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Auxiliary Problem Principle 
Extended to Variational Inequalities' 

G. C O H E N  2 

Communicated by D, Q. Mayne 

Abstract. The auxiliary problem principle has been proposed by the 
author as a framework to describe and analyze iterative optimization 
algorithms such as gradient or subgradient as well as decomposition/co- 
ordination algorithms (Refs. 1-3). In this paper, we extend this approach 
to the computation of solutions to variational inequalities. In the case 
of  single-valued operators, this may as well be considered as an extension 
of ideas already found in the literature (Ref. 4) to the case of nonlinear 
(but still strongly monotone) operators. The case of multivalued 
operators is also investigated. 
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1. Introduction 

F o r  c lass ical  op t imiza t i on  p rob lems ,  C o h e n  (Refs. 1, 2) and  C o h e n  and  
Zhu  (Ref. 3) i n t roduced  the so-ca l led  aux i l i a ry  p r o b l e m  pr inc ip le  as a 
genera l  f r a m e w o r k  to descr ibe  and  ana lyze  c o m p u t a t i o n a l  a lgor i thms rang-  
ing f rom g rad ien t  or  subgrad ien t  to d e c o m p o s i t i o n / c o o r d i n a t i o n  a lgor i thms.  
In  this p a p e r ,  we p resen t  an  ex tens ion  o f  this  a p p r o a c h  to the  c o m p u t a t i o n  
o f  so lu t ions  to va r i a t iona l  inequal i t ies .  
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More specifically, we study iterative algorithms in which an elementary 
step amounts to solving a so-called auxiliary problem, which consists in a 
minimization problem built around an auxiliary convex cost function chosen 
by the user. This is close to the approach found in Glowinski and associates 
(Ref. 4), except that these authors consider variational inequalities involving 
linear single-valued operators only. Also, they deal only with auxiliary 
problems built upon quadratic cost functions. Therefore, one may consider 
this paper as an extension of their work to deal with nonlinear operators 
and strongly convex auxiliary functions. The case of multivalued (point-to- 
set) operators will also be considered in what follows from the algorithmic 
point of  view. We are not aware of any other similar work for multivalued 
operators. The assumption of strong monotony of the operator involved 
remains the key assumption in the convergence proofs presented hereafter. 

By adequately choosing the auxiliary cost function, one may induce a 
decomposition of the auxiliary minimization problem into independent 
subproblems, provided that a decomposition of  the decision space into the 
product of  subspaces and of the constraint set into a product of independent 
subsets be given (this last feature is also encountered in Pang, Ref. 5). 
Actually, this work has been motivated by the study of  decomposit ion/co- 
ordination procedures for computing Nash equilibria which are amenable, 
in several ways, to the solution of variational inequalities. This application 
is discussed in another forthcoming paper (Ref. 6). 

2. Auxiliary Problem Principle Extended to Variational Inequalities Involving 
Single-Valued Operations 

2.1. Basic Results on Variational Inequalities. We recall the definition 
of variational inequalities and some results about existence of their solutions 
drawn from Ekeland and Temam (Ref. 7). In this section, only the case of 
single-valued operators is considered. The case of multivalued (point-to-set) 
operators is postponed in the next section. 

Let ~ be a mapping from a reflexive Banach space U into its dual 
U*, and let ~p be a proper convex 1.s.c. function from U into R. Let U f be 
a closed convex subset of U. One looks for u*~  U f such that 

(~I,(u*), u-u*>+~,(u)-~(u*)>~O, Vu~ U( (1) 

In Ref. 7, one can find the following existence theorem. 

Theorem 2.1. Assume the following: 
(A1) ~p is a proper convex l.s.c, function from a reflexive Banach space 

U into R; 
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(A2) W is a mapping from U into its dual space U*, which is weakly 
continuous over every finite-dimensional subspace of U; 

(A3) W is monotone, that is, 

Vu, u'~ U, (q'(u)-q'(u'), u-u')~>O; (2) 

(A4) there exists w ~ dom ~ such that 

(~(u). u - w ) + , ( u ) - ¢ ( w )  
lim _ +oo. (3) 

,.ll++~ ll'll 
U E  U f 

Then, there exists a solution u* to (1). 
Assumption (A4) is o f  course useless if U f is bounded. Moreover, it 

is also met if we strengthen the monotony assumption (A3) by requiring 
strong monotony of ~F over U f (with modulus a), which means that the 
following assumption is satisfied: 

(A5) ~ a > o : v . , . ' ~ u S , < * ( . ) - * ( . ' ) , . - . ' > ~ > a l ! . - u ' l l  =. (4) 

Under (A5), u* is unique. When q~ is the derivative of a function J 
[which is convex from (A3)], then u* minimizes ( J +  ~)(u)  over U f. When 
J is not different]able, W must be identified with the subdifferential O J, 
which is now a point-to-set mapping (see next section). When aV is not a 
derivative or a subdifferential, problem (1) cannot generally receive an 
interpretation in terms of  a minimization problem. Nevertheless, such prob- 
lems are encountered frequently in several fields of applied mathematics 
[numerical analysis, mechanics, game theory, other equilibrium problems 
in operations research, etc. (see Pang, Ref. 5)]. 

2.2. General Algorithm. Let us consider an auxiliary functional 
K : U-~ R, that we choose convex and differentiable, and a positive number 
6. For some v ~ U, we introduce the following auxiliary problem: 

min K ( u ) + ( e W ( v ) - K ' ( v ) ,  u > +a¢(u) .  (5) 
u E  U f 

Let Q(v)  denote the solution of this problem (we worry about conditions 
insuring existence and uniqueness later on). This solution is also character- 
ized by the variational inequality (see Ref. 7) 

(K ' [ a (v ) ]  + Eq~(v) - K ' (v) ,  u - v) 

+ ~ [ , ( u ) - , ( a ( v ) ] ~ > 0 ,  Vu~ v i. (6) 
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Lemma 2.1. If  fi(v) = v, then ~(v) is a solution, denoted u*, of  (1). 

Proof. The proof  is straightforward using (6). 

This lemma suggests the following fixed-point algorithm. 

(i) At k = 0, start with some initial u °. 
(ii) At step k, solve the auxiliary problem (5) with v = u k. Let u k+l 

denote the solution of  this problem. 
(iii) Stop if Hu k+~- ukH is below some threshold. Otherwise, go back 

to (ii) with k # k + l .  

Theorem 2.2. Convergence Theorem. (i) Under (A1), (A2), (A5), 
there exists a unique solution u* to (1). 

(ii) Moreover, if K : U ~ R  is a proper  convex and differentiable 
functional and if its derivative K '  is strongly monotone with modulus b 
over U y, then there exists a unique solution u k+~ to (5) or (6), with u k 
substituted for v. 

(iii) Finally, if 
that is, 

3L  > 0: Vu, 

and if we take 

0 < e < 2ab/L 2, (8) 

then the sequence {u k} strongly converges toward u*. 

in addition • is Lipschitz with modulus L over U y, 

v ~ u s, I I~(u)  - ' t ' ( v ) l l  ~ LIIu - vii, (7) 

Proof. (i) ¢ is being a proper convex 1.s.c. functional, for every 
w ~ int(dom ~p), Oq~(w)# O; see Ekeland and Temam, Ref. 7. Hence, 

q~(u)>~p(w)+(r,u--w), Vr C Og~(w), Vu; 

therefore, with the help of  (4), 

(~V(u), u-w)+ ~(u) 

i> (~(w),  u - w)+ a II u - wl12+ ~(w)+ (r, u - w) 

~ ( a l l u - w l l - I l r l l - I I ' V ( w ) l l ) l [ u - w l l + ~ ( w ) ,  v u ~  u I, 

which implies (A4). From theorem 2.1, u* exists and is unique from (A5). 
(ii) Following the same line, k can be proved that there exists a unique 

solution u k+~ to (6) where u k has been substituted for v. 
(iii) Let us now study the functional 

A(u)&K(u*)-K(u)-(K'(u), u*-u)~(b/2)llu-u*ll ~, (9) 
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where the last inequality classically derives from the strong monotony of 
K'.  We have 

A(u k) - A ( u  k+l ) = K ( u k+~ ) - K ( u k) - - (  K ' (  uk ) ,  u k+l _ u k ) 

+ ( K ' ( u k + ~ ) -  K ' ( u k ) ,  u * - u  k+l) 

~> (b/2)II uk  - uk+l I12 + a ( q t ( u k ) ,  uk+~ -- U*) 

+ e [ ~ ( u  k+~) - q , (u  k)] 

the inequality above resulting from (6) with v = u k, ~(v) = u k+~, and u = u*. 
On the other hand, if we place u k+~ in (1) and combine it with the above, 
we get 

A(u k) - A(u k+~) i> (b/2)II uk  - uk+~ II z 

+ e ( , t , ( u  ~) - r e ( u * ) ,  u ~+~ - u*)  

= ( b / 2 ) l l u  k - uk+ll]2 

"~ ~(~I / (u  k) -- ~t/(~/*)~ U k+l -- U k) 

+ ~('.t'(u ~) - ' I * ( u * ) ,  u ~ - u*) 

>I ( b /2)II u k _ u k+l I1= + ea II u k _ U* II 2 

- ,  i i . ( u  k) - , e ( u * ) 1 1  II u ~ + ' -  u q l  
>>. (b/2)l[u k - uk+l  [12 ~-~ Ea 11 u "  - u*l l  ~ 

- ( e Z / 2 b ) t 1 ~  (u") - ~(u*)112 

- (b /2 )II  u ~÷* - u k II 2, 

that is, finally 

A(u k) - A ( u  k+l) >! e ( a  - , t 2 / 2 b ) l l u  g - u*ll 2. (10) 

Thanks to (8), (10) shows that the sequence {A(uk)} is strictly decreasing 
(unless u k= u*), it is nonnegative from (9); hence, it converges to some 
number. Therefore, the difference of two successive terms of this sequence 
goes to zero, and we conclude that u k strongly converges toward u* as k 
goes to infinity by looking again at (8)-(10). This completes the proof. 

[] 

Remark 2.1. It is interesting to compare condition (8) with the corre- 
sponding one obtained by Cohen (Ref. 2) for minimization problems (that 
is, when T is the derivative of some convex functional). This condition is, 
with the present notation, 

O < e < 2 b / L .  (11) 

We see that both conditions coincide when a = L In general, a is of course 
smaller than L and condition (8) is more severe than (11). 
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Remark 2.2. When a = 0 (that is, when • is monotone but not strongly 
monotone),  (8) can no longer stand. On the other hand, for minimization 
problems, even when a = 0, still under (11), we proved convergence of  u k 

toward some solution u* (which may now be nonunique),  but the conver- 
gence took place in the weak topology (actually, the precise result in Ref. 
2 is that the sequence { u  k} is bounded and every cluster point in the weak 
topology is a solution; this result has been further refined in Cohen (Ref. 
8) under mild additional assumptions to prove convergence of  the whole 
sequence toward some solution. It does not seem possible to obtain such 
a result when • is not the derivative of some convex functional (i.e., when 
~F is not symmetric) and when it is monotone but not strongly monotone, 
at least without any additional (questionable) assumption, as shown by the 
following example, due to Chaplais. Let U = R a and q~ be the linear operator 
defined by 

• l(ul,  u2) = -u2  and ~=(ul,  us) = ul. 

It is checked that • meets (2) but not (4). Assuming that U f = U, ~, = O, 

and K ( .  ) =  I1" I1=/2, algorithm (5) yields 

~+~ = Ul~+ Eu~, I.i 1 

~/2 k + l  = U2 k - -  ~.Ul k ' 

from which it is seen that the norm of (u~, u2) increases with k for every 
positive value of  E, and thus the algorithm does not converge to the solution 
(0, 0). 

Remark 2.3. The general algorithm of  Section 2.2 is an interesting 
way of  computing a solution to (1) as long as (5) is easier to solve than 
(1). This depends crucially on the choice of the auxiliary cost function K. 
We first note that (5) is a minimization problem, which make several methods 
available to solve it. Moreover, K may be chosen, for example, quadratic 
[Pang and Chan (Ref. 9) call the algorithm a projection algorithm in this 
instance]. Finally, in terms of decomposition, if we assume that U is a 
product of subspaces Ui, that U y is itself a product of closed convex subsets 
Us. of Ui (that is constraints are decoupled), and if ~ is additive with respect 
to this decomposition (~(u)  can be written as a sum of ~i(u~)), then, by 
choosing K additive too, problem (5) splits up into independent subprob- 
lems in each u~. That is, coupling through ~ can be managed by the 
algorithm. Coupling through the constraints would require handling the 
constraints through some dual tools (as done in Refs. 1-3). This is a direction 
for further investigation. 
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Remark 2.4. Although the fact that the auxiliary problem (5) is a 
minimization problem may be considered as an advantage in general, one 
may be interested in formulating the auxiliary problem directly as a vari- 
ational inequality (6) with some auxiliary operator F standing for K', This 
may open the possibility of making F be a closer approximation of • with 
the hope of a faster convergence. Extending the above convergence proof 
to this situation is an open problem [see, however, Pang (Ref. 5), who 
provides conditions of the fixed-point type for less general situations]. 

3. Case of Multivalued Operators 

In this section, we investigate briefly the case when • is a point-to-set 
operator. From the point of view of existence results, this situation is 
somewhat more involved, and we refer the reader to Aubin and Ekeland 
(Ref. 10) for corresponding statements. We simply recall that problem (1) 
must now be stated as follows: qt has values which are subsets of U*, and 
one looks for u*c U s such that 

3 r * ~ ( u * ) : ( r * , u - u * ) + ~ ( u ) - ~ ( u * ) > ~ O ,  Vuc U f (12) 

Correspondingly, (A5) must be changed into the following assumption: 

(A5') 3 a > 0 : V u ,  u'cUY, V r c ~ ( u ) , r ' c ~ ( u ' ) ,  

( r -  r', u - u') ~ aJlu - u'll =. (13) 

An analogous observation holds for (A3). 
We come back to the general algorithm of Section 2.2, but we make 

the following modifications. First, since ~ ( u  k) is now a set, we pick any r k 
in this set to play the role of ~ ( u  k) in Section 2.2. Moreover, as for 
nonsmooth minimization problems (see Ref. 3 or Ref. 11, for example), we 
replace the large step a (which may depend on k but which remains away 
from zero) by small steps a k with the following conditions: 

fi-oO +oO 

ek>0,  ~ e k = + ~ ,  ~ (ek)2<+~.  (14) 
k = O  k = O  

To summarize, the auxiliary problem at step k is now 

min K ( u ) + ( a k r k - K ' ( u k ) ,  u >  +ak~o(u), (15) 
U E U f 

with rk~ ~(uk). The solution is denoted u k÷l. Before stating our conver- 
gence theorem, we also have to introduce a new assumption instead of the 
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Lipschitz condition (7). This assumption is 

3,~ > 0, 3~ >0: Vu~ u~, w c ~ ( u ) ,  li~tl ~< ~tlutl+~. (16) 

This essentially means that the norm of qt does not increase faster than 
linearly with the norm of u. 

Theorem 3.1. (i) We assume that problem (12) does have a solution; 
that (13) holds (hence u* is unique); that ~ is a proper convex l.s.c. 
functional; 

(ii) if, moreover, K is a proper convex and differentiable functional 
and if its derivative K '  is strongly monotone with modulus b over U z, then 
there exists a unique solution u k+l to (15); 

(iii) finally, if, in addition, ~ meets condition (16), and if the sequence 
{E k} verifies (14), then the sequence {u k} strongly converges toward u*. 

Proof. We proceed as in the proof  of  Theorem 2.2 and we indicate 
only the major changes. By making use of  (12) and the analog of (6), we 
can get, with similar calculations to those leading to (10) 

A(uk)-A(uk+')~ekalluk-u*ll2-[(ek)2/2b]llrk-r*ll 2. (17) 

Now, using the inequality 

II x +Yll <~ 2(llxll 2+ Ilyll 2) 
repeatedly, also using (16), and summing up (17) from k = 0 to N - 1 ,  we 
get, for all N, 

( b / 2 ) l l u  N - u*l12 ~ A(u N) 

N 

~A(u°)+  y [ - - ~ k a t l u k - - U * t l a + ( ~ k ) = ( 3 " l l u k - - u * l l = + ~ ) ] ,  (18) 
k=0  

where 3' and 6 are some positive constants. Considering the two extreme 
sides of (18), ignoring the negative term in the right-hand side for the time 
being and using Lemma 5 in Ref. 3 and (14), we conclude that {u k} is a 
bounded sequence. Therefore, on a bounded convex hull of this sequence, 
the function [ u ~  Ilu-u*ll 2] is Lipschitz. Moreover, from (18), (14), and 
the boundedness of {uk}, we see that 

+oo 

2 Ekllu~-u*ll 2 < + ~ .  
k=0 

Finally, with (14) and the above considerations, we can apply Lemma 4 of 
Ref. 3 to conclude that u k strongly converges toward u*. [] 
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4. Conclusions 

In this paper, we have shown how to extend the so-called auxiliary 
problem principle, which has proved to be a useful tool in studying iterative 
computational algorithms (including decomposit ion/coordination 
algorithms) in the case of  optimization problems, to encompass more general 
variational problems. This work meets similar ideas and results already 
found in the literature (Refs. 4, 5, 9, among others) and sometimes general- 
izes them in some directions (in particular, for multivalued operators). Some 
open questions and topics of further investigations have been mentioned 
in Remarks 2.1 to 2.4. 

References 

1. COHEN, G., Optimization by Decomposition and Coordination: A Unified 
Approach, IEEE Transactions on Automatic Control, Vol. AC-23, No. 2, pp. 
222-232, 1978. 

2. COHEN, G., Auxiliary Problem Principle and Decomposition of Optimization 
Problems, Journal of Optimization Theory and Applications, Vol. 32, No. 3, pp. 
277-305, 1980. 

3. COHEN, G., and ZHU, D. L., Decomposition Coordination Methods in Large-Scale 
Optimization Problems: The Nondifferentiable Case and the Use of Augmented 
Lagrangians, Advances in Large-Scale Systems, Theory and Applications, Edited 
by J. B. Cruz, JAI Press, Greenwich, Connecticut, Vol. 1, pp. 203-266, 1984. 

4. GLOWINSKI, R., LIONS, J. L., and TREMOLIERES, R., Analyse Num~rique des 
Indquations Variationnelles, Tome 1: ThOorie G~n~rale, Premibres Applications, 
Dunod, Paris, France, 1976. 

5. PANG, J. S., Asymmetric Variational Inequality Problems over Product Sets: 
Applications and Iterative Methods, Mathematical Programming, Vol. 31, No. 2, 
pp. 206-219, 1985. 

6. COHEN, G., Nash Equilibria: Gradient and Decomposition Algorithms, Large 
Scale Systems, Vol. 12, No. 2, pp. 173-184, 1987. 

7. EKELAND, I., and TEMAM, R., Convex Analysis and Variational Problems, 
North-Holland, Amsterdam, Holland, 1976. 

8. COHEN, G., Two Lemmas and Their Use in Convergence Analysis of Some 
Optimization Algorithms, Internal Report No. E/68, Centre d'Automatique et 
Informatique, Ecole des Mines de Paris, Fontaineblau, France, 1982. 

9. PANG, J. S., and CHAN, D., Iterative Methods for Variational and Complemen- 
tarity Problems, Mathematical Programming, Vol. 24, No. 3, pp. 284-313, 1982. 

10. AUBIN, J. P., and EKELAND, I., Applied Nonlinear Analysis, Wiley, New York, 
New York, 1984. 

11. AUSLENDER, A., Optimisation, M~thodes Num~riques, Masson, Paris, France, 
1976. 


