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Existence of Optimal Controls 
for the Diffusion Equation 

D. A. WILSON t AND J. E. RUBIO 2 

Communicated by G. Leitmann 

Almtraet. The existence is considered of a boundary control which 
drives a system governed by the one-dimensional diffusion equation 
from the zero state to a given final state, and at the same time minimizes 
a given functional. The problem is first modified to one in which the 
minimum is sought of a functional defined on a set of Radon measures. 
The existence of a minimizing measure is demonstrated, and it is shown 
that this measure may be approximated by a piecewise constant control. 
Finally, conditions are given under which a minimizing measurable 
control exists for the unmodified problem. 
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1. Introduction 

In  this note,  we consider  the existence of  a class of  opt imal  controls  for  
the one-d imens iona l  diffusion equa t ion  

yx~(x, t) = y,(x, t), 

with b o u n d a r y  condi t ions  

y~(O, t ) = 0 ,  

yx(1, t) = u(t), 

y(x,0)=0, 

(x, t ) e (O,  1 )×(0 ,  T), 

t ~ [ 0 ,  T], 

teD, T], 

x ~ [ 0 ,  1], 

(1) 
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where u (t), t e [0, T], is the control. The control u wfill be termed admissible 
if it is a measurable function on [0, T] and 

(a) u ( t ) e [ - 1 ,  1]a.e. f o r t e [ 0 ,  T], 
(b) y(x, T)=g(x),a.e.  forxs[O, 1]. 

g E L2(0, 1) is then the desired final state. The set of all admissible controls, 
which is assumed nonempty, will be denoted by U. 

The control problem consists of finding a u e U which minimizes the 
functional 

f0 J(u)= f( t ,  u(t)) dr, 

where f0 e C(f~), the space of continuous functions on 

a = [ 0 ,  T ] x [ - 1 ,  1] 

with the uniform topology. 
In Section 2, the above control problem is restated in terms of a moment  

problem, which is then modified by admitting Radon measures on f~ as 
solutions. This approach automatically guarantees the existence of a 
minimizing solution. In Section 3, it is shown that the optimal measure may 
be approximated by a piecewise constant control. Section 4 deals with the 
existence of solutions to the unmodified original problem. 

2. Modified Control Problem 

We consider the solution of Eq. (1), in the sense defined by Fattorini 
and Russell (Ref. 1), in which case 

y(x, T) = u(t) d t+~ 2(-1)  ~ exp[-na~r2(r-t)]u(t) dt cos(n~rx) 
1 

= On(t, u(t)) dt cos(n~'x), 
0 

where 

0o( t ,  u ( t ) )  = u (t) ,  

4J,(t, u(t)) = 2(-1)" exp[-nZrr2(T - t)]u(t), 

t e [0 ,  T], n = l , 2  . . . . .  

Since g e L2(0, 1), it possesses a half-range Fourier series 

co  

Z a,  cos(nTrx). 
0 
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Hence, the control problem reduces to finding a measurable control 

u(t)e[-1, 1], te[0, T], 
which satisfies 

and minimizes 

for~n(t, u(t)) dt  = an, n = 0,  1, 2 . . . .  , (2)  

IoTf°(t, u(t)) (3)  dt. 

In general, a minimizing solution to the problem defined by (2)-(3) may 
not exist; thus, following the work of Young (Ref. 2), we replace this 
problem by one in which the minimum of a linear functional is sought over a 
set of Radon measures on F~. 

We notice that, for a fixed u, the mapping 

f (  . , . ) ~  f ( t ,  u ( t ) )  dt  

defines a positive linear functional on C(12). Thus, by the Riesz representa- 
tion theorem (Ref. 3), there exists a unique positive Radon measure/.t on f~ 
such that 

f0 fo f ( t ,  u ( t ) )  d t  = f dt z =/x(f) (4) 

for all f ~ C(Ft), and in particular for f = fo. 
We now replace the original minimization problem by one in which we 

seek the minimum of/~ (fo) over a set O of positive Radon measures £L 
Measures in O are required to have certain properties which are abstracted 
from those satisfied by admissible controls. 

First, from (4), 

I (f)l ~ Tsup If( t ,  u) t ;  
12 

hence, 

fa d/z ~< T. 

Next, measures in Q must satisfy an abstracted version of Eq. (2): 

/~(On) = a,, n =0,  I . . . . .  



94  JOTA:  VOL. 22, NO. 1, M A Y  t977  

Note that this is possible, since 

~0n ~ C(I~), n = 0 ,  1 , 2 , . . . .  

Finally, suppose that h e C(12) does not depend on u, that is, 

h(t, us)=h(t ,  u2) 

for all t~[0,  T], us, u26[ -1 ,  1]. Then, measures in O must satisfy 

fo Io h d/z = h (t, u) dt = ah ,  

where u is an arbitrary number in [ -1 ,  1], and ah is the Lebesgue integral of 
h ( . ,  u) independent of u. This property of O is needed in the next section in 
order to use a theorem due to Ghouila-Houri (Ref. 4). 

To summarize, O may be written as 

Q =  S c~P n M  c~N, 

where 

s:{/z:f dtz <T }, 
e--{/z:/zff) 0,fs 

M={/z : /z  (~b,) =a , ,  n =0,  1, 2, . . .},  

N =  {/z:/z(h) = ah, h ~ C(1~), h independent of u}. 

We topologize the space of all Radon measures on f~ by the weak star 
topology. S is then compact in this topology. M can be written as 

M =  (~ {/Z: ~/,,(/Z) = a ,}= (~ M,. 
n =0 n =0 

Each Mn is the inverse image of a closed set on the real line (the single point 
a ,)  under a continuous map. Hence, M is closed. By similar arguments, it is 
easy to see that both N and P are closed. Therefore, O is compact. It is also 
obvious that S, P, M, and N are convex; thus, O is convex. Therefore, by the 
Krein-Milman theorem (Ref. 5), Q, a compact convex set, has extreme 
points. 

Consider now the functional I: O ~ R defined by 

I(/z) = ~a fo d/z, /Z ~ O. 

I is a continuous linear functional defined on a convex compact set O, and 
will therefore attain its minimum at one or more of the extreme points of O. 
We have shown the following proposition. 
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Proposition 2.1. The modified optimal control problem, which con- 
sists of finding the minimum of I over Q, possesses a minimizing solution t*o 
(say) which belongs to Q. 

In the next section, we show that /Zo may be approximated by a 
piecewise constant control. 

3. Approximation to the Optimal Measure 

With each piecewise constant control 

u(t)e[-t ,  1], te[0, T], 
we may associate a measure ~u in S n P n N which satisfies 

forf(t, u(t)) dt= fa f dt~ = lzu(f) 

for all f e C(Y~). 
Let  W be the set of all such measures ~u. Then, Theorem 1 of Ref. 4 

shows that, when the space of Radon measures on FL has the weak star 
topology, W is dense in S n P n N. A basis of dosed neighborhoods in this 
topology is given by sets 

{~: i~(f~)l < ~ , .  = 1, 2 . . . . .  k +2 ,  ~ >0}, 

where k is an integer, 

f ,  e C(f~), n = l , 2 , . . . , k + 2 ,  

and e > 0. In any weak star neighborhood of tZo (the minimizing measure of 
Section 2), it is then possible to find a /~ ,  corresponding to a piecewise 
constant control. In particular, if 

h = / ° ,  A = ~ , o , . . . , £ + 2 = 0 ~ ,  

a piecewise constant control u may be found such that 

I foTf°(t, u(t)) dt-I(p.o) I <-e, 

tIoT~n(t, u(t))dr-an <-e, n = 0 , 1  . . . . .  k. 

Thus, using this control u, we get within e of the minimum value l(/zo), and 
we attain a final state y (x, T), x e [0, 1], the Fourier coefficients of which are 

bn = ~b. (t, u (t)) dr, n = O, 1 . . . .  , 
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where 

Ib,,-a,,]<~e, n = 0 , 1  . . . . .  k. 

Since the piecewise constant control u has its range in [-1,  1] for all 
t ~ [0, T], the Fourier coefficients b, of y ( . ,  T) satisfy 

lb. I < 2  e x p [ - n % 2 ( r - t ) ] I u ( t ) [  d t ~ 2 / ( m r )  2, n = 1, 2 . . . . .  

Similarly since it is assumed that g is reachable with an admissible control, 
la.[ satisfies the same inequality as lb, [. We now demonstrate the following 
proposition. 

Proposition 3.1. Given any 6 > 0, we may choose k and e > 0 such 
that 

(i) e~<6, 

(ii) (y(x, T) -g(x) )  2 dx ~ 3. 

Proof. Using the above inequalitites on b. and a., 

f01 L (y(x, T ) - g ( x ) ) 2  dx = Y . ( b . - a . ) 2 +  ~ ( bn -a , , )  z 
0 L+I 

< ~  ( b . - a . ) 2 + 1 6  ~ 1/(n~') 4. (5) 
0 L+I 

Since the last summation in (5) is the tail of a convergent series, we may 
choose L such that 

16 ~ 1/(nrr)4<~6/2. 
L+I 

The integer k can now be chosen as that satisfying 

T h e n ,  

we choose 

k ~ max(L, (1 /26 ) -  1). (6) 

16 ~ 1/(n~)4<~6/2; (7) 
k+l 

e = [6/(2(k  + 1))] ~. 
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From (6), it follows that 

from which we derive 

1 + k  i> 1/(2~), 

[6/(2(k + 1))] ½ = e ~< 3; 

thus, (i) is satisfied by this choice of e. In the neighborhood defined by 
choosing e and k as above, a t~  exists which corresponds to a piecewise 
constant control u for which we must have 

hence, 

Ib,-a,I<~e, n = 0 ,  1 , . . . , k ;  

k 

(b, - a , )2~  < (k + l)e 2 = 6/2. 
0 

Combining this last relation with (7) completes the proof of Proposition 3.1. 
The piecewise constant control which approximates to/Xo in the above 

series will depend on 6. From the proof of Theorem 1 of Ref. 4, it can be 
deduced that, in general, for small 6, the approximating control will remain 
constant, with values in [ -1 ,  1], for short time intervals in [0, T], switching 
then in general rapidly from one level to another. 

4. Unmodified Control Problem 

In the previous section, we demonstrated that the optimal control 
measure/~o of the modified problem may be approximated by a piecewise 
constant control. In this section, we discuss briefly some conditions under 
which the original problem defined by (2) and (3) has a solution. 

We make the following additional assumptions on fo: 
( i ) )co is differentiable in u ~( -1 ,  1) for all t6[0 ,  T]; 

(ii) f o e  C(f~), that is, fo exists and is uniformly continuous in the 
interior of f2; 

(iii) f0 is convex in u ~[ -1 ,  1] for all t e[0, T]. 
Let 

p = inf J(u). 
u ~ g  

Since f ° ~ C(f~), J is bounded below; therefore, there exists a sequence {un}, 
u. ~ U, with 

lim J(u,) = p. (8) 

We show the following proposition. 
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P r o p o s i t i o n  4.1. When foe  C(f~) satisfies the properties (i), (ii), and 
(iii) above, there exists a control ti ~ U for which 

Hence, 

P r o o f .  

J(a)=o. 

Since each control in the sequence {un} in (8) belongs to U, 

fo rU~Z(t) dt <- 7". 

l lu . [ [~  < T ~, n = 1, 2 . . . .  , 

where I1" II is the norm in L210, T]. We endow L2[O, T] with the weak 
topology, which means that the set 

is compact, and {u~} has a weakly convergent subsequence, which we again 
denote by {u,}. Let 

lim un = ti (weak limit). 
tL - + o o  

i 
for all n. But, since 

exp(. ) e L2[O, T], 

this contradicts the fact that {u,} converges weakly to a. 
To prove (c), suppose that 

l a ( ' ) t > l  

We claim that 

(a) ~ L 2 [ O , T ] ,  

( (b) Ok(t, a(t)) dt = ak, k = O, 1 , . . . .  

(c) ta(-)l< l a.e., 

and hence that ti e U. 
Condition (a) follows directly from the weak compactness of V. If (b) 

were false for some k, then an e > 0 would exist with 
T 

exp[-k2~r2(T - t)](ti(t) - u~(t)) dt > e 
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on some subset of [0, T] having finite measure. Let p be the function on 
[0, T] defined by 

p(t) = 1, t~{s: ti(s) > 1}, 

p(t) = - 1 ,  t6{s: ti(s) < - 1 } ,  

p(t) =0 ,  to{s: Iti(s)l ~< 1}. 

Since ti is measurable, p c L2[0, T] and 

foVp(t)ff(t) d' > d, 

for all n. This contradicts the fact that {u,} converges weakly to ti. Hence, 
a ~ U .  

We now show that 

J(a)<~p = lim J(u,). (9) 
n ---~ cx3 

This implies that, when L2[0, T] has the weak topology, J is lower semicon- 
finuous and that 

J (a )  = P. 

The convexity and differentiability assumption on fo imply that (Ref. 6) 

f°(t, vl) >- f°(t, Vz) + (vl-v2)f°(t, v2) 

for every 

Vl, v2~[-1, 1], t~[0 ,  T]. 

Hence, 

;o io io f°(t, u,(t)) d t ~  f°(t, gt(t)) dt+ (u.(t)-a(t))f°(t, a(t)) dt. 

Therefore, 

~o 
Tf°( 

p = lim J(un) = lim t, u, (t)) dt 
n - ~ o o  n --~oo 

>~J(a)+ lim (u.(t)-a(t))f°(t, a(t)) dt. (10) 
n - - ~ o O  

By assumption, f°~C(f~), and hence fo is bounded on fL Since t, a(t), 
t ~ [0, T], are both measurable, 

f o ( . ,  t2(. )) ~L2[0, T3 
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(see, for example, Ref. 7). Since {un} converges weakly to ti; the last limit in 
(10) reduces to zero and the required result of (9) has been demonstrated. 
The proof of Proposition 4.1 is complete. 

5. Discussion 

We have considered the existence of a class of optimal controls for the 
one-dimensional diffusion equation. In the first problem (Section 2), the 

"~ 0 only requirement on the function f in (3) was that it was continuous on ~1. 
Then, the existence of a minimizing measure was demonstrated. In the 
second problem (Section 4), additional convexity and differentiability condi- 
tions were put on f0, and the existence of a minimizing control t7 ~ U was 
demonstrated. Of course, when f0 satisfies these additional conditions, we 
may still define a modified control problem, as in Section 2, and obtain an 
optimal measure/z0. The question then arises as to the relation between 
I(/x0) and J(a). Since each u ~ U can be identified with a measure, we have 

](a) >~ I(~o). 

Again, a piecewise constant control may be found which approximates 
to/Zo; however, this control does not exactly satisfy the moments given by 
(2), and thus does not belong to U. It may be that, in general, I(/z0) is strictly 
less than J(a); and, only if we relax our requirement of reaching the final 
state g exactly, may we get arbitrarily close to I(/x0) using a measurable 
control. 
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