, respectively. 

For the finite-horizon case, discounted or otherwise, we use correspond- 
ing sets X(n ) ,  Xv(n), XD(n), XMD(n). 

Note that, by convention, the suffix D on its own refers to Markov, 
stationary, deterministic and the suffices MD refer to Markov, deterministic, 
but not necessarily stationary. 

Before we proceed to look at some theoretical results, we introduce 
the notion of randomized vectors, analogously to the notion of randomized 
actions. We define X*, 3~*, X * ,  Xs*, X * ,  X * D  to be the set of  all 
randomizations over countable subsets of X, X, XM, Xs, XD, XMD, respec- 
tively. Similar definitions are used for policy randomization. The use of  
countable randomizations removes the need to include randomizations over 
impure policies and their corresponding probability vectors. 

We likewise use a asterisk (*) to denote appropriate randomization for 
the infinite-horizon discounted case and the finite-horizon discounted or 
nondiscounted cases. 

We also use A to denote the closure of a set A. 
There are obvious inclusion relationships between the various sets 

defined. These are, for the infinite-horizon cases, 

CDC__CsC__CMGC, 

C~ID ~ CM, C,s' C C ~ C, 

XDC_XsC_XMC_X, 

XMD C_ XM, Xs g X C_ X, 

with corr.esponding inclusions for the finite-horizon cases, with the exception 
that C, X are irrelevant, except in a trivial sense. 
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For the infinite-horizon case, the constructs with which we will work 
are those of  the policy space C (and its special subsets) and the action 
state frequency space X (and its special subsets), for the nondiscounted 
and discounted cases. For the finite-horizon case, we deal with C(n) ,  X(n) 
and their special subsets. We also deal with randomizations over the policy 
sets. 

There are relationships between policies and action-state frequencies. 
It is possible to do this in general for zr ~ C, but this is rather cumbersome. 
Since we are essentially interested in CM and its special subsets, we confine 
ourselves to this case. If zrk(t) is the probability, for policy ~r, that if we 
are in state i at time t we will then take action k~ K(i, t), we have 

x~(t) = ~ ~ cr~(t)p~i(t-1)xJ(t-1), t->2, 
j ~ l  l~K(.~t-1) 

with x~(1) = 0, if i # i~. 

For ~rc Cs, both {x~(t)} and (Z7=1 x~(t))/n will have limits as t ~o o  
(possibly, but not always, dependent  upon the initial state i = il). 

The formulations with which we will deal involve the X spaces rather 
than the C spaces. Hence, we need the corresponding inverse results relating 
X to C. Again, we confine ourselves to CM. Indeed, from Van der WaI (see 
Ref. 18), if we are given {x~(t)} for any policy ~-~ C, then we can find a 
policy ~r ~ CM with the same {x~(t)} values, given by 

"n'~(t)--'-X~(t)/ 2 Xl(t), 
IcK(i,t) 

providing the denominator is positive, with zr~(f) arbitrarily chosen 

otherwise. 
We are now in a position to consider theoretical results for these 

problems: (a) infinite-horizon nondiscounted problems; (b) infinite-horizon 
discounted problems; and (c) finite-horizon discounted and nondiscounted 

problems. 

3. Policy Equivalence Results 

3.1. Infinite-Horizon Nondiscounted Stationary Problems. The condi- 
tions under which we work have been stated earlier on. The fundamental 
result is that (again noting that everything is relative to a suppressed initial 

state il) 

x =  Y;= xM = ~ * - - x * .  

This result is to be found in Hordijk and Kallenberg (see Ref. 23) and is 
based on earlier work of Derman (see Refs. 17, 19) and Derman and Strauch 
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(see Ref° 20). White (see Ref. 16) also demonstrates that, for the unichain 
case, J~CX*D, and X * = X * ,  a weaker result than above, but using a 
different approach based on a multi-objective result of Hartley (see Ref. 21). 

However, whereas the earlier results are dependent on the initial state 
(except in special circumstances), White's results are independent of  the 
initial state; i.e., for each x~ 1 e J~ achievable for some starting state il e I, 
there exists a randomized policy in X *  for which the corresponding x~, for 
all i e I, is equal to x~,. 

Derrnan (see Ref. 19) also shows that, if we now explicitly make X 
and the other sets dependent on an initial state il, then, providing all ~r e CD 
are irreducible, 

X(ia) = X*(ia) = X*(il) = Q.3 X(jI) ,  

in which case all sets in the initial result are identical, independently of the 
starting state i~. 

Derman (see Refs. 19, 22) gives examples to show that, in general, 
X # Xs, where, in the latter case, even an initial recurrent state i~ may not 
produce this result. However, if every Tr e CD has a single chain (see Derman, 
Ref. 17) or if x[x = limn~oo(X~=1 x~(t)/n) for a given policy ~" e Cs, where 
this timit always exists in Cs] is continuous on Cs (see Hordijk and 
Kallenberg, Ref. 23), then 

X =Xs. 

Hordijk and Kallenberg (see Ref. 23) also give an example to show that 
the continuity property is not necessary to obtain this result. 

A weaker result is given in Derman (see Ref. 22), viz,  for the case 
when each ,r e CD is irreducible; then, again introducing dependence on 
the initial state il, 

U X(i , )= U X~(i,). 

It is to be noted that we do not refer to CMD, XMD in the infinite 
horizon nondiscounted case; but, if desired, since Co C_ CMD G CM, we may 
add X*D to our identities in our initial main result. 

The significance of the sets of limiting x vectors lies to some extent in 
the relationships with linear programming as a computational tool. Hordijk 
and Kallenberg (see Ref. 23) introduce the set X ° defined as follows: 

X 0 = {x e N q ! ~]y e N q with (x, y) feasible for the constraints 

-po)xi  =O, V j e I ,  
l~I  k ~ K ( i )  

v x ~ + 2  2 ~ ~ W e x ,  a. ( o'ij- P u)Y i = o'~j, 
kcK(j)  iEl k ~ K { i )  

x)-->0, y~-->0, Vie  I, k e  K(i)}, 



10 JOTA: VOL. 56, NO. 1, J A N U A R Y  1988 

where {~ro} are the Kronecker delta numbers and i~ is the initial state. 
For cases where each 1r ~ Cs is unichain, these constraints may be 

simplified (see Kallenberg, Ref. 13). 
Hordijk and Kallenberg show that 

X *  = X °, 

which may be added to the initial main results to reduce X to X °. 
If, for a given problem formulation, we have obtained an appropriate 

limiting x solution, there remains the question of obtaining an appropriate 
policy. 

If  x is obtained, together with an appropriate y, from the Hordijk- 
Kallenberg constraints, then, if X = X s ,  a policy 7r e Cs may be obtained by 

~._-- {,~,~}. 

~r~ is the probability that, if we are in state i, we take action k and 

k c  (i) k ~ K ( i )  

= y ~ / (  ~ y~),  if ~ x~=0,  ~ y ~ > 0  
kE (i) k c K ( i )  k c K ( i )  

= arbitrary value, otherwise. 

It is to be noted that it is not necessary that, if x ~ X °, then x ~ Xs .  If 
x ~ X  °, it will be possible to find 7re CM C~ C such that x = x  ~ by first of 
all translating it to X*D and then back to CM C~ C. 

If x is obtained directly or indirectly via the use of C*,  Derman (see 
Ref. 17), Derman and Veinott (see Ref. 24), and Strauch and Veinott (see 
Ref. 25) identify an equivalent ~" ~ CM ~ C (remembering that ~r need not 
be stationary) as follows. Let 

U 
X -'~ ~ OtuXu, 

where {x~} are the limiting vectors for the policies {6~} = {zr~} making up 
CD, and let 

U 
Y. a u = l ,  c~u->O, Vu. 

Let {x~.(t)} be the probabilities of being in state i and taking action k at 
epoch t using policy ~r., i ~ I ,  l ~ u -  < - U, k ~ K ( i ) ,  t>_l. Then, a policy 

= { ~ ( t ) }  c c ~  



JOTA: VOL. 56, NO. 1, JANUARY 1988 11 

is defined by 

u;:'~l 1 k ~ K ( i )  

if the denominator is positive, and is arbitrary otherwise. 
This transformation applies also for any x c X (see also Van der Wal, 

ReL 18). It is also be noted that, for such a or, we will have ~rc C. 
Although the long-run frequencies implicit in our definition of {x~} 

are identical with the expected frequencies for ¢re Cs, this is not true in 
general. Derman (see Refs. 17, 19) produces the probabilistic result 

P(LGU X*D(i,)) = 1, 
i l~I  

where L is the set of all limit points of a sample sequence. It is difficult to 
say how this result might be used. 

3.2. Infinite-Horizon Discounted Problems. For this class of problems, 
we deal with the total discounted return 

R =  ~ p t - l y , ,  
t = l  

which will be a random variable. 
Using the transformation of Van der Wal (see Ref. 18), we immediately 

obtain 

X(oo) = XM(OO), 

X~D(oO) C_ XM (~o). 

Let us define a metric d on the set of all vectors x e X(oo) as follows: 

t = l  

where Ix(t)], x e R q,, is any metric (e.g., supremum metric). Then, using the 
topology induced by this metric, it is easy to see, using the finite-time 
horizon results of the next section, that 

x~D(oo) = xM (oo). 

These results allow us to restrict ourselves to the latter two sets, 
providing our problems may be expressed solely in terms of x ~  X(oo). 
For example (see Section 4.2), we may wish to optimize the expected 
discounted return subject to constraints on the {x~(t)}, and the problem 
will be expressible completely in these terms. Restriction to X~D(oo) will 
give e optimal solutions, where e is arbitrarily small. Unfortunately, this 
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equivalence does not carry over to equivalence in terms of total discounted 
returns. Thus, for example (see Section 4.2), if we wish to minimize the 
variance of the total discounted return subject to a constraint on the total 
discounted return, it would not be possible, in general, to express this 
problem solely in terms of the {x/k(t)}, without including the individual 
returns in the state variable, and to do so might result in suboptimal policies. 
A redefinition of the state to include the total discounted return to date 
(see Ref. 26) would, however, allow this problem to be expressed in terms 
of the new {x~(t)} variables, although computationally more demanding to 
solve. 

3.3. Finite-Horizon Problems. For this class of  problems, we deal with 
the total discounted return 

R = ~ p,-1 lit, 
~=1 

which will be a random variable, and we allow p to be any real number. 
Derman and Klein (see Ref. 27), by embedding the finite-horizon 

problem in an infinite-horizon problem and using the results of  Section 3.1 
with a new, finite-state structure s = (i, t), i ~ I, i -< t <- n, effectively produce 
the following equivalence: 

X ( n )  = X M ( n )  = X * ~ ( n ) .  

These results allow us to restrict ourselves to the latter two sets, providing 
our problems, may be expressed solely in terms of x ~ ~ X ( n ) .  Unfortunately, 
as in the infinite-horizon case, this equivalence does not carry over to 
equivalence in terms of probabili ty distributions of  total discounted returns. 
Thus, for example~ when we turn to problems involving variance, should 
we restrict ourselves to X*D(n ) ,  this may involve a loss of  optimality in 
some sense. 

Let us now look at the manner  in which these theoretical results may 
be brought to bear on the various Markov decision processes using nonstan- 
dard criteria as introduced in Section 1. 

4. Mean, Variance, and Probabilistic Criteria 

4.1. Infinite-Horizon, Nondiscounted, Stationary Problems. Hordijk 
and Kallenberg (see Ref. 23) and White (see Refs. 16, 28) consider problems 
of maximizing the long-run return per unit time, subject to constraints on 
the long-run proport ion of times in states i and actions k are realized. 
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In Ref. 23, the feasible set of x vectors X ° is specified. Additional 
constraints are as below, which determine a region X:  

aisx~ <- bs, s = 1, 2 , . . . ,  S. 2 E  ~ 
~ I  k ~ K ( i )  

If 

rf = E ( V l S = i , Z = k ) ,  

the problem is 

m a x i m i z e [ ~  I ~ r~x~]. 
x E X ° c ~ X  i k E K ( i )  

As an illustration of this type of problem, consider a simple inventory 
control problem, with no backlogs, in which i represents the current stock 
level and k represents the order quantity. The constraints might take the form 

Z xo k -< 0.05 
k E K ( Q  

(i.e., the probability of running out of stock is less than or equal to 0.05) and 

2 2 x~_<0.2 
i~I  k ~ K ( i ) : k > O  

(i.e., the probability of  placing a new order is less than or equal to 0.2). 
Using the Van der Wat (see Ref. 18) approach one may then find 

zr ~ CM ¢~ C to give the requisite x = x'L 
Hordijk and Kallenberg also give an example (from Derman, Ref. 29) 

where no constrained optimal solution in Cs exists. However, x = x '~ for 
some cr ~ ~ss- I f X  = Xs,  then the Hordijk-Kaltenberg approach gives cr ~ Cs 
directly. Even when X ~ Xs,  it is possible that, for the particular x obtained, 
x = x = for some ~r ~ Cs, and Hordijk-Kallenberg give a method for testing 
this possibility. 

White (Ref. 16) suggests a linear programming approach in terms of 
X * ,  using equalities in place of  inequalities in X, to give a set of constraints 
X, but this makes no essential difference to the formulation. Only the 
unichain CD case is considered, in which case everything is state indepen- 
dent. If {%}, 1 <- u-< U, are the policies of CD, then policies of the form 

7 r  ~ o /  = ( C ~ l ,  o l 2 ,  . . . , f l u .  • • f l u )  

are considered, where c~u is the probability of using policy ~ru e CD. The 
problem is reduced to 

maximize %,ru , 
ce U = I  
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subject to 

U 

F. a~a~=b~, s = l , 2 , . . . , S + l ,  

where r~ is the long-run return per unit time using policy %, the (S+ 1)th 
constraint is 

U 

2 
u = l  

and 

aus= ~ ~ k k  a i~X iu, 1 <- u < U, 
i c l  k ~ K ( i )  

where xi~ is the probability of being in state i and taking action k ~  K ( i )  
for policy 7ru c CD. 

The column generation method of Dantzig and Wolfe (see Ref. 30) 
may be used; and, if {hs} are the current simplex multipliers, the new basic 
variable au to be brought in is obtained as follows: 

maximize r~ " (0-  h ,a~ (~ xiu , 
u i s = l  

where zr~ = ( ~ ) ,  {x~} are the limiting long-run proportion of times in state 
i using policy ~,. 

This subproblem may be solved by the usual policy iteration method 
of Howard (see Ref. 31), with the returns {r/k} modified by the simplex 
multipliers. 

Again, when an optimal a is obtained, a corresponding policy in 
CM ~ C may be obtained, or in Cs, since in this case X = Xs.  The method 
of Hordijk and Kallenberg (see Ref. 23) will achieve this, using 

U 

= OluXiu. 
u= l  

White (see Ref. 28) is the author of an earlier paper introducing the 
ideas of Lagrange multipliers directly, resulting in the determination of 
optimal policies in Co for the range of Lagrange multipliers, and then 
determining all the optimal expected returns and levels {b,} in the constraints 
determining X, which are achievable by taking probability mixtures at the 
threshold Lagrange parameter values. 

An alternative approach to constrained optimization is to introduce 
the ideas of mean-variance analysis. In the cases where long-run frequencies 
and expected frequencies are the same (e.g., for the policy space Cs), the 
variance of long-run return per unit time is zero. However, the variation 
from one time unit to the next time unit may be important. 
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Filar and Lee (see Ref. 32) first of all determine the maximal expected 
return per unit time (again, note that everything is conditional on an initial 
state i~). Let this be r °. Then, they consider the random variation in unit 
time interval, viz., 

0 - I v ,  - r°]. 

There are other equally acceptable definitions of yO, e.g., 

0 Y, = max[0, c -  Y,]. 

A new problem is created in which { Yt, - y o} are taken as two returns, 
and multi-objective methods are applied to obtain the efficient solution set, 
with respect to the long-run values per unit time of { Y~) and {-yO} for a 
specified prior probability distribution over the initial states. 

If Y'~, -yO,~ are the expected values per unit time of  { Yt}, {-yO}, 
respectively, using policy ~r, then ¢r is said to be efficient if there is no other 
policy z such that 

9 " - > Y  , 

- 9 ° ' _ > - Y  , 

with at least one strict inequality. 
The results developed in this paper are all relative to a given initial 

starting state. Filar and Lee's results relate to a given probability distribution 
over the starting states. However, if we introduce an artificial state i °, with 
a fixed action which moves the system from state i ° to the other state i 6 I 
with the specified probabilities, then their work fits into the framework of 
this paper, and we may apply the X* approach using the Hordijk-Kallen- 
berg results (see Ref. 23) or the X *  approach using the White results (see 

X k Ref. 16), since the problem may be stated in terms of { ~ }. 
Given the linear programming equivalence, the set of efficient solutions 

is obtained by using a weighted reward 

Y,(c~) = (t - cQ Y t -  c~Y ° 

varying a over (0, 1) (see Ref. 33). 
The authors also suggest an alternative approach. Let r be the long-run 

return per unit time for a given policy 7r. The return Y°(t) is replaced by 
Y , -  r, and a weighted reward Y,(cQ is used, where 

Y,(a)=(1-a) Y,-c~( Yr-r) 2. 

Using the approaches of Hordijk and Kallenberg (see Ref. 23) or of 
White (see Ref. 16), the first problem reduces to a linear program and the 
second to a quadratic program. 
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Mendelssohn (see Ref. 34) considers a variance type problem in which 
it is the variation between successive returns which is important. To fit 
within our formulation, the state i would have two components,  i.e., s = (i, r), 
where r is the return in the last unit t ime interval, but decisions are still 
based only on i. His new return takes the form 

Y, = Y , - A I Y , -  Y,-I], t>-2, 

for some a > 0. For the problems to remain finite state, { Y,} may only take 
a finite set of  values to fit in with our framework. 

Mendelssohn's  state description involves two components,  viz., our 
primitive state i and the return level r in the previous time interval. In order 
to fit within our framework, our new state becomes s = (i, r). With the new 
state description, the results of  this paper  apply and the problem would be 
solved using the new formulation. Mendelssohn restricts his decision rules 
to be functions of  i only, i.e., K(s) becomes K(i). 

Mendelssohn's  paper  is for discounted problems, but the ideas clearly 
carry over to the nondiscounted case, so we mention them here. 

Filar (see Ref. 35) introduces a percentile approach.  A critical return 
A is chosen. A new return function Y,(A) is defined by 

Y,(A) = 1, if E>-A,  

Y~(A) = O, otherwise. 

A critical long-run return per unit time c is chosen. 
Equivalently (although not stated), for each policy ~-, a number  A =(c) 

is determined by 

a'~(c) = {max[A]: r~(A) >-- c}, 

where r " ( a )  is the long-run return per unit time using policy ¢r and random 
returns { E(A)}, and where 

a=(c)  = - ~ ,  if r~(X) < c, YX. 

Then, X(c) is defined by 

a (c) = sup[a ~(c)], 
7 r  

and finally a policy ~r is chosen to 

maximize[r=(A (e))]. 

Filar's approach is a risk-oriented approach,  but, instead of risk being 
evaluated in terms of  the total return, it is evaluated in terms of the 
proport ion of  times the return in each period reaches a critical level A. 
Clearly, the problem can be formulated in terms of {x~}, and we can use 
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the earlier equivalence results and restrict ourselves to XM or tO X'D, if we 
wish. The final problem, once A(c) has been determined, reduces to a 
standard Markov decision process problem, for which a solution in Xs will 
exist. 

The linear programming approach of  Katlenberg (see Ref. t3) is used 
to solve the problem for a long-run limiting vector, which may be transfor- 
med into an appropriate policy. Alternatively, we may use X *  and use 
White (see Ref. 16). 

In Section 1, we made reference to the use of  expected utilities, using 
utility functions whose domain was the realizable histories of the process. 
For some problems (e.g., those formulated in terms of probabilistic con- 
straints on the state-action probabilities, discussed earlier on in this section), 
a unique randomized optimal solution can arise (e.g., see Kallenberg, Ref. 
13). If an approach which seeks to optimize expected utility over the 
realizable histories had been used, optimal nonrandomized policies would 
exist. There is therefore an incompatibility between the two approaches in 
this case. 

The other problems discussed, if formulated in terms of  {x~} or {~,,} 
(i.e., in Xs or X*) ,  produce overall objective functions which are linear or 
convex quadratic in the variables used and wilt produce optimal nonrandom- 
ized solutions (maximizing a convex function, over a convex set), and thus 
will produce results which are compatible With utility theory in that nonran- 
domized optima are produced. However, this is not the same as saying that 
the specified objective functions are compatible with utility theory axioms. 
For example, consider the alternative approach of Filar and Lee (see Ref. 
32), and let us assume that, in each period, the returns { Y,} are independent 
and identically distributed for any policy. The equivalent problem is then 
to maximize 

[(1 - a ) E ( Y )  - a ( Y -  E (  y ) )21 .  

The expression does not satisfy the axiom that a probability mixture of two 
indifferent policies is indifferent to both [see White, Ref. 36, page 146, 
Example 12(iii)]. 

Thus, the objective functions used do induce an order relationship over 
C, but some will not satisfy some axioms of expected utility theory. 

4.2. In f in i t e -Hor izon  D i s c o u n t e d  Problems. Our earlier results indicate 
that, if we can formulate our problems in terms of x = c X ( ~ ) ,  then we may 
restrict ourselves to X:vl (~ )  or to X*D(CC) without loss (or rather to within 
an e-loss in this case). 

For CM, we may specify the feasible set in terms of {x~(t)} (the 
probabilities of being in state i and taking action k at time t) and {~r~(t)} 
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(the probabilities of  taking action k at time t if we are in state i). We have 
a set of equations of the form 

Y" xk ( t+  1) = ~ x~(t)p~(t), V i i i ,  t>---I, 
k ~ K ( i , t + l )  j ~ I , k ~K( .~ t )  

2 = 1, 
k c K ( i b l )  

xk(1) =0,  V i # I ~ ,  k6K(i ,  1), 

xki(t)>--O, VieI ,  k~K(i , t ) , t>-l .  

Given {xk(t)}, we may calculate the policy probabilities { ~ ( t ) }  by 

providing the denominator is not zero, and arbitrary if the denominator is 
zero. 

For C ' D ,  we may specify the feasible set in terms of c~= 
(cq, ~ = , . . . ,  a , ,  . . .  ), the countably infinite-dimensional probability vector 
over the policies {~r"} in CMo. 

In the former approach, one might wish to get optimal or e-optimal 
policies with respect the the expected total discounted return, subject to 
various constraints on the {x~(t)} or some function of these, e.g., 

co 

Y~ 2 a~s ~. p'-lxki(t)<--b,, s = l , 2 , . . . , S .  
i~I  k~K( i , t )  t = l  

Ideally, one would wish to work in terms of the probability distributions 
of the total discounted returns, but this appears to be quite a difficult 
problem. Slightly extending a result of  Sobel (see Ref. 14), we may express 
the cumulative probability distribution of  the total discounted return as 
follows, for any policy rr: 

Pi(r,t)= Y~ ~ [ Tr~(t)p~Pj((r-y)/p,t+l)dF~(y,t), 
J 

k~K( i , t )  j E l  Jy 
VicI,  t>--l, 

where, for a given policy 7r, P~(., t) is the cumulative probability distribution 
function for the total discounted returns from time t onward beginning in 
state i and, as given in Section 2, Fi(. ,  t) is the cumulative probability 
distribution function for the immediate return Y,, given (i, t). We may 
impose constraints on {Pi(., t)}. 

It should be pointed out that the above formulation is not strictly within 
the framework of this paper for infinite-horizon problems, since we may 
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need to cater for an infinite number of values of r. Also, there is no prior 
reason why the policies should be restricted to CM in terms of the primitive 
state I. White (see Ref. 37) extends this problem to an infinite-horizon 
optimization problem with appropriate computational algorithms. 

Instead of working with probability constraints, we may work in terms 
of a finite set of the moment vectors. If  we accept the underlying utility 
theory of Markowitz (see Ref. 1), there will exist a polynomial utility 
function of the discounted return, and a nonrandomized optimal policy 
will exist. However, this need not be in CMD [see, for example, White (Ref. 
16), where a variance minimization problem requires a history-remembering 
policy as its solution]. It is also possible that one might wish to work within 
CM. 

For such solutions, Sobel (see Ref. 14) gives recurrence relations for 
moments, for stationary policies, which may again be adapted to the CM 
class. Of particular interest are the first two moments, mean v, and variance 
V (again recall that everything is conditional on the initial state i0. It is 
possible to extend Sobel's recurrence relations for the stationary case to 
the CM case using the variables {x~(t)}, {Tr)(t)}. In Sobel's case, the random 
return Y~ is determined by i, j, k, i.e., II, = r~(t), a deterministic quantity. 

The alternative procedure is to consider C*o. In this case, each x~(t) 
may be expressed in the form 

,zo 

x,~(t) = E o~.xi~(t), 
U = I  

where 

x~u(t) = 1, if 3"(i, ~) = k, 

x~,(t) = O, otherwise, 

noting that the decision rules are also functions of time in this case. This 
means that all linear constraints in {x~(t)} become linear constraints in 
{au}; and, if we wish to optimize (or e-optimize) the expected total discoun- 
ted return subject to these constraints, we have a semi-infinite linear pro- 
gram, viz., 

IS ] maximize c~, p'-~ ~ ~ ~ x~u(t)rki(t) , 
= 1  t = l  i c l  i c l  k ~ K ( i , t )  

subject to, for example, 

2 4 . ~  2 a~. ,-i k p xi~(t)<-b,, s = 1 , 2 , . . . , S ,  
u = l  i~I  k~K( i , t )  t = t  

co 

Z 4 . = 1 ,  a,, --> O, 1_< u <oo. 
u = l  
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Again with a little bit of manipulation, using column-generating methods 
(see Dantzig and Wolfe, Ref. 30), each subproblem is reducible to solving 
a standard optimal infinite-horizon discounted problem in CMD, with r~(t) 

k s replaced by ri (t) -Y.,=l &a~, where {&} are the current simplex multipliers. 
Of course, more complicated constraints may be used and, if we keep to 
CD, the problem is much easier. 

Using a similar procedure, White (see Ref. 16) considers mean-variance 
analysis. If  {(v,, V,)} are the means and variances of policies in CMO, and 
{(v(a), V(a))} are the means and variances for policies in C*o for the 
various probability vectors ~, then 

co 

v(~)= E ~uv., 
u = l  

v(~)= E o~.(v~+v~)- ,~.v. 
u = l  1 

In this form, it is possible to analyze the problem in terms of, for 
example, minimizing V(a ) subject to v (a) = c, or in terms of finding efficient 
sets in terms of ( v , - V )  or (v, V) (see White, Ref. 33, where some of the 
weighting factor results carry over from finite-dimensional problems to 
infinite-dimensional problems). Column-generation methods may be used 
and result in subproblem optimization of the form 

2 Xv,], minimize[ V, + v, - 
u 

where .~ is the current simplex multiplier for the constraint v(a)  = c. 
Once a solution in C*D is found, an equivalent solution in CM may 

be found using Van der Wal's transformation (see Ref. 18), which will give 
the same x ~ vector. 

The work of Filar and Lee (see Ref. 32) and of Mendelssohn (see Ref. 
34), discussed in Section 4.1 for nondiscounted problems, is also studied 
by Filar and Lee (see Ref. 32), with different immediate return functions, 
for the infinite-horizon discounted problem. The new reward in interval t 
is, for a given policy ~, 

9,= Y, -a f (E-  r), 

where r is the expected value of Y~ for the given policy and f ( .  ) is a 
penalty function which may be approximated by the first two terms of its 
Taylor series. 

Finally, we refer to Mendelssohn (see Ref. 34), referred to in Section 
4.1 for nondiscounted problems, whose actual paper deals with the discoun- 
ted version of his variance approach. 
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4.3. Finite-Horizon Problems. As we have seen in Section 3.3, we may 
reproduce all the x ~ vectors by confining ourselves to XM(n) or to X*D(n) 
or equivalently to CM(n) or to C*D(n), the policy sets. 

We may approach this problem using the {(x~(t), ~r~(t)} approach for 
CM(n) or the {a~} approach for C*MD(n), but when 1 -< t_< n in the case of 
C*(n) and 1-< u-< U < co in the case of  C*D(n). The former approach is 
given in White (see Ref. 28). In the latter case, we may find an equivalent 
solution in CM by using Van der Wal's transformation (see Ref. 18). 

There are several approaches to mean-variance analysis. 
The mean-variance analysis of  Sobel (see Ref. 14) and White (see Ref. 

16) may be adapted for the finite-horizon cases. An alternative approach 
is to convert the problem into a final-value problem with state s = (i, r), 
where r is the return (discounted or nondiscounted) up to time t. I f  we 
then want to solve the problem of  minimizing V(a) ,  subject to v(c~) = c, as 
in the discounted problem, the column generation method wilt reduce to 
solving the subprobtem 

min[E u(r 2 - hro)], 

where E,  is the expectation for policy % and ro is the cumulative discounted 
or nondiscounted return at the end of the time horizon. To fit in with our 
finiteness of  state set I, ro would have to take a finite number  of  values. It 
may be possible to extend the earlier theory for finite state sets I to 
infinite-state sets, replacing, for example, {x~(t)} by distribution functions 
over {i, k} for each value of  t, in which case the fact that r;  may have an 
infinite number  of  values could be handled. Alternatively, some computa-  
tional approximation scheme might be developed. 

It is easy to solve the subproblem by the usual dynamic programming 
approach for final-value systems, and this is given in White (see Ref. 28). 

As with the infinite-horizon discounted problem, efficiency analysis in 
terms of (v, - V )  or (v, V) may be considered. Since V(a )  is concave in c~, 
for (v, V) we may use the parametrized single objective function V + A v for 
h--> 0 and A = oe, to generate the efficient solutions, noting that, for A = 0 
or )t = co, formally we have to eliminate the nonefficient solutions generated. 
For (v~-  V), since (see White, Ref. 33) any efficient solution is an optimal 
solution of  a subproblem of the form "minimize V( a ), subject to v ( a )  = c," 
and since this is now a linear programming problem (as we have seen in 
the infinite-horizon case), the weighting factor result goes through again, 
with the same provisos for h = 0, h = oo. In this case, the subproblem is to 
maximize [ b y -  V]. 

Let us now turn to a few problems related, to some degree, to our main 
framework, although not, in general, wholly matching it. 
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Henig (see Refs. 38, 39) introduces the criteria given below, for a 
specified policy: 

(TC) target criterion: 1 - P ( c ) ,  
(PC) percentile criterion: inf[r: P(r) >-p]. 
Henig's problem is a routing problem with a finite number of states, 

an initial state i = 1, and a target state i --- m, with random returns at each 
step dependent upon (i, k) as with our main framework. The transitions 
from i to j are, however, taken to be deterministic and, in effect, k =j .  This 
is trivially Markov, but, since we may introduce randomization, it may be 
made nontrivially Markov. It is assumed that, for all policies, the target 
state is reached in a finite number of moves because Henig keeps to 
nonrandomized policies. 

This problem does not fit exactly into any of our problem classes as 
they stand. However, by using a similar approach to that of White (see Ref. 
16) for the infinite-horizon discounted problem, with conditions that ensure 
finiteness of termination with probability one, similar results to those of 
White given in the infinite-horizon discounted case will follow, providing 
we allow policies to be time dependent (in this case, we label the moves 
1, 2 , . . . ,  t , . . .  ). For such cases, we may wish to restrict ourselves then to 
CM or to C*o,  remembering that these induce nonstationary policies. It 
is then possible to adapt similar methods for C ,  or C*o using the {(x~(t), 
Try(t))} or a approaches mentioned in the infinite-horizon discounted cases. 

Henig (see Refs. 38, 39) restricts himself to the situation where the 
random returns Yt (in our stage-dependent framework) are independently, 
normally distributed at each step. The distribution of the total return is then 
normal for policies ¢r ~ CMD, but not in CM. Henig actually restricts himself 
to ¢r ~ CD (our deterministic stationary set). For normally distributed total 
returns, the maximization of the (TC) and (PC) criteria are equivalent, 
respectively to maximizing (see Charnes and Cooper, Ref. 40) ( v - c ) / v / V  
and v + r(p)~/-V, where r(p) is the level r of the standardized normal variate 
for which ~ ( r ) = p .  Henig relates such optimization problems to finding 
efficient sets, using weighting factor approaches, with respect to (v, V) and 
(v, -V) .  

It is to be stressed that, if zr ~ CD, then the equivalence of the (TC) 
and (PC) criteria and the stipulated mean-variance optimization problems 
are no longer valid. 

If we use the C*D policy approach, as referred to earlier on, for 
C*D(n), then efficient solutions are obtainable by using by+ V or b y -  V, 
as may be the case, and maximizing over a = (au). In the latter case, since 
V = V(a) is concave in a, an optimal solution in CMD will exist, although 
not necessarily uniquely so. Since Henig's transformations are deterministic 
and the returns are independently distributed, h v -  V, for policies in CMD, 
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may be optimized using the usual dynamic programming approach, as Henig 
does for his restriction to CD (see Ref. 38). 

Henig's argument for keeping to CD is the utility one discussed in 
Section 1. 

We may induce an order relation over C as follows: 

~r is preferred to ~'~- ( t - P ~ ( c ) ) > -  (1 -PT(c)), 

where P= is the distribution function for the total return. The function 
(1 - P~) then satisfies all the axioms of expected utility theory, and we may 
restrict ourselves to CMO without loss, on the assumption that we are, in 
the first instance, restricting ourselves to policies defined in terms of  the 
original primitive state space L 

If  we wish to introduce the combined state s = (i, r), as we did earlier 
on in this section, then optimal policies in CD (with the new state description 
and r need not be finite) will exist and may be found by combining the 
cumulative distribution recurrence relation of Sobel (see Ref. 14) with the 
usual optimality equation approach to give the equation 

with 

P(m, r) = 1, if r-< c, 

P(m,r)=O, if r > c ,  

where P(i, r ) =  minimal probability that the total return, inclusive of  r, to 
absorption at m, beginning in state (i, r), will be less than or equal to c. 

However, the (PC) approach is not compatible with expected utility 
theory, and hence this argument cannot be used to justify keeping within 
CMO or CD using either state description. 

A related mean-variance class of  problems, again for the case when 
{ Yt} are normally and independently distributed over time, is discussed by 
Goldwerger (see Ref. 41). Policies are restricted to CMD(n) (finite-stage 
problems), and it is required to maximize v/4-V [slightly different from the 
Charnes and Cooper problem (see Ref. 40). The authors proceed by succes- 
ivety maximizing the ratio v(j, t ) / ~ ( j ,  t) over times t, t + 1 , . . . ,  n, for any 
given state j at time r As Miller (see Ref. 15) points out, this is a misuse 
of the optimality principle. If the problem is embedded in a class of problems 
of the kind "minimize V, subject to v = c, if v -> 0)," then earlier approaches 
may be used. 

There are other problems which may be cast in the form of finite-time 
horizon Markov decision processes which are wo~h mentioning briefly. 
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One of these is the stochastic knapsack problem discussed by Parks and 
Steinberg (see Ref. 42). They adapt the (TC) approach of Henig (see Ref. 
39), and suggest an approach of Goldwerger (see Ref. 41), which Sneidovitch 
(see Ref. 43) shows to be erroneous, in that the principle of optimality used 
is not valid. Sneidovitch also discusses general difficulties in decomposition 
of preference orders in order to be able to apply the principle of optimality. 
Sneidovitch (see Ref. 44) considers a stochastic knapsack problem, with 
two objective functions, in which the problem is to minimize the expectation 
of one subject to a constraint on the variance of the other. Greenberg (see 
Ref. 45) also considers the maximization of a function subject to a probabilis- 
tic constraint, which may likewise be formulated as deterministic finite 
time-horizon Markov decision processes. 

5. Summary and Comments 

The purpose of this paper is to review existing material in the area of 
finite-state, finite-action, Markov decision processes in the context of non- 
standard criteria which, at present, constitutes the vast majority of the work 
in this area. It is unlikely that single expected total return, expected discount 
return, or long-run returns per unit time will properly represent the vast 
majority of decision-making situations. The use of expected utility theory, 
where it is thought relevant and practicable, would normally be the natural 
extension, but practical difficulties do arise, and decision making is often 
undertaken in a manner not always compatible with expected utility theory, 
e.g., selecting inventory control policies to give a specified probability of 
run out. 

The paper does not seek to validate or to compare criteria, but simply 
to present some results which have appeared in the literature. It is clearly 
evident that some criteria suggested may not be sensible. Beja, for example 
(see Ref. 46), shows how the use of probabilistic criteria may, on occasion, 
give quite questionable results. 

Section 3 studies the possibilities of being able to restrict attention to 
simpler classes of policies than the set of all possible policies, for infinite- 
horizon nondiscounted stationary problems, infinite-horizon discounted, 
and deterministic finite-horizon discounted and nondiscounted problems 
where, in the two latter cases, time dependence is included. For the first 
case, equivalent reductions are in terms of long-run proportions of times 
of being in a given state and taking a given action (or the steady-state 
probabilities, in special cases). For the second case, equivalent reduction 
is in terms of infinite vector streams of action-state probabilities. For the 
last case, equivalent reduction is in terms of the finite vector streams of 
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action-state probabilities. In these terms, the equivalent sets are the sets CM 
or C*D for the first case, CM or CMD in the second case, and CM(n), 
C*D(n) in the third case. It is important to stress that everything is relative 
to a given initial state i = il, since optimal solutions do not always exhibit 
the state uniformity characteristic of conventional Markov decision pro- 
cesses. 

No attempt has been made to look at other classes of problems such 
as to'tal return problems, nor to go outside the finite requirements, although 
clearly similar results wilt be obtainable under appropriate conditions for 
other situations. 

Section 4 looks at approaches to policy optimization, using mean, 
variance, and probabilistic constraints, which have appeared in the 
literature. The restriction to the policy classes specified enables two alterna- 
tive linear programming or quadratic programming approaches to be used, 
one in terms of  {(x~(t), ~r~(t)} (or {x~, rr~} in the stationary case), the 
probabilities of  being in state i, and taking action k at time t, and the policy 
defining probabilities of  taking action k at time t if we are in state i, and 

= (o~u), a ,  being the probability of  choosing a policy 7r~ in CD or CMz) 
as the case may be. 

Finally, for some problems, such as the finite-horizon problem or the 
optimal routing problems, some advantage both in terms of improved 
policies and in terms of computations may be obtained by introducing extra 
state variables to represent the accumulated return up to time t, and then 
using a final-value approach. Although, to fit within the framework of this 
paper, such returns should strictly belong to a finite set, it is to be expected 
that the results will go through in some cases with this restriction removed. 

It has not been the intention to identify possible research problems, 
but clearly the survey results suggest some possibilities such as those listed 
below. 

(i) To what extent can the results of Sections 2 and 3 be extended to 
more general state-action spaces? 

(ii) To what extent can those methods using criteria which have no 
utility base be said to be acceptable as approximation methods for utility 
based methods, where the utility models are taken to be the true ones, but 
where these are seen to be impractible for various reasons? 

(iii) I f  utility models are to be used, what computational procedures 
might be developed, bearing in mind the possibility that some utility models 
may involve complex functions of the history of the process at any time? 

(iv) Even for the criteria given in the paper, what computational 
procedures might be developed, e.g., for the Hordijk-Kaltenberg problem 
formulation of Section 4.1, and if we wish to find optimal pure policies, 
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how might this be done? For the mean-variance problem discussed at the 
end of Section 42, what computational schemes may be developed to solve 
the subproblems of CMD which are generated? 

6. Appendix: Column Generating Technique 

In Section 4.2 and other sections, the use of column generation tech- 
niques is suggested, without verification. Consider the semi-infinite linear 
program in {au} given in Section 4.2. This takes the form 

maximize z = ~ run,, 

subject to 

~ b ~ a ~ - b , ,  l<-s<-S, 

Ce u --> 0, 1 --< tt < (X3, 

where the coefficients {r,}, {bus} are given in the text and the constraint 

a , - = l  
u = l  

is replaced by two inequalities (not strictly necessary if we allow equality 
constraints). 

This is a semi-infinite linear program (a finite set of constraints), with 
convergence properties of the coefficients which allow the usual simplex 
method to be used. At any specific stage of the calculations, let NB be the 
nonbasic set of variables {a~}, and let {As}, 1 -< s ~ S, be the simplex multi- 
pliers at that stage. The canonical form of z is then 

and the next nonbasic variable to be made basic is obtained by solving 

maximize j r , -  ~ u ~ s ~  s=l A,bu,]. 

Reinterpreting in the original problem, this is the same as 

maximize pt-1 2 ~ x~u(t) rki(t) - a k • 
u c N B  t = l  i ~ l  k a K ( i , t )  s 

This is the same as choosing the policy zr~ c Cs to maximize the infinite- 
horizon discounted expected return with immediate reward structure 

S 

r~(t) = r f ( t ) -  E A~a~. 
S = I  
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