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Convex Programs with an Additional 
Reverse Convex Constraint 
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Communicated by A. V. Fiacco 

Abstract. A method is presented for solving a class of global optimiz- 
ation problems of the form (P): minimizef(x),  subject to x ~ D, g(x) - 0, 
where D is a closed convex subset of R '~ and f g are convex finite 
functions R n. Under suitable stability hypotheses, it is shown that a 
feasible point 2 is optimal if and only if 0 = max{g(x):x c D, f(x)<- 
f(~)}. On the basis of this optimality criterion, the problem is reduced 
to a sequence of subproblems Qk, k = 1, 2 , . . . ,  each of which consists 
in maximizing the convex function g(x) over some polyhedron Sk. The 
method is similar to the outer approximation method for maximizing 
a convex function over a compact convex set. 

Key Words. Reverse convex constraints, convex maximization, con- 
cave minimization, outer approximation methods. 

l. Introduction 

In  this paper  we shall be concerned  with the fol lowing nonconvex  
opt imizat ion  p rob lem 

(P) minimize  f ( x ) ,  

s.t. h~(x)<-O, i = l , 2 , . . . , m ,  

g(x)>-O, 

where f, g, hi:R n --> R are convex finite funct ions  on R ". Setting 

h ( x ) =  max hi(x), 
i ~ l , . . .  , ra  

O={x: h(x)-<0}, G={x: g(x) < 0}, 

we note that the constra int  set of  this p roblem is a cavern of the form D \  G, 
where O is a closed convex set, G an open  convex set. 
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A simple example of  this type of  problems is furnished by the problem 
of  minimizing the distance f ( x )  = d(x, M)  from a convex set M to a point 
x ~ R" \G ,  where G is an open convex set containing M. 

A large class of optimization problems, including convex minimization 
and convex maximization (or concave minimization) problems, can easily 
be cast in the form P. For instance, any problem 

m i n { f ( x ) -  g(x):  x ~ V}, (1) 

where f, g are convex finite functions and D is a closed convex set, can be 
written as 

m i n { f ( x ) -  t: x~  D, g ( x ) -  t >- 0}, (2) 

which is obviously a problem of  the above type. 
The main difficulty with problem P is connected with the presence of  

the reverse convex constraint g(x)>-0, which destroys the convexity and 
possibly even the connectivity of the feasible set. Optimization problems 
involving such reverse convex constraints were studied earlier by Rosen 
(Ref. 1), Avriel and Williams (Ref. 2), Mayer (Ref. 3), Ueing (Ref. 4), and 
more recently by Bansal and Jacobsen (Ref. 5), Hillestad and Jacobsen 
(Refs. 6 and 7), Tuy (Ref. 8), and Thuong (Ref. 9). Avriel and Williams 
(Ref. 2) showed that reverse convex constraints may occur in certain 
engineering design problems. Zaleesky (Ref. 10) argues that reverse convex 
constraints are likely to arise in many typical economic management 
applicatons. In an abstract setting, Singer (Ref. 11) related this type of 
nonconvex constraints to certain problems in approximation theory, when 
the set of  approximation functions is the complement of  a convex set. 

It should be noted that, although the literature on nonconvex optimiz- 
ation has rapidly increased in recent years, most of  the published papers 
either deal with the theoretical aspects of the problem or are concerned 
only with finding Kuhn-Tucker  points or local solutions rather than global 
optima. A few papers (Refs. 6-9) have been devoted to the global minimiz- 
ation of  a concave (in particular, linear) function under linear and reverse 
convex constraints, a problem closely related to, but not quite the same as 
P. Obviously, writing P in the form 

min{t: f ( x )  <- t, h(x)<-O, g(x) >-0}, 

we shall convert it into a problem with a linear objective function. But to 
our knowledge, global optimization problems like P, where convex (non- 
linear) and reverse convex constraints are copresent, have been little studied 
in the literature to date. 

The present paper is an outgrowth of an earlier work (Ref. 12), where 
only the case D = R ~ was treated. 
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Basically, the approach that we shall propose in the sequel consists in 
viewing the reverse constraint g(x)>-0 as an additional constraint adjoined 
to the ordinary convex program 

rain{f (x): h(x) <- 0}. 

Using then a duality principle, we interchange the roles of the objective 
function and the additional constraint, thus reducing the original problem 
to a convex maximization (i.e., concave minimization) problem, to which 
available outer approximation algorithms can be applied. 

The paper is organized as follows. After the introduction, we state in 
Section 2 the basic assumptions and some immediate consequences. In 
Section 3, we give some preliminary results based on the local approach. 
In Section 4, we establish the duality principle which constitutes the corner- 
stone of our method (and could possibly be useful in other contexts). In 
Section 5, this duality principle is applied to provide a convenient optimality 
criterion and a theoretical solution scheme for stable problems. Section 6 
deals with the stabilization of  unstable problems. Finally, in Section 7, we 
present the main algorithm, along with the detailed convergence proof. 

2. Basic Assumptions 

Throughout this paper (except in Section 4), we shall make the follow- 
ing assumptions: 

(i) the functions f g, h are convex finite throughout R"; D \ G  ¢ ~J; 
and G is bounded; 

(ii) a point w is available such that 

w e D ,  g(w) <0 ,  (3) 

def 
f (w)  < c~ = min{f(x):  x ~ D\G}.  (4) 

The first assumption needs no explanation. As for the second assump- 
tion, it is quite natural. Indeed, by dropping the constraint g(x)>-O, we 
obtain an ordinary convex program 

min{f(x):  x c D}, 

which can be solved by many available methods. If  an optimal solution to 
this program satisfies the constraint g(x)>--O, it will obviously solve (P). If 
this program has no finite optimal solution, P has no finite optimal solution 
either (since G is bounded).  Otherwise, we shall obtain a point w satisfying 
the required conditions (3)-(4). 
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It is expedient to indicate here some immediate consequences of the 
above assumptions. 

Lemma 2.1. The functions f, g, h are continuous and subdifferentiable 
at every point. We have {xe  D: f ( x )  <- a}C  G (closure of G);  and, for any 
real numbers c, d, the level sets 

{x e D: f (x )  <- c}, {x e D: g(x) <- d} 

are bounded. 

Proof. The first assertion follows from the general theory of convex 
functions (see, e.g., Ref. 13). To prove the second assertion, observe that, 
for any x e D, i f f ( x )  < a, then necessarily x e G by virtue of  the definition 
of a. Therefore, 

{xe  D : f ( x )  < a } C  G, 

and hence, 

{xe  D: f (x )<-a}C G. 

The boundedness of G implies the boundedness of the set {x e D: f (x )  <- a}, 
and hence of  all the sets {x e D: f (x )  ~ c} (see, e.g., Ref. 13, Corollary 8.7.1). 
By the same argument, the boundedness of  the set {x • D: g(x) <- 0} C 
implies the boundedness of  all the sets {x • D: g(x) <- d}. [] 

Denote by OG the boundary of G, 

oG = {x:  g ( x )  = 0}. 

For every x~  (3, let ~-(x) be the point where the line segment [w; x] meets 
OG. Since g is convex, g(w)<0,  while g(x)>-0, it is clear that 

~ (x)  = tx+(1  - t)w, 

with t • (0, 1] being uniquely determined from the equation 

g(tx +(1--t)w)=O. 

Lemma 2.2. For every x • D such that g(x) > 0, we have 

f (  ~r(x) ) < f ( x ) .  

Proof. Since g(x)> 0, we must have 

rr (x )=tx+(1- t )w ,  with t <  1, 

and it follows from (3) and the convexity o f f  that 

f(Tr(x)) <- tf(x) + (1 - t)f(w) < tf(x) + (1 - t)f(x) = f ( x ) .  [] 
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Corollary 2.1. Every optimal solution to P lies on D ~ OG. 

Thus, under the stated assumptions, problem P is equivalent to finding 
the minimum o f f  over D ~ O G .  

3. Local Approach: Stationary Points 

In view of the nonconvexity of the feasible set, finding the global 
minimum of  f ( x )  over this set is generally a difficult problem. Therefore, 
in many cases it is useful to find a reasonably good (although not optimal) 
feasible solution, which could subsequently serve as a starting point in the 
global search procedure. 

In this section, we introduce a concept of  stationarity (weaker than 
that of optimality) and discuss a method for finding stationary points. 

As usual, let 0g(ff) denote the subgradient of  g at )7 [as pointed out 
earlier, 0g(g) is nonempty at every ~]. Then, for any p ~ ag(~) ,  we have 

(p, x - ~) <- g ( x )  - g(,~) = g ( x ) ,  if g(ff) = 0. 

Therefore, provided ,2 ~ D ~ OG, we have 

Kp(~) = {xe  D, (p, x-)~)-> 0} C D \ G ,  

and so, if ~ is optimal, it must achieve the minimum o f f ( x )  over the convex 
set Kp(~) .  This observation leads us to the following proposition. 

Proposition 3.1. A necessary condition for a point Y~ ~ D ~ OG to be 
optimal is that 

Og(~) C cone Of(~) + ND(Y~), (5) 

where cone A denotes the cone vertexed at 0 generated by A and 

ND(ff) = {p: (p, x -- 2) --< 0, Vx ~ D} 

is the normal cone to D at ~. 

Proof. If ~ c D c~ OG is optimal, then, as seen above, 

f ( x ) > - f ( : 2 ) ,  for all x e  Kp(g)  and all p e O g ( f f ) .  

Therefore, for every p ~ Og(~), there exist real numbers A/> 0, t~ ~> 0, not 
both zero, such that 

0 c A 0f(2) - /xp  + ND (if). 
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One cannot have/z  = 0, for 0 • Z o f ( ~ ) +  ND(fi~) would imply that ~ achieves 
the minimum o f f  over the whole set D, contrary to the assumptions (3)-(4). 
Consequently,  one can assume/~ = 1. Then, 

p e Aaf(.~)+ N o ( ~ ) ,  

proving (5). [] 

Remark 3.1. Applying Proposition 3.1 to problem (2), equivalent to 
(1), we find the necessary condition for optimality 

ag(g)  c o f ( ~ )  + ND(X), 

that has been earlier obtained by Polyakova (Ref. 14; see also Ref. 15). 

Definition 3.1. A point ~ e D r~ a G  is called stationary it if satisfies 
the condition (5). 

Whenever a point ~ e D n a G  is not stationary, there exists for some 
p • ag(~) at least one point z such that 

z e D ,  ( p , z - ~ ) > - O ,  f ( z ) < f ( ~ ) .  

Then, x ' =  ~ (z )  is a feasible point satisfying 

x ' e D c ~ O G ,  f ( x ' ) < f ( z ) < f ( ~ ) .  

This suggests the following procedure for finding a stationary point (assum- 
ing that a point x I e D c~ OG is available). 

Algorithm 3.1. Start from x l e D n O G .  Take p~•Og(x~) .  

I teration k = 1, 2 , . . . .  Solve the convex program 

rain{f  (x): x • D, (pk,  X -- X k) >-- 0}. 

I f  X k is optimal to this program, stop. Otherwise, let z k be an optimal 
solution to this program. Compute  x k+l = ~r(zk); take pk+~ e Og(xk+~). GO 
to iteration k + 1. 

Remark 3.2. I f  a point x 1 e D c~ OG is not readily available, it can be 
obtained by solving the convex maximization problem max{g(x):  x e D} 
(see Refs. 16-22); as soon as a point z ~ e D has been found with g(z 1) ->0, 
set x 1 = zr(zl). 

Proposition 3.2. Suppose that the function g is G~teaux differentiable 
[so that ag(x)  is a singleton] at each point x e D n a G .  Then, the above 
procedure,  whenever infinite, generates a sequence {xk}, every cluster point 
of  which is a stationary point. 
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Proof. Consider any point 

97 = lira x L. 
v ~ c ~ o  

Since {x k} C 0G and G is bounded,  the sequence {pk} is bounded (see, e.g., 
Ref. 13, Theorem 2.4.7). Further, since f ( z  k) <=f(z~), it follows from Lemma 
2.1 that the sequence {z k} is bounded too. By taking a subsequence, if 
necessary, we may then assume 

pko~pcOg(,~), zk~-->~, with 97 = 7r(g). 

We have 

f(zkQ<-f(x), f o r a l l x ~  D satisfying (pk, x_xk)>_O. 

Therefore, if x c /9 ,  {p, x - 97) > 0, then (pk% x - x k~) > 0, and hence 

f (z  k.) -<f(x),  for all large enough v. 

This implies 

f(~?) -<f(x),  for all x ~ D satisfying (p, x - 97) > 0; 

i.e., the convex system 

x~D, (p,x-97)>O,f(x)<f(~.) 

is inconsistent. Consequently, there exist multipliers h ->- 0,/x >_ 0, not both 
zero, satisfying 

0c  A0f(97) -txp + ND(Y~). 

As in the proof  of Proposition 3.1, one can see that /x > 0, whence (5) 
follows. D 

Remark 3.3. If Og(x k) has more than one element, it is easily seen 
that the above Algorithm 3.1 converges only to points ~ satisfying 

0g(97) c~ (cone f(97) + ND(g)) ~ Q, 

which is a weaker condition than (5). 

4, Duality between Objective and Constraint in Global Optimization 

Turning to the global approach, let us begin with establishing a general 
and simple duality principle, which will be given a central role in the 
subsequent development. 
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As is known, the basic idea of duality consists in the following. Given 
a problem, we wish to associate with it another problem, called its dual, 
such that the primal and the dual problems describe in fact two aspects of 
essentially one and the same situation; solving one problem is just equivalent 
to solving the other. From a conceptual point of view, this would provide 
us a better insight into the real situation under study. On the other hand, 
from a computational point of view, the dual problem may be easier to 
solve than the original one, or at least may suggest more efficient methods 
for solving the latter. 

Now, there are in every optimization problem two fundamental con- 
cepts: the instruments (with costs) and the goal (giving utility), i.e., the 
constraints on the one hand and the objective on the other. These two 
concepts deal with two aspects of the reality, which can be viewed as dual 
to each other in the following manner. 

Consider the two problems, 

(PC) inf{f(x): x c  D, g(x)->/3}, 

(Q~) s u p { g ( x ) : x c D ,  f(x)~o~}, 

where D is an arbitrary set in R", f : R " ~ R ,  g : R n ~ R  two arbitrary 
functions (so we temporarily leave the assumptions about D, f g made in 
Section 2), a , /3 two real numbers. 

Definition 4.1. We say that problem P~ is stable, if 

lim inf P~, = inf Pt~ < +oe, (6) 
/3'~t3+0 

where inf P~ denotes the value of the infimum in problem P~. Similarly, 
problem Q~ is stable, if 

lira sup Q~, = sup Q,~ > -0o. (7) 

Proposition 4.1. (a) If  Q~ is stable, then 

a -< inf P~ implies/3 -> sup O~. (8) 

(b) If P~ is stable, then 

/3 -->- sup Q~ implies a -< inf P~. (9) 

Proof. (a) Assume that Q~ is stable and a <-infP~. Then, for all 
a '  < a, the set {x c D: g(x)  ->/3, f (x )  -< a'} is empty. Hence, 

sup{g(x): x c D , f ( x )  <-- ~x'} <-- f3. 

Thus, sup Q,~, <-/3, for all c~' < cr; and, using (7), we conclude that sup Q~ -</3. 
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(b) Similarly, if Pt~ is stable and/3 >- sup Q~, then, for all /3 '  >/3, the 
set {x ~ D: f ( x )  <- a, g(x) ->/3'} is empty. Hence, 

inf{f(x): x ~ D, g(x) >~ /3'} >~ ~; 

i.e., inf P~,-> a ;  and, using (6), inf Pt3 -> o~. [] 

Corollary 4.1. If both P~ and Q~ are stable, then 

a -< inf PC ¢:>/3 - sup Q~. 

For the purpose of applications, it is important to know under which 
conditions a given problem is stable. 

Lemma 4.1. If inf P~ < +oo, i f f  is upper semicontinuous (u.s.c.), and 
/3 is not a local maximum of g over D, then PC is stable. Likewise, if 
sup Q~ > - o e ,  if g is lower semicontinuous (1.s.c.), and a is not a local 
minimum of f over D, then Q~ is stable. 

Proof. We need only prove the first assertion, since the second can 
be established by a similar method. Suppose that inf P~ < +oo, f is u.s.c., 
while fl is not a local maximum of g over D, and consider a sequence 
{xk}C D such that 

g(xk)>--fl, f(xk)<--Ck, Ck "~ inf P~. 

If, for some k, g(x k) > fl, then, for all fl' sufficiently close to fl, g(x k) >-/3'; 
hence, 

inf P~, <-f(x k) <_ Ck; 

hence, 

lim inf P~, <- Ck. 

Therefore, if the inequality g(x k) >/3 holds for infinitely many k, then 

lim inf P~,-< inf P~; 
~ ' ~ + o  

hence, (6) follows. On the other hand, if g(x k) =/3 for all but finitely many 
k, then, since/3 is not a local maximum of g over D, there exist for each 
k with g(x k) =/3 a sequence Xk'~'->Xk such that x k ' ~  D, g(xk'~)>/3. Then, 
for all /3' sufficiently close to 13, we have g(x k'~) >_/3'; hence, 

inf Ptr <--f(xk'~); 

hence, 

lim infPt~,<-f(xk'~). 
/3'~/3+o 
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By making u ~  oo and using the u.s.c, o f f ,  we obtain 

lim inf Pt3,<~f(xk)~ ck, 
/3'~/3+o 

which yields (6) as k-~ oQ [] 

Remark 4.1. Suppose that both P~ and Q~ are stable. Then, 

a = rain Po ¢=>/3 = max Q~. 

Indeed, if a = rain P0, then/3 ~ sup Q~. But one cannot have/3 > sup Q~, 
because there exists g e D, such that gOD ->/3, f ( 2 ) =  a. Therefore, 13 = 
sup Q~. Furthermore,  one cannot have g (2 )> /3 ,  hence g (g )= /3 ,  i.e.,/3 = 
max Q~. In a similar way, /3  = max Q~ implies a = rain P¢. 

Thus, the minimal cost necessary to obtain an utility level/3 is equal 
to a, if  and only if the maximal utility level that can be obtained with a 
cost a is just equal to/3. 

5. Solution Method for Stable Problems: Reduction to Convex Maximization 

Let us now return to the original problem P, subject to all the assump- 
tions specified in Section 2. 

From the results of  the previous section, we can readily derive the 
following optimality criterion. 

Proposition 5.1, In order that a feasible solution 2 to P be optimal, 
it is necessary and, if P is stable, also sufficient that 

0 = max{g(x):  x ~ D , f ( x )  -<f(2)}. (10) 

Proof. Apply Proposition 4.1, with 

a = min{f(x) :  x e  D \ G }  = min P, /3 =0 .  

Observe that  here f,  g are continuous throughout  R n. The stability of  Q~ 
then follows from Lemma 4.1 and assumptions (3)-(4), which implies that 
a is not a local minimum of  f over /9. Therefore, if  2 is optimal [i.e., 
f ( 2 )  = a ] ,  then, by Proposition 4.1, 

0 = max{g(x):  x e D , f ( x )  -<-f(2)}, 

where one must have the equality, because g (2 )=  O. Conversely, if P is 
stable and (10) holds, then by the same proposit ion and Remark 4.1, 

f ( 2 )  = min P = a. 
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Thus, given any feasible solution x ~ to P, to check whether x ~ is optimal, 
we can solve the subproblem 

(Q(xl)) max{g(x): x ~ D , f ( x )  -<-f(x~)}. (1 t) 

This is a convex maximization problem (or concave minimization problem), 
which consists in finding the global maximum of the convex function g(x)  
over the compact convex set {x ~ D: f ( x )  <-f(x!)}. For such problems, there 
are at the present time several available algorithms (Refs. 16-20; see also 
Refs. 21-22). Some of  these algorithms are practical for problems of  small 
size or having some special structure (Refs. 18, 20, 23). 

If  the optimal value in (11) is zero, we are done. Otherwise, we obtain 
an optimal solution z ~ of  Q(x 1) with g(z  ~) > 0. Then, X 2= 7r(Z 1) yields a 
new feasible solution such that, according to Lemma 2.2, 

f ( x  2 ) < / ( z  1) <_ f ( x l ) .  

We are thus led to the following procedure. 

Algorithm 5.1. Start from any point x~c D c~ OG (for example, x ~ is 
a stationary point found by Algorithm 3.1). 

Iteration k = 1, 2 , . . . .  Solve the subproblem 

(Q(xk)) max{g(x): x ~ D,f(x)--<f(xk)} ,  

and obtain an optimal solution z k to this subproblem. If g(z  k) = 0, stop. 
Otherwise, set x k+~ = ~r(zk), and go to iteration k +  1. 

Proposition 5.2. If  the above algorithm is infinite, it generates a 
sequence { x k } C D ~ O G ,  every cluster point of which yields a feasible 
solution to P satisfying condition (10), and hence an optimal solution to P 
if this problem is stable. 

Proof. Let 

= lim x k~. 

Since the sequences {x k} and {z k} are bounded, we may, by taking a 
subsequence if necessary, assume that x k~÷~ ~ ~, z k~ -~ z. Clearly, f ( x  k) is a 
monotone decreasing sequence. Therefore, for every x ~ D satisfying f ( x )  <- 
f (~ ) ,  we have 

f ( x )  <~f(xk), k = 1, 2 , . . . .  

This implies, by the definition of z k~, g(x)  ~ g(zk~); hence, by making u -~ oo: 
g(x) <- g(z) .  Thus, z is an optimal solution of the subproblem Q(X). Suppose 



474 JOTA: VOL. 52, NO. 3, MARCH 1987 

/ 

/ / 

) - -0  

Fig. 1. Unstable problem ( f  convex nonlinear). 

that g(z) > 0. Since x k . . . .  ~r(zk"), it is easily seen that Y = ~r(z), and hence, 
by Lemma 2.2, f(Y) < f ( z ) .  But 

f(xk,+,) <.f(xk. +1) < f (zk . )  <-- f(xk"). 

This yields, by letting u ~ ~ ,  

f(Y,) ~ f(.~) <_ f ( z )  <-f(Y~), 

conflicting with the just established inequality f ( 2 )  < f (z ) .  Therefore, g (z) = 
0, and hence, (10) is satisfied. By virtue of  Proposition 5.1, if P is stable, 
this ensures the optimality of  ~. [] 

Note that subproblems of the type Q(x k) were also used in Refs. 5 and 7. 

6. Stabilization of Unstable Problems 

It is likely that many problems encountered in practice are stable, hence 
can be solved by Algorithm 5.1. However, examples of  unstable problems 
can easily be constructed. Figures 1 and 2 illustrate typical situations where 
instability may occur. 

~O#II'ITISi #O/ut/'On 
G 

Fig. 2. Unstable problem (flinear). 
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If problem P is not stable, Algorithm 5.1 furnishes only a point ~ e D c~ 
OG satisfying condition (10), i.e., 

0 = max{g(x): x c D, f (x)  -<f(2)}. 

Such a point may not be an optimal solution (see Figs. 1 and 2). Nevertheless, 
this condition being necessary, the optimal solutions to P must be sought 
among the optimal solutions to the program 

(0(2) )  max{g(x): x c D, f ( x ) - f ( 2 ) } .  

Hence, if g ( 2 ) =  0 and 2 is the unique optimal solution to this program, 
then it will solve P. Otherwise, the set of  all optimal solutions to Q(2) is a 
union of  faces of  the compact convex set 

D(~)  = { x e  D:f(x)<-f(2)}; 

see, e:g., Ref. 13, Corollary 32.1.1. Thus, having found by Algorithm 5.1 a 
point 2 satisfying (10), we still have to solve a number of  residual problems, 
each of which consists in minimizing the convex function f ( x )  over some 
face of  D(2) .  Very often, these faces are easy to determine; for instance, 
if g(x) is strictly convex, they can only be extreme points of  D(2). But, 
generally speaking, a direct study of the set of  faces of D(2) where g(x) 
achieves its maximum may be hard. 

Therefore, it is important to know a simple method for overcoming 
instability, at least in the most important cases. We first prove the following 
proposition. 

Proposition 6.1. If G Cint  D (in particular, if D = R"), problem P is 
stable. 

If  D is a polyhedral convex set and g(x) is a strictly convex function 
which does not vanish at any vertex of D, then P is stable. 

Proof. If  G C int D, then every extreme point x of  D satisfies g(x) > O. 
Since a local maximum of  g in D must always be attained at an extreme 
point of  D, zero cannot be a local maximum of  g in D. Therefore, by 
Lemma 4.1, problem P is stable. In the case where D is a polyhedral convex 
set and g(x) a strictly convex function, the only points of  D where g may 
achieve a local maximum over D are the vertexes of  D. Therefore, i f g (x )  # 0 
at every vertex x of D, zero cannot be a local maximum of  g over D. 
Consequently, again by Lemma 4.1, P is stable. 

Proposition 6.2. If D is a polyhedral convex set, there is eo > 0 such 
that, for all E ~ (0, e0), the perturbed problem 

(P(e)) min{f(x):  x ~ D, g(x) + ~([x12+ 1) -- 0} 
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is stable. If  x, is an optimal solution to P(e )  and x , ~ £  for e ~ 0 ,  then £ 
is an optimal solution to P. 

Proof. Let Vo denote the set of  vertexes x of  D where g(x) = 0, and 
let 1/1 denote the set of all remaining vertexes of  D. Let 

6 = min{lg(x)[: x c V1} > 0, 

and let e0> 0 be so small that 

eo(lXl2+l)< 8, for all x c  Vv 

Then, for every e c (0, co), we have 

g(x) + e(IxI2+ 1) --> E > O, for all x ~ V0, 

for all x c  V 1, 

Since the function g(x)+ e(Ixl2+ 1) is strictly convex and does not vanish 
at any vertex of  D, it follows from the previous proposition that P is stable. 

Let x, be any optimal solution to P(e) ,  so that 

f(x~)<-f(x), for all x~  D satisfying g ( x ) + e ( I x r + l ) _ 0 ;  

and let x, ~ £ for • -~ 0. Then, for all x c D satisfying g(x) >- O, we have 

g(x) + e(IxI2+ 1) > O, hence f(x,)  <-f(x), so that f ( £ )  <-f(x). 

Since £ ~ D, g(£) -> 0, £ is an optimal solution to P. [] 

On the basis of this proposition, in order to solve a given problem P, 
where D is polyhedral convex, it suffices to solve problem P(e), with e > 0 
arbitrarily small, and then make e = 0 in the result. 

7. Improved Algorithm 

Algorithm 5.1 reduces problem P to a sequence of  subproblems Q(x k), 
k = 1, 2 , . . . ,  each of  which is in fact a relaxed form of the problem 

(Q) max{g(x): x~D,f(x)<-a}.  

Therefore, the procedure can be viewed as a special outer approximation 
method applied to problem Q (see Ref. 20). However, since the constraint 
sets of these subproblems Q(xk), i.e., the sets 

D(x k) = {x e D,f(x)  <--f(xk)} 

are nonpolyhedral,  these subproblems cannot in general be solved exactly 
by finitely many operations, using currently available methods for convex 
maximization. 
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The question arises as to whether the usual outer approximation method 
can be applied directly to problem Q, thus reducing P to a sequence of 
subproblems of the form 

(Qk) max{g(x): x c  Sk}, 

where each Sk is a polyhedral convex set and 

SlD S2~""  "DD~ ={xeD:f(x)<-ot} .  

The following algorithm proceeds along this line [it is interesting to compare 
this algorithm with an outer approximation algorithm developed in Ref. 20 
for maximizing f (x )  over D\G].  

Recall that 

D = { x :  h(x) <-0}, 

where h is a convex finite function on RL 

Algorithm 7.1. Start from a feasible point .~1 E D n 3G. Set o~ =f(X~), 
and select a polytope S~ containing the compact convex set {x e D: f (x )  <- 
~1}" 

Iteration k = 1, 2 , . . .  Solve the subproblem 

(QD max{g(x): x~S~} 

by a finite algorithm (see, e.g., Refs 19, 20, 24). Let z k be an optimal solution 
to (Qk). If  g (zk)=0,  stop. Otherwise, find the point x k where the line 
segment [w; z k] meets the surface 

max{f  (x) - Otk, g(x)} = 0. 

(a) If  x k c D [i.e., h(x k) <_ 0], choose pk c of(xk), and let 

lk(x) = (pk, X--Xk). (12) 

(b) I f x k ~ D  [i.e., h(xk)>o], choose pkcOh(xk), and let 

Ik(X) =(p k, X--xk)+h(xk).  (13) 

Form Sk+~ by adjoining to Sk the new constraint 

l~(x)<-o. 

Set 

~k+l = xk, i f x k6D,  g(xk)=O, 

~k+l = ffk, otherwise. 

Set ak+l =f07k+l). Then, go to iteration k +  1. 
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We shall establish the convergence of this algorithm under the following 
additional assumption (iii) [aside from the assumptions (i), (ii) already 
stated in Section 2]: 

(iii) w ~ int D. 

In view of assumption (ii), this is equivalent to requiring that D have a 
nonempty interior; for then, by slightly moving w, one can simultaneously 
satisfy (ii) and (iii). 

Observe that, for every k = 1, 2 , . . . ,  ~k is the best feasible solution that 
has been computed up to step k, while ak =f(~k)  is the best objective 
function value up to this step. 

and 

Lemma 7.1. For every k, we have 

{ x ~ D :  f ( x ) < - - a k } C S k .  

Proof. Let x ~ 19, f ( x )  <- ak. Since ak <-- 0ll 

{y ~ D:  f ( y )  <- a~} C S~, 

it follows that x c $1. Furthermore, for i < k, i f x  i ~ D, then pi ~ Of(xi), so that 

li(x) = (p' ,  x - x i) <--f(x) - f ( x ' )  <--f(x) - at, <-- O. 

If  xi~ D, then p i e O h ( x i )  and 

li(x) = (p' ,  x - x  i) + h ( x  i) <- h ( x )  <-O. 

Therefore, x ~ S k. [] 

Proposition 7.1. If  g ( z  k)  = 0 ,  then 

0 = max{g(x): x ~ 19, f ( x )  <- ag}. (14) 

If  the sequence z k has a cluster point ~ such that g (g )=  0, then 

0 = max{g(x): x ~ D , f ( x )  <- a.},  (15) 

where 

a ,  = inf{f(~i): i =  1, 2, . . .}.  

Proof. Since 

Otk > - Ot = min{f(x):  x s  D, g(x) >--0}, 

we have from Lemma 7.1 that 

{ x e  D: f ( x ) < - a } C { x ~  D: f ( x ) < - a k }  C Sk. (16) 
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By Proposition 5.1, 

0 = max{g(x): x ~ D, f ( x )  <- a}; (17) 

and, by hypothesis, 

g(z k) = max{g(x): x~  Sk} = 0. 

Hence, (14) follows. 
To prove the second assertion, observe that, in view of the inequality 

g(z k) ~ g(x), Vx ~ Sk, 

and the continuity of g, 

g(~)>--max{g(x): x ~  ~-) (18) 

On the other hand, from (16) we have 

{x ~ D: f ( x )  <- a} C {x E D: f ( x )  <- a,} C ~ Sk. (19) 
k=l 

Since g (~)=  0, the relations (17)-(19) altogether imply (15). [] 

Lemma 7.2. For any extended real number ~, if 

0 = max{g(x): x ~ D, f ( x )  -< ~}, (20) 

then ~ -< ~, provided problem P is stable. 

Proof. For any real number a ' <  d, we have from (20) 

0 ~ max{g(x): x e D, f ( x )  <- c~'}. 

Consequently, by Proposition 4.1 [see (9)], ce'_<__ a. This implies ~-< a. 
D 

Proposition 7.2. Assume that problem P is stable. If g(z k) = 0, then 
k is an optimal solution to P. If the sequence z k has a cluster point ;? 

satisfying g(~) = 0, then any cluster point :~ of the sequence ~k is an optimal 
solution to P. 

Proof. If  g(z k) ----- O, then, by Proposition 7,1, (20) holds with ~ -- ak = 
f(~k).  If  g (g )=  0 for some cluster point ~ of the sequence z k, then, by 
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Proposition 7.1, (20) holds with a = a .  = f ( ~ )  for any cluster point ff of 
the sequence ~k. The conclusion then follows from Lemma 7.2. [] 

One last lemma needed for the proof  of our basic convergence theorem 
is the following cutting plane convergence principle. 

Lemma 7.3. Let C be an arbitrary set, and let zk be a bounded sequence 
in R". Assume that, for every k = 1, 2 , . . . ,  there is an affine function Ik(" ) 
such that 

(A) Ik(W)<--O, for some fixed w; l k ( z k ) > o ;  (21) 

(B) l~(z k) <-- O, for all j < k; (22) 

(c) for any subsequence z g" such that z k " ~ C  and l k ~ ( Z ) ~ l ( z )  
for every z c R", we have l(~') > 0. 

Then, every duster  point of z k belongs to (7. 

Proof. See Ref. 20 or 23. 

We are now in a position to state our basic result. 

[] 

Theorem 7.1. Assume (i), (ii), (iii) and that problem P is stable. If 
Algorithm 7.1 terminates at iteration k, then £k is an optimal solution to 
P. If the algorithm is infinite, then every cluster point ~ of  the sequence £k 
is an optimal solution to P. 

Proof. The first part of  the theorem follows from Proposition 7.2. To 
prove the second part, it suffices, by the same proposition, to show that any 
cluster point ~ of  {z k} satisfies g(~) = 0. According to Lemma 7.3, we need 
only check that all conditions of  this lemma are fulfilled by 

C = o G  = {z:  g ( z )  = 0} 

and {zk}.  Condition (B) is obvious. To verify condition (A), observe that, 
if  lk is of  the form (12), then 

lk(W) = (pk,  W -- X k) <--f(w) - - f ( x  k) < 0 

[see (4)], lk(X k) =0,  hence Ik(Z k) > 0, because 

z k = x k + tk(x  k - w) ,  with tk > 0. 
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Similarly, if lk is of  the form (13), then Ik(w) <-- (pk, w - x k) + h ( x  t') <- h (w)  < 
0 [by (iii)], I k ( x k ) = h ( x k ) > O ,  hence /k(Zk)>0. Thus, it only remains to 
verify condition (C). Suppose that z k~ ~ 5, Ik~(Z) ~ l(z) ,  for every z and ff~ C 
[hence g(g) > 0, because g(z  k) > 0, for every k]. By taking a subsequence 
if necessary, we may assume that either of  the following cases occurs. 

(a) x k- ~ D, for all v. Then Ik~ has the form (12); and, since x k ~ S~, 
it follows from the compactness of  S~ that the sequence pk is bounded (see, 
e.g., Ref. t3, Theorem 24.7). Again, by taking a subsequence if necessary, 
we may assume x k~ -~ 2, p k  . P ~ af(g) ,  so that I(z) = (p, z - ~). Since g(5) > 
0, we have 

z = g + t(g - w), with t > 0. 

Noting that 

i ( w ) = ( p ,  w - g ) < - f ( w ) - f ( ~ ) < O ,  l(ff) =0 ,  

we then deduce 1(5)> 0, as required by condition (C). 
(b) x k- ~ D, for all v. Then, Ik~ has the form (13); and, as previously, 

we may assume x k ~  if, p k ~ p c O h ( ~ ) ,  so that 

l(z)  = (p, z - g) + h (2). 

Clearly, 

l(w)=(p, w-~)+ h(~)<- h(w) <O, 

because h(xk~)> 0. Since 

t(~) = h(~)  ~-o, 

~ = Y +  t ( f f - w ) ,  with t > 0 ,  

we conclude, as before, that l ( 5 )>  0. 

Thus, all conditions of  Lemma 7.3 are fulfilled. By this lemma we have 
~ C, i.e., g ( 5 ) = 0 ,  completing the proof. [] 

Remark 7.1. In practice, given a tolerance number  e > 0, we terminate 
when 

g(zk) <e-  (23) 

Since any cluster point ~ of  the sequence z k satisfied g ( ~ ) =  0, (23) must 
occur after finitely many iterations. Suppose that 

7 = max{g(x):  x ~ D} > 0, (24) 



482 JOTA: VOL. 52, NO. 3, MARCH 1987 

which necessarily holds if the problem is stable, and that • < 3'. Then, 

max{g(x): x ~ D , f ( x )  <- ak} <- g ( z  k) < e < y, 

which implies ak < + ~ ,  i.e., there is ~k ~ D such that g(~k)  = O, f ( ~ k )  = ak. 
Furthermore, there is no x ~ D such that f ( x )  <- ak, g ( x )  >-- •. Hence, 

f ( '2  k) = ak < min{f(x):  x ~ D, g(  x ) >-- E}. (25) 

Thus, with the stopping rule (23), where • < y, the algorithm is finite and 
provides an •-optimal solution in the sense (25) (note that this solution 
may not be e-optimal in the usual sense). This conclusion holds under 
assumptions (i), (ii), (iii), and (24), no matter whether the problem is stable 
or not. 

Remark 7.2. The subproblems Qk can be solved by any available 
algorithm for maximizing a convex function over a polytope (see Refs. 18, 
19, 20, 24). Since, however, Qk differs from Qk-~ by just one additional 
constraint lg(x)<-0, in order to economize the computational effort one 
should use for solving Qk an algorithm which could take advantage of  the 
information obtained in solving Qg-1. Such an algorithm is provided, for 
instance, in Refs. 18, 20. Following this algorithm, the starting polytope $1 
is chosen so that all its vertexes are known or can be computed easily. At 
iteration k > 1, we already have in hand the vertex set of  S~_t. Let lk(X)<--0 
be the new constraint adjoined to Sk-~ for defining Sg. Then, compute in 
the following way the vertex set of Sk. Consider all pairs u, w of vertices 
of  Sk_ 1 such that / k ( U ) < 0 ,  l k ( w ) > O  , and [u, w] is an edge of  Sk-~ (i.e., 
n -- 1 linearly independent constraints are simultaneously binding at u and 
w). For each of these pairs u, w, find the point v on the line segment [u, w] 
that satisfies lk(V) = 0. The vertex set of Sk then consists of all the points v 
obtained in that way, along with all the vertices u of  Sk-~ that satisfy 
Ik(U)<--O. For each new vertex v of  Sk, compute g(v ) ,  and let v k be the new 
vertex with maximal value of g. If  g(v  k) > g(zk-~) ,  an optimal solution to 
Qk is z k = vk; otherwise, z k = z k-1 (this is based on the property that the 
maximum of  a convex function over a polytope is achieved in at least one 
vertex). 

Remark 7.3. A matter of  concern in Algorithm 7.1, as in other outer 
approximation methods, is that the number of  constraints of  the subprob- 
lems Qk increases systematically by one at each iteration and may thus 
become excessively large as the algorithm proceeds. To circumvent this 
drawback, one can propose an alternative, more flexible, strategy for forming 
the subproblems. 
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In fact, it was shown in Ref. 23 that Lemma 7.3 remains valid if 
condition (22) is replaced by a weaker one. Namely, instead of (22) we can 
assume that 

l~(z k) = 0, for all j < k such that 

/j(z~)>0, for at least N indices i<j ,  (26) 

where N is any fixed natural number chosen beforehand. 
With this strong form of Lemma 7.3 in mind, let us choose a natural 

n_umber ?4. At each iteration j, let v~ denote the number of  points z ~ with 
i < j  such that lj(z ~) > 0 (i.e., the number of  previously generated points z ~ 
that violate the current constraint). No being a fixed natural number greater 
than N, we now modify as follows the rule for forming the subproblems Qk: 

At every iteration k _> No, if ~k-~ -> N, then form Qk+t by adjoining 
the newly generated constraint Ik(x)<--0 to Qk; otherwise, form 
Qk+~ by adjoining the newly generated constraint to Qk-~. 

It is easily seen that, in this way, any constraint/ j(x) -< 0, with v~ < N, j  > No, 
is used just once (in the subproblem Qj+I) and will be dropped in all 
subsequent iterations k > j + l .  Intuitively, only those constraints are 
retained that are sufficiently efficient, having discarded at least N previously 
generated points z i. In view of  Lemma 7.3, where (22) is replaced by (26), 
this constraint dropping device does not adversely affect the convergence 
of the algorithm. Of course, the choice of  N and No is up to the user, who 
should be aware, however, that while a larger value of  N allows having a 
smaller number of constraints for the subproblem in each iteration, this 
advantage can be offset by a greater number of  required iterations. 

8. Conclusions 

The adjunction of  just one reverse convex constraint to an ordinary 
convex program transforms it into a very difficult problem. In this paper, 
we have developed for this problem an algorithm whose complexity is 
apparently the same as that of the outer approximation methods for 
maximizing convex functions over compact convex sets, as described in 
Refs. 18 and 20. Computational experiments have shown that most currently 
available methods of convex maximization over compact convex sets are 
practical only for problems of rather small size. Very likely, the same will 
be true for our Algorithm 7.t, considering the close relationship exhibited 
above between convex maximization problems and problem P. 
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There are, however, two points worth noting in connection with the 
practical implementation of the algorithm. First, the algorithm could be 
combined in several conceivable ways with other (stochastic, local) 
approaches to yield practical results in a given case. For example, in a first 
stage, one could use the algorithm to find only a rough approximation of 
the global optimum: then, in a second stage, starting from this approximate 
global optimum, apply the local approach to find a stationary point. Or 
one could do the converse: first, find an approximate optimum x ° by some 
other method, then apply the algorithm while replacing the set D by 
D c~ {x: f(x)--<f(x°)}.  Second, if the problem has a special structure, one 
can hope to improve considerably the algorithm by a rational exploitation 
of  this structure. For example, a problem of  the form 

minimize ~o(u), s.t. A u + B v + c < - O ,  4`(v)>-O, 

where ~ : R n' -~ R, 4' : R n2 ~ R are convex functions, c c R m, A ~ R . . . .  ,, B e 
R m×'~, can be reduced easily to problem P in R '~, using the decomposition 
method developed in Ref. 23. Therefore, provided n2 is relatively small, 
Algorithm 7.1 can be applied, even if nl is fairly large. 

Finally, let us observe that the above method applies to the more 
complicated case where problem P involves not just one single reverse 
convex constraint g(x)>-O, but several such constraints: 

gj(x) >- O, j = 1, 2 , . . . ,  s, (27) 

with g~ being convex functions on R n. Indeed, the above system is equivalent 
to the single inequality 

g(x)>-o, 
where g(x)  = min{gl(x), gz(X), • • . ,  gs(x)}. But 

g(x)  = p ( x ) - q ( x ) ,  

with 

p(x)  = gl(x) + gz(x) + " "  + g~(x), 

q ( x ) = m a x {  ~ g~(x): r =  1 , 2 , . . . , s ) .  
j a r  

Since both p(x )  and q(x)  are convex functions, by introducing an additional 
variable t we can now rewrite (27) in the form 

p(x)  - t >- O, q(x)  - t <- O. 

Here, the first inequality is reverse convex, while the second is convex (and 
hence, can be incorporated into the convex constraints h~(x)<-O, i= 
1, 2 , . . . ,  m). Thus, at the cost of an additional variable, any convex program 
with several additional reverse convex constraints can be converted into 
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the form P (with just one single reverse convex constraint) and treated by 
the above method. 
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