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TECHNICAL NOTE 

Efficient Spanning Trees 

H. W. C O R L E Y  1 

Communicated by C. T. Leondes 

Abstract. The definition of a shortest spanning tree of a graph is 
generalized to that of an efficient spanning tree for graphs with vector 
weights, where the notion of optimality is of the Pareto type. An 
algorighm for obtaining all efficient spanning trees is presented. 

Key Words. Networks, graphs, trees, Pareto optima, efficient points, 
algorithms. 

1. Introduction 

In recent work by Corley and Moon (Ref. 1), the notion of  a Pareto 
shortest path was defined for graphs with vector weights associated with 
the arcs, and an algorithm for obtaining all such paths was developed. This 
brief note is essentially an addendum to Ref. 1. The concept of  a shortest 
spanning tree of  a graph with vector weights is extended through Pareto 
optimality to that of  an efficient spanning tree (EST), and an algorithm for 
finding all EST's of  a graph is presented. 

The following definitions are needed; standard results and notation 
for graphs are summarized in Ref. 2. A point 

v* = ( v * , . . . ,  v*)  E v c  R m 

is a Pareto minimum (or efficient point or vector minimum) of V if v* is 
nondominated from below on 11, i.e., if there does not exist v = (Vl . . . .  , vm) 
V for which 

vi~v*i, i=l , . . . ,m,  
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and 

vj<v*, for some j~  { 1 , . . . ,  m}. 

We write 

v* e vmin V. 

Consider now a connected nondirected graph 

G : (X, A), 

where X={x~,...,x,,} is the set of vertices, A C X  x X  is the set of arcs 
(xi, xj) = (xj, x~), and associated with each arc (xi, xj) c A is an m-dimensional 
vector weight 

c~ = ( c ~ , , . . . ,  c~m). 

Recall that a spanning tree, or simply tree, 

T = (X, B) 

of G is a connected subgraph of G with n - 1  arcs. We present here an 
algorithm for finding all EST's of G, i.e., for obtaining all solutions T = 
(X, B) to 

vmin{  ~ c~j: T =  (X, B) e r} ,  (1) 
(xi, x j ) e  B 

where r is the collection of all trees of G and the summation in (1) is a 
vector sum. 

2. Algorithm 

The following result provides the basis of the algorithm. 

Result 2.1. Let ~ = (X,, B~) be a subtree of an EST T = (X, B) of  
G = (X, A) such that xk c X,, xt ~ X~. Then, (xk, xt) is an arc in an EST of 
G if and only if 

Ckl e vmin{ciF xi ~ Xs, xj ~ X~}. (2) 

Proof. Suppose first that 

Ckl ~ vmin{c/~: xi c Xs, xj ~ Xs}. 
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Then, there exists an arc (xp, Xq) for which Xp ~ X,, Xq ¢: Xs, and cpq dominates 
ckt. Let 

7"1 = (X, Bl) 

be any tree of G for which (Xk, X~) e B. Construct a new tree T2 from 7"1 by 
forming 

B2=[B,\{(xk, x,)}] ~ {(xp, xq)}. 

Then, 

T2 = (X, B2) 

is a tree of G such that 

c o- is dominated by ~ c~. 

It follows that (xk, xz) cannot be an arc in any EST to establish the necessity 
of condition (2). 

Suppose next that CkZ satisfies (2). There is nothing further to show if 
(Xk, X~) ~ B, so assume (Xk, XZ) ~ B. In this case, assume that, in forming T, 
arc (xe, xq) ~ B connects T~ to its complement subtree in T. The sufficiency 

o f  (2) is then established by constructing 

B3 = [B\{(xp, Xq)}] w {(xk, xl)} 

and noting that 

T3 = (X, B3) 

is an EST as a consequence of (2). D 

An algorithm for obtaining all EST's of G is next presented. The validity 
of the construction of the subtrees (X~(k), A t (k) )  in the algorithm is an 
immediate consequence of the necessity and sufficiency of condition (2). 
Any procedure for determining vmin in Step 2 ~ a y  be used; one such 
method is given as Algorithm 2 in Ref. 1. Step 6 below eliminates duplicate 
subtrees and therefore subsequent computational duplications. It should 
be noted that, in the case rn = 1, the algorithm below is most closely related 
to that of Prim (Ref. 3). 

Step 1. Set 

XI(1) = {xl}, At( l)  = O ,  r = l ,  m l = l ,  m2 . . . . .  m , = 0 .  

Step 2. Set 

W ~ ( k ) = v m i n { c o : x , ~ X ~ ( k ) ; x j ~ X , ( k ) ; x ~ , x j ~ A } ,  k =  1 , . . . ,  m~. 
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Step 3. S e t s = l .  

Step 4. I f  s = mr + 1, go to Step 9. 

Step 5. Choose Cpq ~ Wr(s). Set 

W r ( s  ) ~- W r ( S ) \ { ¢ p q } ,  mr+ 1 = 1Tit+ 1-1- 1, 

Xr+l(rnr+,) = Xr(s) w {Xq}, 

Ar+l(m,+~) = Ar(s)w {(xp, Xq)}. 

Step 6. I f r n r + l = l ,  g o t o S t e p 7 .  I f  

(Xr+~(mr+~), A,+~(mr+~)) = (Xr+l(k), Ar÷~(k)), 

for some k e { 1 , . . . ,  rnr+l - I}, set mr+l = mr+1 - 1. 

Step 7. I f  W~(s)~ Q, go to Step 5. 

Step 8. S e t s = s + l .  G o t o S t e p 4 .  

Step 9. Set r = r + 1. I f  r < n, go to Step 2. Otherwise, stop. 

Tk = (X, A~(k)), k = 1 , . . . ,  m~, are the distinct EST's of  (X, A). 

3. Remarks 

Because a graph may contain a large number  of  EST's, one may be 
interested in finding a single or only several EST's. It follows from results 
in, say, Geottrion (Ref. 4) that one may obtain an EST by applying any 
standard shortest spanning tree algorithm (see Ref. 2) to the graph with 
vector weights 

cij = ( c , j , , . . . ,  cijm) 

replaced for each (xi, xj) c A by the scalars ~k~_l AkC~k for any nondegenerate 
set of  nonnegative Ak. In particular, finding such a shortest spanning tree 
with respect to any single component  or to the sum of the components 
yields an EST. 

One obvious application of  an EST is in the construction of a physical 
system in which there are multiple incommensurable criteria. For example, 
a road network (the arcs) to connect a group of population centers (the 
vertices) might have associated with a potential road both a distance and 
an environmental damage factor. A road network interconnecting all centers 
could be chosen from the EST's. 

Other possible applications might include the analysis of data structures 
in computer  science and cluster analysis based on multiple factors (for 
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m = l, see Refs. 5, 6). It is also conceivable that one might define Pareto 
traveling salesman and network flow problems and that the the notion of 
an EST might prove useful in their solution as in the standard problems 
(see Refs. 7, 8). 

As a final remark, the application of  Pareto optimality to graphs here 
and in Ref. 1 portends a raft of  other similar extensions. One such nontrivial 
problem in the realm of  graphical matching theory is to develop a 
Hungarian-type algorithm for determining all solutions to a Pareto assign- 
ment problem. 
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