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Ordered Field Property for Stochastic Games 
When the Player Who Controls Transitions 

Changes from State to State 1 

J. A. F I L A R  2" 

Communicated by G. Leitmann 

Abstract. In this paper, we consider a zero-sum stochastic game with 
finitely many states restricted by the assumption that the probability 
transitions from a given state are functions of the actions of only one of 
the players. However, the player who thus controls the transitions in the 
given state will not be the same in every state. Further, we assume that 
all payoffs and all transition probabilities specifying the law of motion 
are rational numbers. We then show that the values of both a fi- 
discounted game, for rational/3, and of a Cesaro-average game are in the 
field of rational numbers. In addition, both games possess optimal 
stationary strategies which have only rational components. Our results 
and their proofs form an extension of the results and techniques which 
were recently developed by Parthasarathy and Raghavan (Ref. 1). 

Key Words. Stochastic games, discounting, undiscounted stochastic 
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1. Introduction 

In a recent paper, Parthasarathy and Raghavan (Ref. 1) proved that the 
value and at least one pair of optimal strategies of a stochastic game lie in the 
same ordered Archimedean field as the data describing the game, provided 
that only one player controls the transition probabilities in all states. 

The results of Parthasarathy and Raghavan include an algorithm for 
solving fl-discounted games in which one player controls the law of motion, 
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and they suggest that an algorithm should also exist for solving the 
undiscounted games or Cesaro-average games. In fact, Filar and Raghavan 
(Ref. 2) just proposed a finite-step algorithm which does precisely that. 

A natural generalization of the above class of games is one in which one 
player controls transition probabilities in some states, while the other player 
controls these transitions in the remaining states. This generalization was 
first suggested by Maschler during the Game Theory Workshop at Cornell 
University (1978); it has intuitive appeal, since we can easily imagine 
situations where a player may be tempted to enter a state of the game with 
possible high rewards, but at the cost of losing the ability to control future 
transitions. In this paper, we show that, in zero-sum discounted and undis- 
counted stochastic games in which the control of transition probabilities 
changes from player to player, depending on the state, the value of the game 
and at least one pair of optimal stationary strategies exist and lie in the same 
ordered Archimedean field as the data describing these games. 

It must be mentioned that the existence part of the above statement can 
be derived from Bewley and Kohlberg's results (Ref. 3). The proofs given 
here are quite unrelated to Bewley and Kohlberg's work, but they are an 
adaptation of Parthasarathy and Raghavan's approach to this more general 
class of games. 

There are two basic reasons why the original proofs of Ref. I cannot be 
extended immediately to our class of games. First, the linear programs used 
in Ref. 1 to solve the/3-discounted games are no longer linear, since the 
transition probabilities now depend on actions of different players in 
different states. For the same reason, the probability transition matrix 
(which determines the game when stationary strategies are used) will, in our 
situation, depend on the strategies of both players, which invalidates some 
limiting operations (such as/3 -~ 1-), that were crucial to the arguments of 
Ref. 1 for the undiscounted games. Secondly, Parthasarathy and Raghavan 
relied on the fact that one player possessed a uniformly discount optimal 
stationary strategy in all the states, which will no longer hold under our 
generalization. 

Fortunately, it turns out that, by exploiting the special structure of the 
probability transition matrices that can occur in our games, we can, with the 
help of some results from Blackwell (Ref. 4), extend the basic line of 
argument of Ref. 1 to this new situation. 

2. Definit ions and Notat ion  

A stochastic game, as formulated by Shapley (Ref. 5), is played in 
stages. At each stage, the game is in one of finitely many states, s = 
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1, 2 , . . . ,  S, in which players I and II are obliged to play a matrix game, 

A" "a s " m*'n 

once. The taw of  motion is defined by the probabilities q(s' /s ,  i, f), where the 
event {s'/s, i, ]} is the event that the game will enter state s' at the next stage, 
given that, at the current stage, the state of the game is s, and given that 
players I and II choose the ith row and the ]'th column of A ~, respectively. In 
general, the players'  strategies will depend on complete past histories, tn this 
paper, however, we shall be concerned only with stationary strategies. We 
may represent a typical stationary strategy f for player I by a composite 
vector, 

f = ( f ( 1 ) , / ( 2 )  . . . . .  f (S ) ) ,  

where each f (s)  is a probability vector 3 given by 

/(s) = (fl(s), /2(s) . . . . .  /,.~(s)). 

Here,  fi(s) is the probability that player I chooses the ith row of A '  
whenever  the game is in state s. Player II's stationary strategies are similarly 
defined. 

Once we specify the initial state and a strategy pair (f, g) for players t 
and II, we implicitly define a probability distribution over all sequences of 
states and actions which can occur during the game and consequently over 
all sequences of payoffs to player I. Let  ~r,~(f, g)(s) denote  the expected 
income to player I at the n th stage when players I and II use the strategy pair 
(f, g) and the game begins in s. The two types of stochastic games which we 
shall consider are determined by the manner  in which the players evaluate a 
stream of payoffs ('rr~, zr2 . . . .  ). They are given below. 

/J-Discounted Games. Here,  

r e = {re (1), ro(2)  . . . . .  re(s)} ,  

13 ~ (0, 1), and F~ (s) refers to the game beginning in state s, In such games, 
cba(f, g)(s), the expected income to player I in Fe(s) when the strategy pair 
(f, g) is used is defined by 

'~e(L g)(s)= Z ~"-1~-.( L g)(s). (1) 
n = l  

3 Throughout this paper, we shall not differentiate between n-component row and column 
vectors. This is intended to simplify the already complicated notation and should not confuse 
the reader. 
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Undiscounted Games or Cesaro-Average Games. 4 Here,  

F = {F(1), F(2) . . . . .  F(S)}. 

In such games, qb(f, g)(s) is defined by 

1 N 
cb(f, g)(s) =lira inf - -  E Try(f, g)(s). (2) 

N~c~ N n = l  

Note that cb(f, g)(s) has an analogous meaning to gOa (f, g)(s). To show that a 
number v~ (s) is the value of F~ (s), s = 1, 2 , . . . ,  S, it is sufficient to show that 
there exists a stationary pair of strategies (f~, ge) such that, for each s, 

~ ( f ,  g~)(s) <- ~ ( f ~ ,  g~)(s) = v~(s) <-¢~(f~, g)(s), (3) 

for any stationary f for player I and for any stationary g for player II. For  the 
undiscounted game, v(s), s = 1, 2 . . . . .  S, and an optimal stationary pair 
(~ ,  gO) is defined similarly. 

All the stochastic games considered below will be constrained by the 
following hypotheses. 

Hypothesis (H1).  There exists an integer St, $1 < S, for which the law 
of motion satisfies 

fq(s ' /s ,  i), 
q(s'/s, i, j )  = (q(s /s,/) ,  

if s -< $1, 

if SI<s<--S.  

Hypothesis ( I ~ ) .  All entries of the matrices A s, s = 1, 2 . . . . .  S, and 
all transition probabilities q(s ' /s ,  i), q (s'/s, j) are rational numbers. 

Hypothesis (H1) simply states that player I controls the law of motion in 
states 1, 2 . . . . .  $1, while player II controls the law of motion in the remain- 
ing states. Of course, it is irrelevant which set of states is controlled by which 
player, since it is always possible to relabel the states. Furthermore,  all of the 
results derived under Hypothesis (H2) will extend naturally from rational 
numbers to any ordered Archimedean field. 

It should be clear that a stationary pair (f, g) determines an S × S 
Markov matrix 

O(f ,  g) = [q(s'/s,  f, s g)]s,s'=l , 

4 It must be mentioned that the payoff criterion (2) is only one of a number o~ criteria which may 
be used when discounting is not appropriate. Bewley and Kohlberg (Ref. 3) consider as many 
as six alternative criteria [including (2)]; however, they show that all six are equivalent in 
games which possess optimal stationary strategies. 
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where, due to Hypothesis (H1), we have {" q(S ' /S ,  i)f i(S),  if S ~--~ S1, 

q(s'/s,]; g ) =  ~=1 (4) 
n s 
~. q(s'/s,f)gj(s), if s>SI .  

i= l  

Now, if (f, g) is any pair of stationary strategies, we define a current 
payoff vector associated with this pair by 

r = r(f, g) = (r(L g)(1), r(f, g)(2) . . . . .  r(L g)(S)), 

where 
n~ 

r(f, g)(s)=f(s)A*g(s) = ~" E a~Ji(s)gi(s). (5) 
i = l  i~l  

Further, since O(f, g) is a Markov matrix, it is known that there exists a 
Markov matrix O*(f, g), such that 

O * ( f , g ) =  (1 / (N+I))  Y ( f ,g )  , (6) 
n=O 

where 
Q°G g) = I 

is the identity matrix. The proof of the following lemma is almost identical to 
Blackwelt's proof of Theorem 4(a) of Ref. 4. 

Lemma 2.1. (a) For any stationary pair of strategies (f, g) and any 
B e (0, 1), we have 

qb~(f, g) = ~ f lnQ,(f ,  g)r(f, g) 
n~O 

= [ 1 / ( 1 - B ) ] Q * ( f ,  g)r(f, g) + y(f, g)+E(jg, f, g), 

where E(fl, f, g) ~ 0 as fl ~ 1- and where the components of the S x I vector 
y(f, g) are bounded. 

(b) Under  conditions (a), 

• (f, g) = lira (1 - f l ) ~ ( f ,  g) = O*(f,  g)r(f, g). 

3. Technical Preliminaries 

We shall need four lemmas proved in Parthasarathy and Raghavan 
(Ref. 1). 
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Lemma 3.1. Let r( t )= p( t ) /q( t )  be a rational function, well defined 
for t e (/30, 1). If r(t) is a rational number for all rational t in (/30, 1), then 
r ( t )=p*( t ) /q*( t ) ,  where p* and q* are polynomials with rational 
coefficients. 

Lemma 3.2, Let f(/3) be a rational function bounded in some interval 
(/30, 1). Further, if f(/3) is rational when/3 is rational, then limo-.w f(/3) is a 
rational number. 

Lemma 3.3. Let v(/3) be a continuous vector function for/3 ~ (0, 1). 
Let uj(/~), ] = 1, 2 , . . . ,  k, be k vector functions which are rational functions 
of/3 componentwise. If, for each/3 ~ (0, 1), v(/3) coincides with one of these 
rational functions, then there exists some/~0 e (0, 1) such that 

for some fixed j. 

v(~)--- uA/3), for all fl e (/30, 1), 

Lemma 3.4. Let 

A = (alj + ai)i~,j~l 

be a nonsingular matrix, with a~j > 0 for all (i, ]). Further, let 

x A  = a'! 

have a nonnegative solution x, with 

here, 

Then, the matrix 

is nonsingular, and 

i Xi----1; 
i = 1  

! = ( 1 , 1  . . . .  , ]) .  

fi~ = (aij)i~,~-L 1 

xA = 0!,  for some 0, 

Analogous result holds if A is of the form 

A (aij .... 
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4. fl-Discounted Games 

With each state payoff matrix A ', we shall associate a Shapley dummy 
matrix for every/3 ~ (0, 1): 

A ' ( / 3 )=  ai} + /3 Y. vtffs')q(s'/s, i, j) (7) 
s ' = t  i,]=1 

Note that Hypothesis (H1) ensures that, in our case, 

S 

Z v~(s')q(s'/s, i,]) 
s ' = l  

is a function of only one of the indices i and L depending on whether s -< S~ 
or not. 

Shapley (Ref. 5) proved that, if 

(f%~), g~(s)) 

is an optimal strategy pair in the matrix game A'(/3) for each s, then 

ft~ = (f~(1) . . . . .  f°(S)) and g~ = ( g e ( 1 ) , . . . ,  gB(S)) 

are optimal stationary for players I and II, respectively, in the stochastic 
game F a. 

Now, we may apply the Snow-Shapley theorem (Ref. 6) to the matrix 
games A~(B), for each s and any/3 ~ (0, 1). This guarantees the existence of a 
nonsingular submatrix A~(/3) of A'(/3) and a pair of extreme optimal 
strategies (ft,(s), g°(s)) which, when appropriately truncated [by deletion 
of 0 entries corresponding to rows and columns not present in A'(/3)], 
satisfy s 

f~(s)A'([3) = v~(s)! and A'(/3)g~(s) = re(s)1. (8) 

However, by Lemma 3.4, the submatrix A '  of A' ,  which suppresses the 
same rows and columns as .zi'(fl), is also nonsingular and satisfies 

f~(s)A ~ = ~ ( s ) ! ,  if s - s , ,  
(9) 

A'gO(s)=O~(s)!, if s>S1. 

Since f~(s), gB(s) (and their truncations) are probability vectors, we find 
from (9) that their entries and the value of 0~(s) depend only on the 
submatrix fi, s: However, A" might vary among the finitely many square 

S We shall not differentiate between C°(s), g~(s) and their truncations in order not to 
complicate the notation even more. However, this ambiguity must be remembered. 
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submatfices of A ~, depending on/3. Thus, we have that 

00 ( s )=  0 ( s )=  Det  ( . 4 " ) / ( ~  F. A:~), (10) 

f ~ , s ) = f ~ ( s ) = ( ~ A , ; . ) / ( ~ A ~ ) ,  if s<-St, (11) 

( , ) / ( ; )  gf(s)=gAs)= Z A ,  Z Z A ~  , if s>Sa, (12) 
\ i / ~  i j - 

where A~j is the cofactor of the (i, j)th entry of A '. 
Now, each A ~ has only finitely many (say, k~) nonsingular submatrices 

which define probability vectors through (11) and (12), Let us number these 
• A s A~, A ~ , . . ,  k~ for each s. Consider all permutations of the form 

K = (k(1), k(2) . . . . .  k(S)), 

where 

There are 

k(s) ~ {1, 2 . . . . .  k~}. 

S 

a = I I L  
s = l  

such permutations, and they can be labeled K1, K2 . . . . .  K~, according to 
some ordering. Thus, we have ~ vectors 

01 = ( 0 . t > ( t ) ,  0 . 2 ) ( 2 )  . . . . .  O.s)(S)), 

where l corresponds to Kt, which in turn corresponds to the selection 

1 2 A s ( A , ,  . . . . .  A,2~. , s ) )  

of submatrices of A I through A". Such a selection, of course, determines 
player I's strategy in states 1, 2 . . . . .  St and player II's strategy in states 
S t + I , . . . ,  S via (11) and (12). Now, define a stationary strategy f~ for 
player I, corresponding to 

~ = q ( t ) , . . . ,  l ( s ) ) ,  

by 

fl (s) - I O,~)(s) !, (A~(,)) -a, 
- t arbitrary and fixed, 

and similarly, for player II, let 

arbitrary and fixed, 
gl (s ) = [ Ol(s)(S)(asl(s))-l l . ,  

if s --< $1, 
if s>S~; 

if s -<St, 
if s>St .  
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Thus, we have formed tz stationary strategy pairs (ft, gl). Let 

Ot = O l ( f  , gl) 

be the probability transition matrix determined by the pair (fl, gl). Then, for 
/3 ~ (0, 1), the matrix I - / 3 0 t  is nonsingular; so, we may define the following 
S-vector rational functions of/3: 

ua = (I -flOt)-~O~, I = 1, 2 . . . . .  /x. (13) 

We are now in a position to prove the following theorem for fl-discounted 
games. 

Theorem 4.1. Let Ft~ be constrained by Hypothesis (H1), for fl 
(0, 1). Then, the following results hold: 

(i) va (s) is a rational function of/3 for all s, if/3 is sufficiently near 1; 
(ii) if s -< $1, player I has a uniformly discounted optimal strategy f~(s) 

(i.e., optimal for all/3 sufficiently near 1), while player II has a uniformly 
discounted optimal strategy g°(s), for s > St. 

Proof. By the Snow-Shapley theorem and (8), to every /3 ~ (0, I) 
there corresponds a permutation ,:~ of submatrices AT(~) of A" for s = 
1, 2 . . . . .  S and a pair of optimal strategies (f~, gZ) satisfying (8)-(12) for 
every s. In particular, (9) and (8) can be combined to express Ol(s)(s) as 

Ol(s)(s) = Z f i (s)a  ii = v~ (s) - fi Z i) f i (s)q(s  /s, vt~(s') 

= v a ( s ) - f l  Z q(s ' /s ,  fl)vt3(s'), if s ~$1;  
s r 

and similarly, if s > St,  we have 

Ol(s)(S) = Vt3(S)-/3 Z q(s ' /s ,  gZ)vt3(s'). 
S t 

Thus, in matrix form, we can rewrite the above equations as 

where 

U -  / 3 O ( f  , g~)]-l O~ = v~, (14) 

vu = (re (1), va (2) . . . . .  va (S)). 

Hence, v~ which is continuous in/3, coincides with one of the /z  rational 
functions u~ for each/3 e (0, 1) [see (13)]. Thus, by Lemma 3.3, there exists 
some flo e (0, 1) and some fixed to, such that 

v~ ---- u~ °, for all/3 e (/30, 1). 
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This proves (i). Further, 

and 

f~ (s) = fl°(s), 

gO (s) = g~o(s), 

for all/3 E (/30, 1), if s <- S1, 

for all t3 E (/30, 1), if s > $1, 

by (11)-(12). Now, (ii) follows from (i). 

Corollary 4.1, If, in addition to Hypothesis (H1), we restrict Ft3 by 
Hypothesis  (H2) and take any rational/3 E (0, 1), then v~(s) is a rational 
number, and there is at least one optimal strategy pair (f0, gO) which has 
only rational entries. 

Proof, Equation (14) still applies for some l, which corresponds to 
1 A~s) of the submatrices of A 1, , A s. Thus, some selection A t ( I ) , . . . ,  . , ,  

vo(s) is rational for each s. The rationality of f~ and gl follows immediately 
from (8). 

Assume now that/3o and lo are as in Theorem 4.1. For simplicity, we 
shall write A~, f°(s), g°(s) in place of A~o, fl°(s), gI°(s). Further, for/3 > flo 
and for the pair (ft~, gO) chosen by the Snow-Shapley theorem, we have 
from (8) 

f°(s)  = Vo(S)![A~(fl)] -1, if s > $1. (15) 

From Theorem 4.1, it follows that f0 (s) for s > $1 is a rational function of/3. 
Since it is a probability vector, 

lira F(s)---f(s) 

exists and is itself a probability vector. Similarly, let 

~(s)=  lim ge(s)=2im{vo(s)[A;(/3)-11}, for s ~$1.  

We can now form a stationary strategy pair (1~ ~), defined by 

/ =  ( F ( 1 ) , . . . ,  F (s~) ,  i (s~ + 1) . . . . .  jZ(s)), 

= (~(1) . . . . .  ff(s~), g°(S~ + 1) . . . . .  g°(S)). 
(16) 

In the next section, we shall show that ()~ if) is an optimal strategy pair in the 
undiscounted game F. 
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5. Undiscounted Game 

Let (fo, gO), (~ (;) be defined as in Section 4. Then, if/3 >/3.0, we have 

0 ( : ,  gO) = O(~ ~). (17) 

The above equation holds, because, for fl >/3o and s -< $1, 

m s r n  

q(s ' / s , f  O) = Z q(s'/s, i)f•(s)= E q(s'/s, i)f?(s) 
i = l  i = 1  

= q(s'/s, fo), 

by Theorem 4. l(ii); and similarly, 

q(s'/s, g~) = q(s'/s, g°), if s -> 8i + 1. 

Likewise, for 13 >/3o and any fixed stationary strategy f for player I, we have 

O(f, go) = O(f, g). 
Thus, for all/3 >/30, 

O.(fo,  gO) = O*(]~ g) and O.( f ,  gO) = O*(f, g). (18) 

Similarly, note that, for/3 >/30, 

r( f  °, g°)(s) =f°(s)A~g°(s) = Olo(s), for every s. (19) 

For instance, if s -< $1, 

fo (s )A,gO (s ) = f~(s)A ~og ° (s) = 0lo(S) ! gO (s) = O~o(S). 

Theorem 5.1. In the undiscounted stochastic game restricted by 
Hypothesis (HI), the values v(s), s = 1, 2 . . . .  ~ S, and a pair of optimal 
stationary strategies (1~ g) exist. Further, 

v(s) = lim (1 -/3)vo(s), for each s. 
o - . 1 -  

Proof. Consider only/3 >/30. Then, we have 

(1 -/3)v o = (1 -fl)dPt3(f °, gO) = (1 -/3) ~ f lnO"(f°,  gO)r([°, g~) 
r t = O  

= (1-/3) ~ /3"o"(~  ~,)O,o, 
n=O 

by (18) and (19). However, 

lim (1-/3) ~ f l , O n ( ;  g)O~ = O*(f, £~)Oto, 
B ~1- n=0 
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by an argument similar to Blackwell's (Ref. 4, pp. 722-723). Note also that 

r()~ ~)= 01o, 

as in (19). Thus, it follows that 

lira (1 -fl)vt3 = ~()~ ~). (20) 
3--,t 

Choose any stationary strategy f for player I. It can be checked that 

l im (1- f l )  ~ f l"O"(f , ( , )[r( f ,  ge ) - r ( f ,~ , ) ]=O.  (21) 
r t=O 

This follows from the fact that (see Blackwell, Ref. 4, p. 722) 

lim ~ " O" /3 [ (f, ~,)-  O*(g  ~)] = [ I -  O(f, ~ ) -  O*(f, ~)]-1 _ O*(f, ~) 
B ">1- n=O 

and the fact that 

r(f, gt3) _ r(f, ~,) ~ O, 

Now, by (18), we have 

So, 

as 3 - '  1-. 

(1 -/3)~o(f, g~) = ~ (1 -/3)/3"Q"(f, ff)r(f, g~) 
n = 0  

=(1-/3) ~ [3~O"(f,~)r(f,~) 
n = O  

+(1-3) E "O" /3 (f, ~)[r(f, gt3)_ r(f, ~)]. 
n ~ 0  

jim_ (1 - ~)oe(f, g~) = o(f, ~), 

by (21) and the above equation. However, for any/3 > rio, 

(1-3)vt3 = (1-3)cbt3([ e, g~) >- (1 - 3)0~ (/, g e l  

So, (20) and (22) imply that 

o(~ ~) --- ~(f, ~), 

for any stationary f. Similarly, it can be shown that 

o(~ ~)-< ~(~ g), 

for any stationary g. This shows that 

• ()~ ~)(s) = v (s), for every s. 

(22) 

(23) 
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Corollary 5.1. If the game is restricted by Hypothesis (H2) in addition 
to the hypotheses of Theorem 5.1, then v(s), s = 1, 2 . . . . .  S, and the 
components of Or, g) are all rational numbers. 

Proof. The rationality o f F ( s )  for s --- S~ and the rationality of g°(s) for 
S1 + 1 - S follow immediately from (11) and (12). To see that it(s) is rational 
for s -  $1+ 1, recall that, in view of Theorem 4.1, (15) defines a rational 
function of B which takes rational values whenever/3 e (/3o, 1) is rational. 
Thus, by Lemma 3.1, we can assume that f~ (s) is a ratio of polynomials in B 
with rational coefficients for each i; and, by Lemma 3.2, 

lira f/~ (s) =)~(s) 
t~--, 1 

is a rational number. The rationality of ~(s) for s--< S1 follows similarly. 
Further, 

2 im  (1 - /3)va(s)  = v(s), 

by Theorem 5.1; and, by (14), (1-/3)v~ is rational whenever/3 ~ (/3o, 1) is 
rational; thus, v(s) is a rational number by Lemma 3.2, for each s. 

References 

1. PARTHASARATHY, T., and RAGHAVAN, T. E. S., An Order Field Property for 
Stochastic Games when One Player Controls Transitions, Journal of Optimization 
Theory and Applications, Vol. 33, No. 3, 1981. 

2. FILAR, J. A., and RAGHAVAN, T. E. S., An Algorithm for Solving an 
Undiscounted Stochastic Game in Which One Player Controls Transitions, 
Research Memorandum, University of Illinois, Chicago, Illinois, 1979. 

3. BEWLEY, T., and KOHLBERG, E., On Stochastic Games with Stationary Strate- 
gies, Mathematics of Operations Research, Vol. 3, pp. 104-125, 1978. 

4. BLACKWELL, D., Discrete Dynamic Programming, Annals of Mathematical 
Statistics, Vol. 33, pp. 719-726, 1962. 

5. SHAPLEY, L. S., Stochastic Games, Proceedings of the Nationa] Academy of 
Science, Vol. 39, pp. 1095-1100, 1953. 

6. SHAPLEY, L. S., and SNOW, R. N., Basic Solutions of Discrete Games, Annals of 
Mathematics Studies, Princeton University Press, Princeton, New Jersey, Vol. 24, 
pp. 27-37, 1950. 


