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Guidance Strategies for Near-Optimum 
Take-Off Performance in a Windshear 'a'3 
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Abstract. This paper is concerned with guidance strategies for near- 
optimum performance in a windshear. This is a wind characterized by 
sharp change in intensity and direction over a relatively small region 
of space. The take-off problem is considered with reference to flight in 
a vertical plane. 

First, trajectories for optimum performance in a windshear are 
determined for different windshear models and different windshear 
intensities. Use is made of the methods of optimal control theory in 
conjunction with the dual sequential gradient-restoration algorithm 
(DSGRA) for optimal control problems. In this approach, global infor- 
mation on the wind flow field is needed. 

Then, guidance strategies for near-optimum performance in a wind- 
shear are developed, starting from the optimal trajectories. Specifically, 
three guidance schemes are presented: (A) gamma guidance, based on 
the relative path inclination; (B) theta guidance, based on the pitch 
attitude angle; and (C) acceleration guidance, based on the relative 
acceleration. In this approach, local information on the wind flow field 
is needed. 

Portions of this were presented at the AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, 
January 6-9, 1986. The authors are indebted to Boeing Commercial Aircraft Company, 
Seattle, Washington and to Pratt and Whittney Aircraft, East Hartford, Connecticut for 
supplying some of the technical data pertaining to this study. 

2 The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, 
Virginia for helpful discussions. They are also indebted to Mr. Z. G. Zhao, Aero-Astronautics 
Group, Rice University, Houston, Texas for analytical and computational assistance. 

3 This research was supported by NASA-Langley Research Center, Grant No. NAG-I-516. 
This paper, a continuation of Ref.1, is based in part on Refs. 2-3. 

4 Professor of Astronautics and Mathematical Sciences, Aero-Astronautics Group, Rice Univer- 
sity, Houston, Texas. 

5 Senior Research Associate, Aero-Astronautics Group, Rice University, Houston, Texas. 
6 Captain, Delta Airlines, Atlanta, Georgia; and Chairman, Airworthiness and Performance 

Committee, Air Line Pilots Association (ALPA), Washington, DC. 

1 
0022-3239/86/0700-0001505.00/0 ~) 1986,Plenum Publishing Corporation 



2 JOTA: VOL. 50, NO. 1, JULY 1986 

Next, several alternative schemes are investigated for the sake of 
completeness, more specifically: (D) constant alpha guidance; (E) con- 
stant velocity guidance; (F) constant theta guidance; (G) constant 
relative path inclination guidance; (H) constant absolute path inclina- 
tion guidance; and (I) linear altitude distribution guidance. 

Numerical experiments show that guidance schemes (A)-(C) pro- 
duce trajectories which are quite close to the optimum trajectories. In 
addition, the near-optimum trajectories associated with guidance 
schemes (A)-(C) are considerably superior to the trajectories arising 
from the alternative guidance schemes (D)-(I). 

An important characteristic of guidance schemes (A)-(C) is their 
simplicity. Indeed, these guidance schemes are implementable using 
available instrumentation and/or modification of available 
instrumentation. 

Key Words. Guidance strategies, gamma guidance, theta guidance, 
acceleration guidance, flight mechanics, take-off, optimal trajectories, 
optimal control, feedback control, windshear problems, sequential 
gradient-restoration algorithm, dual sequential gradient-restoration 
algorithm. 

1. Introduction 

Low altitude windshear constitutes a considerable hazard in the take-off 
and landing of both civilian and military airplanes. For this reason, consider- 
able research has been done on this problem over the past 15 years. Most 
of the research has been concerned with meteorology, instrumentation, 
aerodynamics, flight mechanics, and stability and control. Recently, optimal 
flight trajectories in the the presence of a windshear have been studied (Ref. 
1). This opens the road to the development of guidance schemes for 
achieving near-optimum performance in a windshear (Refs. 2-3). 

Previous Research. Previous research on the topics covered in this 
paper can be found in Refs. 4-40. For a general review of windshear studies, 
see Ref. 4. For the equations of  motion without windshear, see Ref. 5; for 
the equations of motion with windshear, see Refs. 6-9. For windshear 
models, see Refs. 10-14. 

Concerning trajectory optimization, for a recent overview of theoretical 
calculus of  variations and optimal control, see Ref. 15. For algorithmic 
optimal control by means of gradient methods, see Refs. 16-20 (primal 
formulation) and Refs. 21-22 (dual formulation). For minimax optimal 
control, see Refs. 23-35; in particular, for aerospace applications of minimax 
optimal control see Refs. 24 and 31-35. Finally, for guidance schemes, see 
Refs. 14 and 36-40. 
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Present Research. This paper deals with guidance schemes for near- 
optimum performance in a windshear. The take-off problem is analyzed. 
In take-off, once an aircraft becomes airborne, the pilot has no choice but 
to fly through a windshear. His only control is the angle of attack. Indeed, 
it is logical to assume that, if a plane takes off under less-than-ideal weather 
conditions, the power setting is being held at that value which yields the 
maximum thrust. 

First, trajectories for optimum performance in a windshear are deter- 
mined for different windshear models and different windshear intensities. 
Use is made of the methods of optimal control theory in conjunction with 
the dual sequential gradient-restoration algorithm (DSGRA) for optimal 
control problems. In this approach, global information on the wind flow 
field is needed. 

Then, guidance schemes for near-optimum performance in a windshear 
are developed, starting from the optimal trajectories. Specifically, three 
guidance schemes are presented: (A) gamma guidance, based on the relative 
path inclination; (B) theta guidance, based on the pitch attitude angle; and 
(C) acceleration guidance, based on the relative acceleration. In this 
approach, local information on the wind flow field is needed. 

Schemes (A), (B), (C) are evaluated through numerical experiments 
(i) in order to determine whether the resulting trajectories are sufficiently 
close to the optimum trajectories and (ii) in order to compare the resulting 
trajectories with alternative guidance schemes. An important characteristic 
of Schemes (A), (B), (C) is their simplicity. Indeed, these guidance schemes 
are implementable using available instrumentation and/or modification of 
available instrumentation. 

Outline. Section 2 contains the notations, and Section 3 contains the 
formulation of the problem. Section 4 pertains to optimum flight trajectories. 
Section 5 refers to guidance schemes for near-optimum flight trajectories, 
and Section 6 refers to alternative guidance schemes. A comparison between 
the various guidance schemes is presented in Section 7, and the conclusions 
are given in Section 8. Finally, the data for the examples are presented in 
the Appendix (Section 9). 

2. Notations 

Throughout the paper, the following notations are employed: 
ARL = aircraft reference line; 
D = drag force, lb; 
g = acceleration of gravity, ft sec-2; 
h = altitude, ft; 
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K = gain  coefficient;  
L = lift force,  lb; 
m = mass,  lb ft -1 sec2; 
T = thrus t  force,  lb; 
V = relat ive veloci ty ,  ft sec-1; 
V~ = abso lu te  veloci ty,  ft sec-~; 
W = r a g = w e i g h t ,  lb; 
W = wind  veloci ty ,  ft sec-1; 
Wh = h - c o m p o n e n t  o f  wind  veloci ty,  ft sec-~; 
Wx = x - c o m p o n e n t  o f  wind veloci ty,  ft sec-~; 
x = hor izon ta l  d is tance ,  ft. 

Greek Symbols 

a = relat ive angle  o f  at tack,  rad;  
ae = abso lu te  angle  o f  at tack,  rad;  
fl = engine  p o w e r  sett ing; 
3' = relat ive pa th  inc l ina t ion ,  rad;  
7e = abso lu te  pa th  inc l ina t ion ,  rad;  
6 = thrus t  inc l ina t ion ,  rad;  
3e = e leva tor  deflect ion,  rad;  
0 = p i tch  a t t i tude  angle,  rad.  

Subscripts 

e = denotes  Ear th-f ixed system; 
1 = denotes  d i rec t ion  o r thogona l  to relat ive veloci ty;  
le = denotes  d i rec t ion  o r thogona l  to abso lu te  veloci ty;  
h = denotes  h-d i rec t ion ;  
x = denotes  x -d i rec t ion ;  
v = denotes  d i rec t ion  o f  relat ive veloci ty;  
ve = d e n o t e s  d i rec t ion  o f  abso lu te  veloci ty.  

Superscripts 

= denotes  der ivat ive  with respect  to t ime;  
= denotes  vec tor  quant i ty ;  
= denotes  nomina l  value.  
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3. I-roblem Formulation 

This section pertains to the formulation of the problem. Specifically, 
the coordinate systems are presented in Section 3.1 and the equations of 
motion are given in Section 3.2. The approximations employed for the force 
terms are discussed in Section 3.3, and the approximations employed for 
the windshear terms are shown in Section 3.4. The inequality constraints 
on the angle of attack and its time derivative are presented in Section 3°5, 
and the boundary conditions are given in Section 3.6. 

3.1. Coordinate Systems. In Ref. 1, three coordinate systems were 
considered: (i) the Earth-fixed system, (ii) the relative wind-axes system, 
and (iii) the absolute wind-axes system. It was assumed that flight takes 
place in a vertical plane. 

Let V denote the velocity of the aircraft with respect to the airstream; 
let ~ff¢ denote the velocity of the airstream with respect to the Earth; and 
let 17"~ denote the velocity of the aircraft with respect to the Earth. With this 
understanding, the coordinate systems (i), (ii), (iii) are defined below (see 
Fig. 1). 

In the Earth-fixed system Oxh, the point O is fixed with respect to the 
Earth; the x-axis is horizontal, positive in the sense of the motion; and the 
h-axis is orthogonal to the x-axis, hence vertical, positive upward. 

In the relative wind-axes system t~yt, the point P moves together with 
the aircraft; the x~-axis has the direction of the relative velocity vector ~'; 
and the ye-axis has the direction of the lift vector/S. 

In the absolute wind-axes system Px~y~, the point P moves together 
with the aircraft; the x~e-axis has the direction of the absolute velocity vector 

o 

w! 

_%__ 
m9 

Fig. 1. Coordinate systems and force diagram. 
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Ve; and the y~e-axis has the direction of the projected lift vector /-7.e; the 
latter vector is obtained by projecting/S in the direction orthogonal to x,e. 

3.2. Equations of Motion. Consistently with Ref. 1, we employ the 
following assumptions: (a) the aircraft is a particle of constant mass; (b) 
flight takes place in a vertical plane; (c) Newton's law is valid in an 
Earth-fixed system; and (d) the wind flow field is steady. Also consistently 
with Ref. 1, we make use of the relative wind-axes system. This is due to 
the fact that, in this system, the windshear terms appear explicitly in the 
equations of motion. 

With the above premises, the equations of  motion are written as follows: 

~ =  Vcos 3,+ Wx, 

/~ = Vsin 3,+ Wh, 

V= (T/m) cos(a + 3) - D/m - g sin 3, 

- [  (a W~/ax)( V cos 3,+ Wx) + (a W, Jah )( V sin 31+ Wh)] cos 3, 

These 

D = D(h, V, a), 

L = L(h, V, a), 

T= T(h, V, fl), 

Wx = Wx(x, h), 

wh = Wh(x, h ), 

and by the analytical relations 

Vex = Vcos y +  Wx, 

V~h = Vsin 3,+ Wh, 
2 v~=4(vL+ ve~), 

3,~ = arctan(Veh/Vex), 

O=a+% 

de= a + 3 , - T v  

(la) 

(~b) 

-[(aWh/ax)(V cos 3,+ W,c)+(OWh/Oh)(Vsin 3,+ Wh)] sin % (lc) 

~= ( T/mV) sin(a+ 8)+ L / m V - ( g /  V) cos "I, 

+[(aWx/ax)(Vcos 3,+ Wx)+(aW~,/ah)(Vsin 3,+ Wh)](1/V) sin 3' 

-[(aWh/aX)( V cos y+ Wx)+(aWh/ah)( Vsin 3,+ Wh)](1/ V) cos 3,. 

(ad) 
equations must be supplemented by the functional relations 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(3a) 

(3b) 

(3c) 

(3d) 
(3e) 

(3f) 
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For a given value of the thrust inclination 6, the differential system 
(1)-(2) involves four state variables (the horizontal distance x, the altitude 
h, the velocity V, and the relative path inclination 3') and two control 
variables (the angle of attack a and the power setting/3). However, the 
number of control variables reduces to one (the angle of attack a), if the 
power setting/3 is specified in advance. 

The quantities defined by the analytical relations (3) can be computed 
a posteriori, once the values of x, h, V, 3', or, /3 are known. Indeed, Vex, 
Veh, Ve, 3"e are known functions of the state variables defined by Eqs. 
(3a)-(3d). Analogously, 0, ae are known functions of the state variables 
and the control variables defined by Eqs. (3e)-(3f). 

3.3. Approximations for the Force Terms. Here, we discuss the 
approximations employed in the description of the forces acting on the 
aircraft, namely, the thrust, the drag, the lift, and the weight. Because the 
trajectories under investigation involve relatively minor variations of the 
altitude, the air density is assumed to be constant. 

Thrust. The thrust T is approximated with the quadratic function 

T= Ao+ A1V+ AzV 2, (4) 

where V is the relative velocity and where the coefficients A0, A1, A2 depend 
on the altitude of the runway, the ambient temperature, and the engine 
power setting. For given runway altitude, ambient temperature, and engine 
power setting, the coefficients Ao, A1, A2 can be determined with a least- 
square fit of manufacturer-supplied data over a given interval of velocities. 

Drag. The drag D is written in the form 

D = (1/2)CopSV 2, (5) 

where p is the air density, S is a reference surface, V is the relative velocity, 
and CD is the drag coefficient. In turn, the drag coefficient is approximated 
with the quadratic function 

CD=Bo+ Blot+ B2ot 2, a~Ot, ,  (6) 

where a is the relative angle of attack and where the coefficients Bo, B1, B2 
depend on the flap setting and the undercarriage position (gear up or gear 
down). For given flap setting and given undercarriage position, the 
coefficients Bo, B1, Bz can be determined with a least-square fit of manufac. 
turer-supplied data over the interval 0 -  a -< a , .  
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Lift. The lift L is written in the form 

L = (1/2) CLpSV z, (7) 

where p is the air density, S is a reference surface, V is the relative velocity, 
and CL is the lift coefficient. In turn, the lift coefficient is approximated as 
follows: 

CL = Co+ Cta, a <- ~**, (8a) 

CL=Co+C1a+C2(a-a**)  2, a**<_a<_a,, (8b) 

where a is the relative angle of attack and where the coefficients Co, C1, C2 
depend on the flap setting and the undercarriage position (gear up or gear 
down). For given flap setting and given undercarriage position, the 
coefficients Co, C1 can be determined with a least-square fit of  manufacturer- 
supplied data over the interval 0--<a-<a**. With Co, C1 known, the 
coefficient Cz is determined with a least-square fit of  manufacturer-supplied 
data over the interval a**-< a - a , .  

Weight. The mass m is regarded to be constant. Hence, the weight 
W = mg is regarded to be constant. 

3.4. Approximations for the Windshear. Here, we discuss some of the 
approximations employed in the description of the windshear,. We observe 
that, under the assumption that the wind flow field is steady, the wind 
components W,:, Wh have the form 

Wx = wx(x, h), Wh = Wh(x, h). (9) 

Windshear Models. Over the past several years, considerable attention 
has been given to the study of a severe meteorological condition known as 
a microburst (Refs. 4 and 6-14). This condition involves a descending 
column of  air, which then spreads horizontally in the neighborhood of  the 
ground. This condition is hazardous, because an aircraft in take-off or 
landing might encounter a headwind coupled with a downdraft, followed 
by a tailwind coupled with a downdraft. A qualitative example of the vertical 
cross section of  a microburst is shown in Fig. 2. 

It is clear that, in order to perform realistic analyses of  take-off and 
landing under  severe meteorological conditions, one must represent wind 
flow fields of the type shown in Fig. 2. The representation of the wind flow 
field can be obtained from the combination of theory and experimental 
measurements. 

From an engineering point of view, a simplifying observation can be 
made. In the neighborhood of the ground, the vertical component of  the 
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Fig. 3. 

Fig. 4. 

Fig. 2. 

h 

Typical cross section of the wind flow field (microburst). 

¢/x 

1 x 

Idealized distribution of the horizontal component of the wind velocity ( W~ positive 
for tailwind, negative for headwind). 

wx t 

Idealized distribution of the horizontal component of the wind velocity ( W~ positive 
for tailwind, negative for headwind). 

wind velocity is small by comparison with the horizontal component (Ref. 
14). Therefore, the idea arises of studying take-off and landing in the 
presence of windshear by considering only the horizontal component of  
the wind velocity. This simplified wind model is represented by 

w,~ = Wx(x ) ,  wh = o ( lo )  

and is shown in Figs. 3-4. Figure 3 is an idealization of  the near-the-ground 
behavior of the microburst model shown in Fig. 2. In turn, Fig. 4 is a 
particular case of Fig. 3. 

Figure 4 represents the transition from a uniform headwind to  a uniform 
tailwind. It is governed by the following equations 

Wx=-k,  x<_a, 

W x = - k + 2 k ( x - a ) / ( b - a ) ,  a<_x<-b, 

Wx= k, x>-b. 

( l l a )  

( l l b )  

( l l c )  
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Therefore, the wind velocity difference is 

A Wx = 2k (12a) 

and the windshear intensity is 

A W x / A x  = 2 k / ( b  - a).  (12b) 

Equations (11)- (12) represent a three-parameter family of wind models, 
the parameters being a, b,/c Note that a is associated with the windshear 
onset, and b is associated with the windshear termination. If a and b are 
given, Eqs. (11)-(12) represent a one-parameter family of wind models. 
The parameter k determines both the wind velocity difference (12a) and 
the windshear intensity (12b). 

Table 1 shows the values of A Wx and A W x / A x  for several values of 
the parameter k, under the assumption that b - a  = 4,000 ft. Small values 
of k correspond to windshears that are survivable, while large values of k 
correspond to windshears that are not survivable. 

The last column of Table 1, labeled "Remarks", attempts to correlate 
the windshear intensity A W x / A x  with several recent windshear episodes. 
The correlation is qualitative and is merely done to establish a reference 
frame for the numerical examples of Sections 4-6. 

Smoothing Technique. Inspection of Eqs. (1) shows that the first 
derivatives of the wind components are present in the dynamical equations. 
Therefore, if gradient-type algorithms are used to optimize flight trajectories 
in the presence ofwindshear (Refs. 16-22), one needs the second derivatives 
of the wind components. For the idealized wind models considered in Figs. 
3-4, the first derivatives are discontinuous at the corner points; therefore, 

T a b l e  1. W i n d  ve loc i ty  d i f fe rence  a n d  w i n d s h e a r  in tens i ty ,  b-a = 4,000 ft. 

k a Wx a Wx/aX 
(It sec - t )  (It see -1) (see - l )  Remarks 

10 20 0.005 
20 40 0.010 JAWS 
30 60 0.015 
40 80 0.020 CAL 063 
50 100 0.025 DAL 191 
60 120 0,030 EAL 066, PAA 759 
70 140 0.035 

80 160 0.040 CAL 426 

90 180 0.045 

100 200 0.050 Andrews AFB 
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the second derivatives do not exist at these points. In the real world, this 
situation is not acceptable. This being the case, a smoothing technique is 
needed to ensure the continuity of both the first derivatives and the second 
derivatives of the wind components. This smoothing technique was dis- 
cussed in Ref. 1 and is not repeated here, for the sake of brevity. 

3.5. Inequality Constraints. The angle of attack a appearing in Eqs. 
(1)-(3), (6), (8) is subject to the inequality 

a - < a , ,  (13) 

where a ,  is prescribed upper bound. In addition, the time derivative of the 
angle of attack {s subject to the inequality 

- C < - & -  < +C,  (14) 

where C is a prescribed, positive constant. 
For the optimal trajectories of Section 4, Ineqs. (13)-(14) are satisfied 

indirectly via transformation techniques, discussed in Ref. 1. In particular, 
Ineq. (14) requires the conversion of a from a control variable into a state 
variable. 

For the guidance schemes of Sections 5-6, Ineq. (13) is satisfied directly. 
On the other hand, Ineq. (14) is satisfied indirectly through the proper 
choice of the gain coefficient K. 

3.6. Boundary Conditions. First, we refer to the optimal trajectories of 
Section 4. Concerning the initial conditions, it is assumed that the values 
of x, h, V, % a are specified at t = 0; that is, 

x (0 )  = Xo, h (0 )  = h0, V(0)  = Vo, 3'(0) = 3'0, (15) 

a(0) = no. (16) 

We note that the specification of the initial value of a is possible in the 
light of the transformation technique ensuing from Ineq. (14); see Ref. 1. 

Concerning the final conditions, it is assumed that the value of 3' is 
specified at t = r, that is, 

3"(r) = ?'o. (17) 

The remaining state variables are free at the final point. The final time r is 
chosen to be large enough to correspond to a no-windshear condition. 

Clearly, use of (17) means that, at the final point, one intends to restore 
the initial value of the path inclination. In accordance with the terminology 
employed in Ref. 1, this type of boundary condition is called boundary 
condition BC1. 
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Next, we refer to the guidance schemes of Sections 5-6. At the initial 
time t = 0, it is assumed that the values of  x, h, V, y are specified; that is, 
Eqs. (15) hold, while Eq. (16) is disregarded. At the final time t = r, it is 
assumed that the values of  x, h, V, 3' are free; in particular, Eq. (17) is 
disregarded; nevertheless, approximate enforcement of (17) can take place 
through the proper choice of the guidance law and the gain coefficient K. 

4. Optimum Flight Trajectories 

This section pertains to optimum flight trajectories, Specifically, the 
optimal control problem is formulated in Section 4.1, and the sequential 
gradient-restoration algorithm is briefly mentioned in Section 4.2. The 
numerical results for the optimal flight trajectories are given in Section 4.3, 
with particular reference to the effect of the windshear model and the effect 
of the windshear intensity. 

4.1. Optimal Contro! Problem. We refer to the system described in 
Section 3. We assume that the wind flow field is known in advance. We 
assume that the power setting is given, so that the only control is the angle 
of attack, treated here as a state variable. In addition, we assume that the 
initial conditions (15)-(16) are given in conjunction with the final condition 
(17). With this understanding and with particular reference to take-off 
trajectories, we formulate the following optimization problem (Ref. 1). 

Problem (P7). Minimize the peak value of the modulus of the 
difference between the relative path inclination and a reference value, 
assumed constant. In this problem, the performance index is given by 

I = maxt3 ' -  3'RI , O_<t--<% (18a) 
t 

where 

3"R = 3'o. (18b) 

This is a minimax problem or Chebyshev problem of optimal control. It 
can be reformulated as a Bolza problem of optimal control (Ref. 35), in 
which one minimizes the integral performance index 

J= (3'- Ye) qdt, (18c) 

for large values of the positive, even exponent q. 
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Remark. In Ref. 1, eight fundamental optimization problems were 
formulated [Problems (P1)-(PS)]. They were solved for four types of boun- 
dary conditions (boundary conditions BC0, BC1, BC2, BC3). Among the 
trajectories investigated, the trajectory solving Problem (P7) for boundary 
condition BC1 proved to be of particular interest. This is why the present 
paper refers to this particular optimal trajectory. The basic idea is to develop 
guidance schemes which allow the aircraft to approach the behavior of the 
optimal trajectory solving Problem (P7) for boundary condition BC1. 

4.2. Sequential Gradient-Restoration Algorithm. Problem (P7) can be 
solved using the family of sequential gradient-restoration algorithms for 
optimal control problems (SGRA, Refs. 16-22), in either the primal formula- 
tion (PSGRA, Refs. 16-20) or the dual formulation (DSGRA, Re£s. 21-22). 
Regardless of whether the primal formulation is used or the dual formulation 
is used, sequential gradient-restoration algorithms involve a sequence of 
two-phase cycles, each cycle including a gradient phase and a restoration 
phase. In the gradient phase, the value of the augmented functional is 
decreased, while avoiding excessive constraint violation. In the restoration 
phase, the value of the constraint error is decreased, while avoiding excessive 
change in the value of the functional. In a complete gradient-restoration 
cycle, the value of the functional is decreased, while the constraints are 
satisfied to a preselected degree of accuracy. Thus, a succession of subop- 
timal solutions is generated, each new solution being an improvement over 
the previous one from the point of view of the value of the functional being 
minimized. 

The convergence conditions are represented by the relations 

P -< el, Q --- ~2. (19) 

Here, P is the norm squared of the error in the constraints, Q is the norm 
squared of the error in the optimality conditions, and Et, E2 are preselected, 
small, positive numbers. 

In this work, the sequential gradient-restoration algorithm is employed 
in conjunction with the dual formulation. The algorithmic details can be 
found in Refs. 21-22. They are omitted here, for the sake of brevity. 

4.3. Numerical Results. Optimal flight trajectories were computed for 
a Boeing B-727 aircraft powered by three JT8D-17 turbofan engines. It was 
assumed that: (i) the aircraft has become airborne from a runway located 
at sea-level altitude; (ii) the ambient temperature is 100 deg Fahrenheit; 
(iii) the gear is up; (iv) the flap setting is ~F = 15 deg; and (v) the engines 
are operating at maximum power setting. The complete data for the examples 
can be found in Section 9. In particular, the final time is ~" = 40 sec. This is 
about twice the duration of the windshear encounter (18 sec). 
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Problem (P7) was solved employing the sequential gradient-restoration 
algorithm in connection with the dual formulation (DSGRA, Refs. 21-22). 
This algorithm was programmed in FORTRAN IV, and the numerical results 
were obtained in double-precision arithmetic. Computations were per- 
formed at Rice University using an NAS-AS-9000 computer. 

The interval of integration was divided into 100 steps. The differential 
systems were integrated using Hamming's modified predictor-corrector 
method, with a special Runge-Kutta starting procedure. Definite integrals 
were computed using a modified Simpson's rule. Linear algebraic systems 
were solved using a standard Gaussian elimination routine. 

Several combinations of windshear models and windshear intensities 
were considered (see Refs. 2-3). For computational efficiency, the state 
variables and the time were suitably scaled. For Problem (P7), the functional 
being minimized was suitably scaled. The following stopping conditions 
were employed for the dual sequential gradient-restoration algorithm: 

P<-E-IO,  Q<-E-08,  (20) 

where P denotes the constraint error and Q denotes the error in the 
optimality conditions. 

The results are given in Figs. 5-6. Each figure contains six parts: the 
wind velocity Wx; the flight altitude h; the relative velocity V; the relative 
path inclination ~; the angle of attack a; and the pitch attitude angle 0. 

Effect of the Windshear Model. We refer to the optimal trajectories 
of Problem (P7), minimax IA),I, in connection with boundary condition 
model BC1, wind velocity difference A Wx = 80 ft sec -1, windshear intensity 
A Wx/Ax = 0.020 see -1. We consider the windshear models WS1, WS2, WS3 
(see Fig. 5). We recall that, in model WS1, the windshear starts at x = 0 ft; 
in model WS2, the windshear starts at x = 700 ft; in model WS3, the wind- 
shear starts at x = 1,700 ft (see Section 9 for details). 

From Fig. 5, we see that a similarity of behavior exists between the 
optimal trajectories associated with windshear models WS1, WS2, WS3. In 
particular, the following points must be noted: (i) the altitude distribution 
exhibits a monotonic behavior, regardless of the windshear model; (ii) for 
the windshear portion of the flight, the angle of attack distribution is 
qualitatively the same for models WS1, WS2, WS3; specifically, the o~(t) 
distribution for models WS2, WS3 can be obtained from the a (t) distribution 
for model WS1 by means of a timewise parallel displacement; an analogous 
remark holds for the velocity distribution; it is possible that the combined 
behavior of the angle of attack distribution and the velocity distribution 
might be of interest for the development of a guidance scheme; (iii) for the 
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prewindshear portion of the flight, it is desirable to slightly decrease the 
angle of attack, while simultaneously increasing the relative velocity. 

Effect of the Windshear Intensity. We refer to the optimal trajectories 
of Problem (P7), minimax IA3,[, in connection with boundary condition 
model BC1, windshear model WS 1. We consider the wind velocity differences 
A Wx = 80, 100, 120, 140 ft sec -~, corresponding to the windshear intensities 
AW:,/Ax = 0.020, 0.025, 0.030, 0.035 sec -1 (see Fig. 6). 

From Fig. 6, the following points must be noted: (i) as the wind velocity 
difference increases, the altitude distribution exhibits a considerable change, 
while this is not the case with the velocity distribution and the angle of 
attack distribution; (ii) if the wind velocity difference is A W, = 80 ft sec -1 
or A W, = 100 ft sec -t, the altitude distribution has a monotonically climbing 
behavior; if the wind velocity difference is increased to A W, = 120 ft sec -1, 
the altitude distribution is characterized by a dip, so that the optimal 
trajectory is dangerously close to the ground; if the wind velocity difference 
is further increased to A W, = 140 ft sec -1, the optimal trajectory hits the 
ground; (iii) with reference to the cases where AWx=120f tsec  -1 and 
A Wx = 140 ft sec -1, the windshear inertia force is larger than both the drag 
and the thrust over a considerable time interval; this explains why the 
optimal trajectory for A W, = 120 ft sec -~ is dangerously close to the ground, 
while the optimal trajectory for h W~ = 140 ft sec -~ hits the ground; (iv) for 
the windshear portion of the flight, the angle of attack distribution is 
relatively insensitive to the wind velocity difference A Wx; an analogous 
remark holds for the velocity distribution; it is possible that the combined 
behavior of the angle of attack distribution and the velocity distribution 
might be of interest for the development of a guidance scheme. 

Comment. From the previous numerical results, certain concepts seem 
to emerge, relative to the windshear portion of the flight trajectory: (i) low 
angles of attack correspond to high velocities and high angles of attack 
correspond to low velocities; and (ii) the angle of attack boundary is reached 
at the minimum velocity point, that is, about the time when the windshear 
ends. Concepts (i) and (ii) appear to be true, regardless of the windshear 
model and the windshear intensity. 

5. Near-Optimum Guidance Schemes 

This section pertains to guidance schemes for near-optimum flight 
trajectories. Specifically, (A) the gamma guidance is presented in Section 
5.1; (B) the theta guidance is presented in Section 5.2; and (C) the acceler- 
ation guidance is presented in Section 5.3. The implementation of the 
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guidance laws is discussed in Section 5.4. Then, the numerical results for 
the near-optimum guidance schemes are given in Section 5.5, with particular 
reference to the effect of the windshear model and the effect of the 
windshear intensity. 

5.1. Gamma Guidance. Scheme (A). Here, we present a guidance 
scheme, based on path inclination, whose objective is to approximate the 
behavior of the optimal trajectories in a windshear. The guidance scheme 
relies on certain basic facts, which can be established by inspection of the 
optimal trajectories presented in Fig. 5-6: 

(i) it appears that there is some relation between the angle of attack 
and the velocity; it also appears that this relation is relatively insensitive 
to the windshear model and the windshear intensity; more specifically, low 
angles of attack correspond to high velocities, and high angles of attack 
correspond to low velocities; 

(ii) it appears that the average path inclination which can be 
maintained in a windshear depends strongly on the windshear intensity; 
more specifically, if the windshear intensity is zero, the average path inclina- 
tion is equal to the initial value yo; if the windshear intensity increases, the 
average path inclination decreases, tending to zero when A W x / A x =  
0.030 sec -1, A Wx = 120 ft sec -I. 

From facts (i) and (ii), one surmises that the nominal values of the 
angle of attack and the path inclination can be described by relations of 
the form 

d = ~(V), (21a) 

-7 = -7(wx) ,  (21b) 

where 

P¢x = (,9 W~/Ox)(  V cos y + Wx). (21c) 

These relations indicate that the gamma guidance law should have the form 

y = -7(IVx). (22) 

In turn, (22) can be implemented through the feedback control law 

- a ( v )  = - K [ 3 ' -  -7( Vex)I, ~ _< ~ , ,  (23)  

where K is the gain coefficient. 

Nominal Angle of Attack. Let the dynamical equations (lc) and (ld) 
be rewritten in the alternative form 

= ( T / m )  cos(a + 6) - D / m  - g sin 3' - R/~ cos y, (24a) 

= ( T / m  V) sin(a + 8) + L~ rn V - (g/V) cos 3" + (9¢x/V) sin 3'. (24b) 
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This form arises upon considering (21c) and the assumption that Wh is 
negligible. 

Next, focus attention on (24b) and assume that, along a large portion 
of the optimal trajectory, the path inclination is sufficiently small, so that 

cos 3' ~- 1, 

I?V~ sin y ~ liVxy << g, 

~<< g/V.  

Under these assumptions, (24b) yields 
equation: 

T sin(a + a) + L -  mg = 0, 

which supplies implicitly the function (21a). 

the following 

(25a) 

(25b) 

(25c) 

nondifferential 

(26) 

Next, we employ the representation (4) for the thrust and the representa- 
tion (7)-(8) for the lift, namely, 

T = Ao+ A1 V+ A 2 V 2, 

L= (1/2)( Co + C~cQpSV 2, 

L = 0 / 2 ) [ C o  + C ~  + C2(e~ - a**)2]psv 2, 

(27a) 

a <_ a**, (27b) 

a** <- a _< a , .  (27c) 

Also, we expand the trigonometric term s i n ( a + g )  in Taylor series as 
follows: 

sin(o~ + a) m (a + 6). (28) 

From (26)-(28), we obtain the following algebraic equations: 

Do+ D l a  = 0, a <- o%,, (29a) 

Eo-{- El(ff - o~,,) + E2(oL - oL**) 2 = 0, o~** <_ oe _< o%, (29b) 

which admit the solutions 

ol = -Do/D1,  a - o%,, (30a) 

a-=o%,+(1/2E2)[-E1+~/(E2-4EoE2)] ,  ~**-< o~_< a , .  (30b) 

The coefficients Do, D~ and Eo, El,  Ez depend on the state variables. They 
are given by 

Do = -1  + ( 8 / mg )( Ao + A~ V+ A2 V 2) + ( CopS/ 2mg ) V 2, 

D 1 = ( 1/mg)(Ao + A1 V+ A 2 V 2 ) + ( ClpS/2mg ) V 2, 

(31a) 

(31b) 
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and 

Eo = Do+ Dla**, (32a) 

E1 = D1, (32b) 

E2 = (C2pS /2mg)  V 2. (32c) 

Equations (30)-(32) supply explicitly the function (21a). For the Boeing 
B-727 aircraft and for the data of Section 9, the nominal angle of attack 
o7 = o~(V) is shown in Table 2. 

Nominal Path Inclination. 
by the following relations: 

~= 3,o, 

= yo(1 - 4 W , : / g ) ,  

3~ = y o / t 4 ,  

The nominal path inclination is described 

IVx/g <- O, (33a)  

0 <- tiCx/g <- 13/56 ,  (33b)  

liVx/ g >- 13/56 ,  (33c) 

whose justification is given below. If the wind gradient is negative or zero 
(therefore, favorable), the path inclination should be be kept constant [see 
(33a)]. If the wind gradient is large positive (therefore, very unfavorable), 

Table 2. Gamma guidance, 
nominal  angle of  attack. 

V 
(ft sec -1) (deg) 

200 16.00 
210 16.00 
220 t6.00 
230 16.00 
232.63 16.00 
240 14.51 
250 13.06 
259.57 12.00 
260 11.96 
270 11.03 
280 10.19 
290 9.43 
300 8.74 
310 8.11 
320 7.54 
330 7.O2 
340 6.54 
350 6.10 
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the path inclination should be kept at a small positive value [about 0.5 deg, 
see (33c)]. If the wind gradient is moderate positive, Eq. (33b) establishes 
a linear dependence of ~ on the windshear intensity. Note that ~ given by 
(33b) vanishes for r~Vx/g = 1/4, corresponding to 5W~/Ax=O.O3Osec -1. 
However, the value ~ = 0 is undesirable and is prevented by (33c). The 
values of the nominal path inclination ~ = ~(if'x) are shown in Table 3. 

5.2. Theta Guidance. Scheme (B). Here, we present a guidance 
scheme, based on pitch attitude angle, whose objective is to approximate 
the behavior of the optimal trajectories in a windshear. The theta guidance 
scheme is similar to the gamma guidance scheme, but perhaps easier to 
implement in actual flight. 

Omitting the details, the nominal values of the angle of attack and the 
pitch attitude angle can be described by relations of the form 

5 = 5(V),  (34a) 

0=  0( Iidx, V), (34b) 

where ff'x is supplied by Eq. (21c). These relations indicate that the theta 
guidance law should have the form 

0 = O( V¢~, V), (35) 

with the implication that 

a = O( lfVx, V) - % a - a , .  (36) 

Table 3. Gamma guidance, 
nominal path inclination. 

fi~x/g ~/~o 

- 0.250 1.000 

- 0.200 1.000 

- 0 . 1 5 0  1.000 

- 0 . 1 0 0  1.000 

- 0.050 1.000 

0.000 1.000 

0.050 0.800 
0.100 0.600 

0.150 0.400 
0.200 0.200 

0.232 0.071 

0.250 0.071 

0.300 0.071 
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Alternatively, (35) can be implemented through the feedback control 
law 

a - ffL(V) = - K [ O  - O( IV,:, V)], c~ -< a , ,  (37) 

where K is the gain coefficient. In Eqs. (36)-(37), the nominal pitch attitude 
angle 0( IVx, V) is given by 

& IVx, v) = 4(IVx) + (38) 

where the function 4(IVy) is supplied by Eqs. (33). The nominal angle of 
attack ~ (V) is the same as in the gamma guidance scheme. Therefore, it is 
supplied by Eqs. (30)-(32). 

5.3. Acceleration Guidance. Scheme (C). Here, we present a guidance 
scheme, based on relative acceleration, whose objective is to approximate 
the behavior of the optimal trajectories in a windshear. The guidance scheme 
relies on the fact that, for the windshear portion of the flight, the relative 
acceleration is approximately proportional to the windshear intensity. 

The acceleration guidance law has the form 

17+ CIV~ cos 3/= 0, (39) 

which determines the angle of attack in terms of the state variables and the 
windshear intensity. Upon combining (24a) and (39), and upon eliminating 
17, we obtain the following relation: 

T cos(c~ + 8) - D - m g  sin y - m(1 - C) Ivx cos y = 0. (40) 

Next, we employ the representation (4) for the thrust and the representation 
(6) for the drag, namely, 

T = Ao+A1V+A2V 2, (41a) 

D = (1/2)(Bo+ BlOt -t- Bgol2)pSV 2, (41b) 

and we expand the trigonometric term cos(a + 8) in Taylor series as follows: 

cos(a + 3) ~ 1 - (1/2)(a + 6) 2. (42) 

From (40)-(42), we obtain the following quadratic equation: 

F o + F l o z + F 2 a 2 = O ,  a < _ a . ,  (43) 

which admits the solution 

o ~ = ( 1 / 2 & ) [ - F I  + . , / ( F ~ - 4 F o F 2 ) ] ,  o~<_o%. (44) 
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The coefficients Fo, F~, F2 depend on the state variables and the intensity 
of the windshear. They are given by 

law 

• % = [( - 2 + 62)/2mg](Ao + A~ V+ A2 V z) + (BopS/2mg) V 2 

+sin y +  (1 - C)(('Vx/g) cos y, (45a) 

Fa = (¢3/mg)(ao+ a~ V+ A2 V 2) + (B lpS /2mg)  V 2, (45b) 

F2 = (1/2mg)(Ao + A1 V+ A2 V 2 ) + (BzpS/2mg)  V 2. (45c) 

Alternatively, (39) can be implemented through the feedback control 

c~ - o~(V) = - K [  - 1;'- CI7¢x cos y], ce -< c~., (46) 

where K is the gain coefficient. In Eq. (46), the nominal angle of attack 
c~(V) is the same as in the gamma guidance scheme. Therefore, it is supplied 
by Eqs. (30)-(32). The computation of I/¢x is discussed in Section 5.4. 

We note that the acceleration guidance scheme can be employed in 
either the analytical form (44)-(45) or the feedback form (46). Use of 
(44)-(45) yields more accuracy. On the other hand, use of (46) yields more 
stability. 

We also note that, in both the analytical form (44)-(45) and the feedback 
form (46), the value of the proportionality constant C must be specified. 
From the analysis of the optimal trajectories (Figs. 5-6), it appears that the 
most desirable value is 

C = 0.50. (47) 

Integrated Form. An integrated form of the acceleration guidance law 
(39) can be obtained by observing that, if the path inclination is sufficiently 
small, the hypothesis 

cos y --- 1 (48) 

can be employed. Hence, (39) becomes 

12+ Cl)¢x = 0, (49) 

which upon integration yields 

v -  Vo+ c (  wx - Wxo) = 0. ( 5 0 )  

This relation can be implemented through the feedback control law 

,~-a(V)=-K[Vo-V+C(Wxo-Wx)], o,<_,~,, (51) 

where K is the gain coefficient. The constant C is set at the level (47). 
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5.4. Implementation of the Guidance Laws. In the previous sections, 
we presented three guidance schemes: (A) gamma guidance, (B) theta 
guidance, and (C) acceleration guidance. All of these schemes are based 
on the measurement of the local values of the state variables, the control 
variables, and the windshear intensity. 

We observe that the values of V, % 0, a can be measured with present 
instrumentation. On the other hand, the value of ff'x cannot be determined 
with present instrumentation, but can be computed indirectly from acceler- 
ation measurements. 

Computation of 14'x. Consider Eq. (la), 

~ =  Vcos 2/+ Wx, (52) 

and observe that its time derivative is given by 

St= f ' cos  2/- Vsin 2/3~+ Vex. (53) 

For small values of the path inclination, the approximations 

cos 7 = 1, (54a) 

sin 7 = % (54b) 

I V2/3'[ << [VI (54c) 

can be employed. As a consequence, Eq. (53) reduces to 

Vex = ~ - V. (55) 

In turn, 5~ can be obtained from the measurement of the inertial acceleration, 
while l~" can be obtained by taking the time derivative of the relative velocity. 

Elevator Deflection. In the previous sections, the gamma guidance, 
the theta guidance, and the acceleration guidance were expressed in the 
feedback control forms (23), (37), (46), (51). This is because the rotational 
motion of the aircraft is not considered in this paper. 

If  the rotational motion is considered, the elevator deflection 8e replaces 
the angle of  attack a as the control. As a consequence, the feedback control 
laws take the following more practical forms: 

8. - 8. = - K [ 2 / -  33(if'.) ], ls~I < 8 . . ,  (56a) 

8~ - 8~ = - K [  e - 0 (  IiV., V)], 18.t-< 8 . . ,  (56b) 

8e -- ge = - g [  - ~ r _  C~Vx cos 2/], 1Be[- 8 , , ,  (56c) 

8e - -  ge = - K [  V0- V+ C( Wx0 - Wx)], t8,1-< Be,, (56d) 

where g, is the nominal elevator deflection and B,, is the upper bound to 
the elevator deflection. We note that 8, is a function of the state variables, 
to be suitably defined. 
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5.5. Numerical Results. The near-optimum guidance schemes (A)- 
(C) were programmed in FORTRAN IV, and the numerical results were 
obtained in double-precision arithmetic. Computations were performed at 
Rice University using an NAS-AS-9000 computer. 

The interval of integration was divided into 500 steps. The differential 
systems were integrated using Hamming's modified predictor-corrector 
method with a special Runge-Kutta starting procedure. 

The gamma guidance [Scheme (A)l was implemented in the form given 
by Eqs. (23) and (30)-(33), with K = 10. The theta guidance [Scheme (B)] 
was implemented in the form given by Eqs. (37)-(38) and (30)-(33), with 
K = 10. The acceleration guidance [Scheme (C)] was implemented in the 
form given by Eqs. (44)-(45), with C = 0.50. 

Several combinations of windshear models and windshear intensities 
were considered (see Refs. 2-3). With reference to a Boeing B-727 aircraft 
with three JTSD-17 turbofan engines, the data of Section 9 were employed. 
In particular, the inital conditions are given by Eqs. (75) and the final time 
is given by Eq. (77). 

Complete numerical results are presented in Figs. 7-12 of Ref. 2. 
Specifically, Figs. 7-8 refer to Scheme (A); Figs. 9- t0  refer to Scheme (B); 
and Figs. 11-12 refer to Scheme (C). Also, Figs. 7, 9, 11 refer to the 
effect of the windshear model; and Figs. 8, 10, 12 refer to the effect of the 
windshear intensity. Each figure contains six parts: the wind velocity Wx; 
the flight altitude h; the relative velocity V; the relative path inclination 7; 
the angle of attack a; and the pitch attitude angle 0. 

Inspection of the numerical results of Ref. 2 shows that: (i) there is a 
remarkable qualitative agreement between gamma guidance, theta guidance, 
and acceleration guidance; and (ii) the near-optimal trajectories arising 
from the above guidance schemes exhibit an excellent qualitative agreement 
with the optimal trajectories. This being the case, we compare only the 
gamma guidance trajectories (Figs. 7-8) with the optimal trajectories (Figs. 
5-6). 

Effect of the Windshear Model. We refer to the gamma guidance 
trajectories, in connection with wind velocity difference A Wx = 80 ft sec -1, 
windshear intensity A Wx//~x=O.O2Osec -1. We consider the windshear 
models WSl, WS2, WS3. We recall that, in model WS1, the windshear starts 
at x = 0 ft; in model WS2, the windshear starts at x = 700 ft; in model WS3, 
the windshear starts at x = 1,700 ft (see Section 9 for details). 

From Figs. 5 and 7, we see that a similarity of behavior exists between 
the gamma guidance trajectories and the optimal trajectories associated 
with windshear models WS1, WS2, WS3. In particular, the following points 
must be noted: (i) for the windshear portion of the flight, the gamma 
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guidance trajectories are quite close to the optimal trajectories; (ii) for the 
prewindshear portion of the flight, the gamma guidance trajectories are 
characterized by constant angle of attack and constant relative velocity; on 
the other hand, the optimal trajectories tend to decrease slightly the angle 
of attack, while simultaneously increasing the relative velocity; the difference 
of behavior is due to the fact that the computation of the gamma guidance 
trajectories is based on local information, while the computation of the 
optimal trajectories is based on global information; (iii) for the postwind- 
shear portion of the flight, the gamma guidance trajectories tend to recover 
the initial value of the path inclination, even though the boundary condition 
7(7") = Yo, which was employed in the computation of the optimal trajec- 
tories, was not actually imposed in the computation of the gamma guidance 
trajectories. 

Effect of the Windshear Intensity. We refer to the gamma guidance 
trajectories, in connection with windshear model WS1. We consider the 
wind velocity differences A Wx = 80, 100, 120, 140 ft sec -1, corresponding to 
the windshear intensities A W x / A x  = 0.020, 0.025, 0.030, 0.035 sec -1. 

From Figs. 6 and 8, the following points must be noted: (i) for the 
windshear portion of the flight, the gamma guidance trajectories are quite 
close to the optimal trajectories; (ii) for the postwindshear portion of the 
flight, the gamma guidance trajectories tend to recover the initial value of 
the path inclination, even though the boundary condition y(r)  = 30, which 
was employed in the computation of the optimal trajectories, was not 
actually imposed in the computation of the gamma guidance trajectories; 
(iii) if the wind velocity difference is A Wx = 80 ft sec -1, the altitude distribu- 
tion has a monotonically climbing behavior in both the gamma guidance 
trajectory and the optimal trajectory; (iv) if the wind velocity difference is 
increased to A Wx = 100 ft sec -1, the altitude distribution has a monotoni- 
cally climbing behavior in both the gamma guidance trajectory and the 
optimal trajectory; (v) if the wind velocity difference is increased to A W~ = 
120 ft sec -1, the altitude distribution is characterized by a dip in both the 
gamma guidance trajectory and the optimal trajectory; (vi) if the wind 
velocity difference is increased to A Wx = 140 ft sec -~, both the gamma guid- 
ance trajectory and the optimal trajectory hit the ground. 

6. Alternative Guidance Schemes 

This section pertains to alternative guidance schemes, more specifically: 
(D) constant alpha guidance; (E) constant velocity guidance; (F) constant 



JOTA: VOL. 50, NO. 1, JULY 1986 25 

theta guidance; (G) constant relative path inclination guidance; (H) con- 
stant absolute path inclination guidance; and (I) linear altitude distribution 
guidance. The description of  the alternative guidance schemes is given in 
Section 6.1. Then, the numerical results for the alternative guidance schemes 
are given in Section 6.2, with particular reference to the effect of  the 
windshear intensity. 

6.1. Analytical Description. For the sake of completeness, some 
alternative guidance schemes have been investigated (Ref. 3). Among them, 
we mention the schemes below. 

Constant Alpha Guidance. Scheme (D). Trajectories a = const have 
been computed for two values of the angle of attack, namely, 

a = ao, (57a) 

a = a , .  (57b) 

Constant Velocity Guidance. Scheme (E). Trajectories V=  Vo have 
been implemented through the feedback control law 

a - ao = - K (  Vo- V), a - a , .  (58) 

Constant Theta Guidance. Scheme (F). Trajectories 0 =cons t  have 
been computed using the angle of attack program (Ref. 14) 

a = 0o - 3', a -< a , .  (59) 

Alternatively, (59) can be implemented through the feedback control 
law 

a - a o = - K ( O - O o ) ,  a < - a , .  (60) 

Constant Relative Path Inclination Guidance. Scheme (G). Trajectories 
3' = Yo have been implemented through the feedback control law 

a - ao = - K ( y -  3'o), a - a , .  (61) 

Constant Absolute Path Inclination Guidance. Scheme (H). Trajec- 
tories Ye = 3"eo have been implemented through the feedback control law 

a - ao = - K ( 3 ' e -  3'co), o~-<%. 

Linear Altitude Distribution Guidance. Scheme (I). 
which the altitude has a linear distribution, 

h = hL(X) = ho+ (tan 3"co)X, 

have been implemented through the feedback control law 

a - ao = - K [ h  - hL(X)] = - K [ h  - h o -  (tan 3'co)X], 

(62) 

Trajectories along 

(63) 

a - -<a , .  (64) 
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6.2. Numerical Results. The alternative guidance schemes (D)-(I) 
were programmed in FORTRAN IV, and the numerical results were 
obtained in double-precision arithmetic. Computations were performed at 
Rice University using an NAS-AS-9000 computer. 

The interval of integration was divided into 500 steps. The differential 
systems were integrated using Hamming's modified predictor-corrector 
method with a special Runge-Kutta starting procedure. 

Several combinations of windshear models and windshear intensities 
were considered (see Ref. 3). With reference to a Boeing B-727 aircraft with 
three JT8D-17 turbofan engines, the data of Section 9 were employed. In 
particular, the initial conditions are given by Eqs. (75) and the final time 
is given by Eq. (77). 

The numerical results show that guidance schemes (D)-(I) are inferior 
to guidance schemes (A)-(C) for a variety of technical reasons. In particular, 
for the case where the wind velocity difference is A Wx = 120 ft sec -~ and 
the windshear intensity is A Wx/Ax = 0.030 sec  -1, it is shown that the trajec- 
tories associated with guidance schemes (D)-(I) hit the ground, while the 
trajectories associated with guidance schemes (A)-(C) clear the ground. 
The details can be found in Ref. 3 and are omitted here, for the sake of 
brevity. 

7. Comparison of the Guidance Schemes 

In Sections 4-6, we presented optimal trajectories, near-optimum guid- 
ance schemes, and alternative guidance schemes, with the following under- 
standing: the computation of the optimal trajectories of Section 4 is based 
on global information on the wind flow field and the state of the aircraft; 
the computation of trajectories using the near-optimum guidance schemes 
(A)-(C) of Section 5 is based on local information on the wind flow field 
and the state of the aircraft; and the computation of trajectories using the 
alternative guidance schemes (D)-(I) of Section 6 is based on local informa- 
tion on the state of the aircraft. 

A comparison of the guidance schemes is presented in Tables 4-5 in 
terms of two performance indexes, 

M = max  I - / ( t ) -  3,(0)1, 0--- t ---r ,  (65a) 
t 

N = IT(r) - "Y(0)I • (65b) 

Clearly, (65a) represents the maximum deviation of the path inclination 
from the reference value, and (65b) represents the final deviation of the 
path inclination from the reference value. 
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Table 4. Comparison of guidance schemes: Values of M = max,ly- yol. 

Symbol Guidance scheme Remark AW~=80 AWx=100 AW~=120 AWx=140 

(P7) Optimal trajectory - -  4.02 6.62 8 .58 11.10(*) 

(A) Gamma guidance K = 10 4.72 6.81 10.82 15.96(*) 
(B) Theta guidance K = 10 4.51 8.54 13.01 17.76(*) 
(C) Acceleration C = 0.50 5.19 7.29 10.90 14.94(*) 

guidance 

(D) Constant alpha K = 10 16.38(*) 20.27(*) 24.07(*) 27.79(*) 
guidance 
O~ : O t  0 

(D) Constant alpha K = 10 23.69 26.88(*)  30.01(*) 32.91(*) 
guidance 
Ct ~ O / ,  

(E) Constant velocity K = 10 14.36(*) 17.55(*) 20.47(*) 23.11(*) 
guidance 
V= Vo 

(F) Constant theta K = 10 7.43 12.18 16.95(*) 21.49(*) 
guidance 
0= 0 o 

(G) Constant relative K = 10 10.84 15.87 20.51(*)  24.86(*) 
path inclination 
guidance 
Y=Yo 

(H) Constant absolute K = 10 12.47 17.38 21.93(*) 26.22(*) 
path inclination 
guidance 
Y~ = Y~o 

(I) Linear altitude K = 10 12.44 17.25 21.82(*) 26.14(*) 
distribution 
guidance 
tan Ye = tan Yeo 

Values of M are in degrees. Values of AW~ are in ft sec-~: Asterisk denotes crash. 

The computa t iona l  results show that  the gu idance  schemes ( D ) - ( I )  are 
infer ior  to the gu idance  schemes (A)- (C) ,  which in  tu rn  yield trajectories 

which are qui te  close to the opt imal  trajectories. In  part icular ,  for the case 
where the wind  velocity difference is A Wx = 120 ft sec -1 and  the windshear  
intensi ty  is A Wx/Ax  = 0.030 sec -1, the trajectories arising from the al terna-  
tive gu idance  schemes ( D ) - ( I )  hit the ground,  while the trajectories arising 
from the n e a r - o p t i m u m  guidance  schemes (A) - ( C)  clear the ground,  jus t  
as the opt imal  trajectories. 
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Table 5. Comparison of guidance schemes: Values of N = 13'(7)- 3'(0)1. 

Symbol Guidance scheme Remark AWx=80 AWx=100 AWx=120 AW~=140 

(P7) Optimal trajectory - -  0.00 0.00 0.00 0.00(*) 

(A) Gamma guidance K = 10 0.02 0.0I 0.01 0.01(*) 
(B) Theta guidance K = 10 0.14 0.09 0.08 0.07(*) 
(C) Acceleration C =0.50 0.34 0.19 0.06 0.01(*) 

guidance 

(D) Constant alpha K = 10 14.58(*)  17.83(*) 20.82(*) 23.48(*) 
guidance 
G¢ = ~ 0  

(D) Constant alpha K = 10 17.22 20.24(*) 22.65(*) 24.84(*) 
guidance 

(E) Constant velocity K = 10 0.79(*) 1 . 1 8 ( * )  1.94(*) 2.63(*) 
guidance 
V= Vo 

(F) Constant theta K = 10 1.34 0.73 0.00(*) 0.67(*) 
guidance 
0=0o 

(G) Constant relative K = 10 0.17 0.05 0.04(*) 0.11(*) 
path inclination 
guidance 

Y=Yo 
(H) Constant absolute K = 10 2.20 3.00 3.83(*) 4.72(*) 

path inclination 
guidance 
7~  = %0 

(I) Linear altitude K = 10 8.58 12.60 16 .28(*)  19.63(*) 
distribution 
guidance 
tan % = tan %0 

Values of N are in degrees. Values of A W~ are in ft sec -1. Asterisk denotes crash. 

F r o m  the  p r e s e n t  ana lys i s  a n d  f r o m  the  ana ly se s  o f  Refs.  1-3,  the  

fo l lowing  c o n c e p t s  emerge .  
(i) I n  a w i n d s h e a r ,  the  re la t ive  p a t h  i n c l i n a t i o n  s h o u l d  be  such  tha t  

the  two- s ided  i n e q u a l i t y  0-< 3' -< 3'0 is satisfied,  i f  at all  poss ib le .  V io l a t i on  
of  the  u p p e r  b o u n d  is n o t  des i rab le ,  b e c a u s e  it  m igh t  cause  excess ive  ve loc i ty  
loss. Conve r se ly ,  v i o l a t i o n  o f  the  lower  b o u n d  is n o t  des i rab le ,  b e c a u s e  o f  

the  e n s u i n g  a l t i t ude  loss.  
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(ii) In a windshear, the value of the relative path inclination should 
be adjusted to the windshear intensity, in the following sense: as the 
windshear intensity increases, lower values of 3' become desirable, so as to 
slow down the magnitude of the velocity drop. 

Properties (i)-(ii) are better reflected in the guidance schemes (A)-(C) 
than in the guidance schemes (D)-(I). Hence, the trajectories arising from 
the guidance schemes (A)-(C) are closer to the optimal trajectories than 
the trajectories arising from the guidance schemes (D)-(I). 

8. Conclusions 

This paper is concerned with guidance strategies for near-optimum 
performance in a windshear. This is a wind characterized by sharp change 
in intensity and direction over a relatively small region of space. The take-off 
problem is considered with reference to flight in a vertical plane. 

First, trajectories for optimum performance in a windshear are deter- 
mined for different windshear models and different windshear intensities. 
Use is made of the methods of optimal control theory in conjunction with 
the dual sequential gradient-restoration algorithm (DSGRA) for optimal 
control problems. In this approach, global information on the wind flow 
field is needed. 

Then, guidance strategies for near-optimum performance in a wind- 
shear are developed, starting from the optimal trajectories. Specifically, 
three guidance schemes are presented: (A) gamma guidance, based on the 
relative path inclination; (B) theta guidance, based on the pitch attitude 
angle; and (C) acceleration guidance, based on the relative acceleration. 
In this approach, local information on the wind flow field is needed. 

Next, several alternative schemes are investigated for the sake of 
completeness, more specifically: (D) constant alpha guidance; (E) constant 
velocity guidance; (F) constant theta guidance; (G) constant relative path 
inclination guidance; (H) constant absolute path inclination guidance; and 
(I) linear altitude distribution guidance. 

Numerical experiments show that guidance schemes (A)-(C) produce 
trajectories which are quite close to the optimum trajectories. In addition, 
the near-optimum trajectories associated with guidance schemes (A)-(C) 
are considerably superior to the trajectories arising from the alternative 
guidance schemes (D)-(I). 

An important characteristic of guidance schemes (A)-(C) is their sim- 
plicity. Indeed, these guidance schemes are implementable using available 
instrumentation and/or modification of available instrumentation. 
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In subsequent papers, the analysis presented here for take-off trajec- 
tories will be extended to include (i) rotational motion effects and (ii) a 
more complete windshear model. In particular, for downdraft effects, see 
Refs. 41-42. Also in subsequent papers, the treatment developed for take-off 
trajectories will be extended to include landing trajectories. 

9. Appendix: Data for the Examples 

In this appendix, we present the data used in the numerical experiments. 
The airplane under consideration is a Boeing B-727 aircraft with three 
JT8D-17 turbofan engines. It is assumed that the aircraft has become 
airborne from a runway located at sea-level altitude. It is also assumed that 
the ambient temperature is 100 deg Fahrenheit. 

Thrust, It is assumed that the engines are operating at maximum 
power setting. The dependence of  the thrust on the altitude is disregarded, 
and the thrust is assumed to depend on the velocity only. At h = 0 ft, the 
thrust is represented by Eq. (4), with 

Ao = 0.4456 E + 05 lb, 

A1 = -0.2398 E + 02 lb ft -~ sec, 

A2 = 0.1442 E - 0 1  lb ft -2 sec 2, 

0--- V--- 422 ft sec -1, (66a) 

0 -  < V -  422 ft sec -1, (66b) 

0 <- V <- 422 ft sec -1. (66c) 

The inclination of the thrust with respect to the aircraft reference line is 
assumed to be 

= 0.2000 E +01 deg. (67) 

Drag. The dependence of the density on the altitude is disregarded, 
and the drag is assumed to depend on the velocity and the angle of  attack 
only. This function is represented by Eqs. (5)-(6), with 7 

p = 0.2203 E - 02 Ib ft -4 sec 2, 

S = 0.1560 E +04 ft 2, 

and 

Bo = 0.7351 E - 0 1 ,  0-< t~ -<16 deg, 

BI = -0.8617 E - 0 1 ,  0<_ c~ <_ 16 deg, 

Bz = 0.1996 E +01, 0-< a-< 16 deg. 

(68a) 

(68b) 

(69a) 

(69b) 

(69c) 

7 The aerodynamic data refer to gear up and flap setting 6 F = 15 deg. 
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Lift. Like the drag, the lift is assumed to depend on the velocity and 
the angle of  attack only. This function is represented by Eqs. (7)-(8), with 
p, S given by Eqs. (68) and 

Co = 0.1667 E +00,  

C1= 0 .6231E+01 ,  

C2 = -0.2165 E +02,  

Weight. The weight 
specifically, 

W =  0.1800 E +06 lb. 

0-< a -< 16 deg, (70a) 

0 -  < a -< 16 deg, (70b) 

1 2 -  < a -< 16 deg. (70c) 

of  the aircraft is assumed to be constant, 

(71) 

Windshear. The assumed wind model involves the transition from a 
uniform headwind to a uniform tailwind. Therefore, it is governed by the 
three-parameter family (11), in which the parameter a is associated with 
the windshear onset, the parameter b is associated with the windshear 
termination, and the parameter k is associated with the wind velocity 
difference A Wx and the windshear intensity A W~/Ax (for given values of  
a and b). 

Three particular models are considered. In windshear model WS1, the 
constants a, b are given by 

a = 0.3000 E + 03 ft, b = 0.4300 E + 04 ft. (72a) 

In windshear model WS2, the constants a, b are given by 

a =0.1000 E +04 ft, b =0.5000 E +04  ft. (72b) 

In windshear model WS3, the constants a, b are given by 

a = 0.2000 E + 04 ft, b = 0.6000 E + 04 ft. (72c) 

It must be noted that the windshear models WS1, WS2, WS3 involve 
corners, which are smoothed using the technique discussed in Ref. 1. Each 
smoothing interval is assumed to be 600 ft in length and is centered around 
the respective corner. 

It must also be noted that the windshear models WS1, WS2, WS3 are 
characterized by the same transition length b - a = 4,000 ft. Hence, Table 1 
supplies the relation between the parameter k, the wind velocity difference 
A W~, and the windshear intensity A Wx/Ax. 

Inequality Constraints. The angle of attack is subject to Ineq. (13), with 

a ,  = 0.1600 E +02 deg. (73) 

The time derivative of  the angle of attack is subject to the Ineq. (14), with 

C = 0.3000 E +01 deg sec -1. (74) 
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and 

Initial Conditions. 

x(0) = 0.0000 E +00 ft, 

h(0) = 0.5000 E +02 ft, 

V(0) = 0.2768 E + 03 ft sec -~, 

y(0) = 0.6989 E + 01 deg, 

The following initial conditions are assumed: 

(75a) 

(75b) 

(75c) 

(75d) 

a(0) = 0.1036 E +02 deg. (76) 

Note that the velocity (75c) is FAA certification velocity I/2, augmented by 
10 knots. In turn, the velocity 112+ 10 (in knots) corresponds approximately 
to the steepest climb condition in quasi-steady flight. 

Final Time. The final time is set at the value 

r = 0.4000 E +02 sec. (77) 

This is about twice the duration of the windshear encounter (t8 sec). 

Final Conditions. In boundary condition model BC 1, it is required that 

y(r)  = 0.6989 E +01 deg. (78) 

Remark. For the optimal trajectories of Section 4, use is made of 
(75)-(78). For the guidance schemes of Sections 5-6, use is made of (75) 
and (77), while (76) and (78) are disregarded. 

Speeial Constants. For the optimal trajectories of Section 4, the 
numerical constants appearing in the performance indexes 1 and J of 
Problem (P7) are given by 

YR =0.6989 E + 0 1  deg, 

q = 6 .  

For the near-optimum guidance schemes 
coefficient K is set at the level 

K = 1 0 .  

of Section 

(79a) 

(79b) 

5, the gain 

(80) 

In particular, the constant C of the acceleration guidance scheme is set at 
the level 

c =0.50. (81) 

Finally, for the alternative guidance schemes of Section 6, the gain 
coefficient K is set at the level 

K = 10. (82) 
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Altitude h versus time t (gamma guidance, effect of the windshear model). 
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Fig. 7C. Relative velocity V versus time t (gamma guidance, effect of the windshear model). 
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Fig. 7D. Relative path inclination 3' versus time t (gamma guidance, effect of the windshear 
model). 
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.'?itch attitude angle 0 versus time t (gamma guidance, effect of  the windshear model). 
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Fig. 8B. Altitude h versus time t (gamma guidance, effect of  the windshear intensity). 
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Fig, 8C, Relative velocity V versus time t (gamma guidance, effect of the windshear intensity). 
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Fig. 8D. Relative path inclination y versus time t (gamma guidance, effect of the windshear 
intensity). 
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Fig. 8F. Pitch attitude angle 0 versus time t (gamma guidance, effect of the windshear 
intensity). 


