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A Limiting Lagrangian for Infinitely Constrained 
Convex Optimization in R n1'  
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Communicated by O. L. Mangasarian 

Abstract. For convex optimization in R ~, we show how a minor 
modification of the usual Lagrangian function (unlike that of the aug- 
mented Lagrangians), plus a limiting operation, allows one to close 
duality gaps even in the absence of a Kuhn-Tucker vector [see the 
introductory discussion, and see the discussion in Section 4 regarding 
Eq. (2)]. The cardinality of the convex constraining functions can be 
arbitrary (finite, countable, or uncountable). 

In fact, our main result (Theorem 4.3) reveals much finer detail 
concerning our limiting Lagrangian. There are affine minorants (for any 
value 0 < 0 - 1  of the limiting parameter  0) of the given convex 
functions, plus an affine form nonpositive on K, for which a general 
linear inequality holds on R *. After  substantial weakening, this 
inequality leads to the conclusions of the previous paragraph. 

This work is motivated by, and is a direct outgrowth of, research 
carried out jointly with R. J. Duffin. 

Key Words. Lagrangians, nonlinear programming, Kuhn-Tucker 
theory, convex optimization. 

1. Introduction 

W e  cons ide r  convex  p r o g r a m s  

(P) inf fo(X), 

sub jec t  to  fh(x)~O, h ~H, (1) 

x ~K, 
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with possibly infinitely many constraints. We show, under a weak constraint 
qualification (see below), which is equivalent to simply the feasibility of (1) if 
K C R  ~ is closed and all fh for h c { 0 } ~ H  are closed, that a small 
modification of the ordinary Lagrangian always closes the duality gap. The 
hypotheses that we require are uniformly weaker than the existence of a 
Slater point. To be more specific (see Section 5 below), we show, under such 
hypotheses, that there is a vector w ~ R n, such that 

lim sup inf {[o(x)+Owx + ~ )thfh(X)}=v(P), 
0 N 0  + x ,~K h E H  

(2) 

where v(P) is the value of (1). The summation in (2) is never problematic, 
since only finitely many ,~h are nonzero; also, A is the space of all non- 
negative finitely nonzero vectors (Ahlh E H). The limit in (2) is a sequence 
limit in the reals, i.e., not a set limit. The relationship of (2) to Lagrangian- 
type results will be discussed in Section 5. 

Thus, (2) places many duality gaps in a simple perspective: for closed, 
convex optimization, duality gaps can be avoided by perturbing the criterion 
function and sending the perturbation to zero along a ray to the origin, while 
leaving the constraints unchanged. For nonclosed convex optimization, 
some constraint qualification (beyond mere consistency) is necessary, but it 
is uniformly weaker than those necessary for a Kuhn-Tucker vector to exist. 

Our methods of proof can be succinctly described, and were developed 
jointly in Ref. 1. We reason as follows. Since closed convex sets and since the 
epigraphs of closed, convex functions are describable by infinitely many 
linear inequalities [in the terminology of Charnes, Cooper, and Kortanek 
(Ref. 2), they are describable as a semi-infinite constraint set], this convex 
optimization ought to be reducible, in principle, to the study of the implied 
linear inequalities (cutting-planes) of semi-infinite systems. 

Recently, Duffin and the author (Ref. 1) found methods of reducing 
convex programs, under a constraint qualification, to semi-infinite pro- 
grams, of applying the "appropriate" result on semi-infinite systems, and 
then reinterpreting the resulting conclusion (which is a conclusion about the 
implied linear inequalities of the semi-infinite program) as a conclusion 
about the convex program. 

This paper is very similar to Ref. 1, except that a different result about 
semi-infinite programs is first established here in Section 3, then applied, 
and then a different conclusion about the Lagrangian is obtained. Moreover, 
a quite closely related limitingLagrangian result is due to Duffin in Ref. 3, of 
which this limiting Lagrangian is a refinement, in that a limiting process is 
taken along a line, rather than from all directions in space, and sets K ~ R ~ 
are treated. 
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For related work, see Blair's generalization (Ref. 4, Theorem 3) of a 
result from an early draft of Ref. 1, which we quoted to him, as well as 
McLinden's further generalization of this result in Ref. 5 to certain infinite- 
dimensional spaces. McLinden's work uses the elegant theory of conjugates 
of convex functions, as developed by Rockafellar in Ref. 6. 

In the course of proving (2), we shall establish somewhat stronger 
results concerning the rate of convergence to the limit of (2), affine 
minorants which are uniformly below the functions fh on their entire 
individual domains of definition, etc. 

2. A Constraint Qualification Weaker than the Existence of a Kuhn-Tucker 
Vector 

The convex program studied in this paper is (1), where H is an index set 
of arbitrary cardinality, K is a nonempty convex set, fh for h s {0} w H maps 
a convex set Dh _D K into R, and Dh is the domain of fh. In the terminology of 
Ref. 6, Dh = dom(fh); and fh (X) = +CO, for x~ Dh, would be assumed in Ref. 
6. All functions fh, h ~ {0} w H, are convex. 

Let rel int(S) denote the relative interior of the set S (Ref. 6). 
We define the closure of the convex program (1) to be 

(P') inf cl(fo)(X), 

subject to cl(fh)(X)<--O, for all h ~H,  (3) 

x ~ cl(K), 

where cl(S) is the closure of the set S C R  n, and cl(f) is the closure of the 
convex function f in the sense of Ref. 6. The value of (3) is denoted v(P'). 

Here  is the hypothesis that we use: 

program (1) is consistent, and v (P) = v (P'). (4) 

Now, (4) is an exceptionally weak requirement.  If, for example, all the 
functions fh for h e {0} w H are closed and K C R n is closed, then (1) and (3) 
are the same program, and (4) simply requires that (1) be consistent. To 
compare (4) with the usual Slater point hypothesis, which is sufficient for a 
Kuhn-Tucker  vector to exist when H has finite cardinality, we cite a result 
from Ref. 7. 

Theorem 2.1. 

f~(x°)<-o, 
(Re]:. 7). If there is a point x ° ~ K  " satisfying: 

for all h ~ H, x ° ~ rel int(K), x ° E rel int(Dh), 

when fh is not closed, h c {0} w H, (5) 
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then 
v (P) = v (P'). 

Furthermore, if K is closed, then the condition that x ~ rel int(K) can be 
dropped in (5). 

Since the term 

fo(x)+owx + Xhfh(x), 
h ~ H  

which appears in (2), need only be evaluated if x ~ K, one makes best use of 
Theorem 2.1 if one takes all Dh = K, i.e., if one truncates all Dh D K to K. 
Then, the condition that x°E tel int(Dh) can be dropped. We retain the 
possibility that Dh ~ K in order to obtain results stronger than (2), as 
mentioned in the introduction. 

Since the constraint set of (3) includes that of (1), we always have 

v (P') -< v (P). 

The possibility that 

v (P') < v (P) 

can actually occur when (5) is dropped, as shown by an example in Ref. 7 
involving nonclosed convex functions. One easily verifies that the cited 
example does not satisfy (2) either. Thus, while (2) holds in very broad 
generality, it is not universally valid. 

We now show that our hypothesis (4) does not imply the existence of a 
Kuhn-Tucker vector; in fact, it does not even imply that 

sup inf ]fo(X)+ ~ Ah[h(X)} = v(P), (6) 
x ~ K t  h ~ H  

when 

K = R  n, n =2,  

Consider the convex program 

inf(-y) ,  

1141 = 1.  

(7) 
subject to (x2+ y2)l/2--X --< 0, 

which is well known as not possessing any Kuhn-Tucker vector; i.e., letting 
v (P) denote the value of the primal problem (6), we have here that 

v ( e )  = 0, 

since the constraints have solutions 

(x, y) = (x, 0), for x >_0; 
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yet there is no scalar h 1 -> 0 with 

inf - y + h 1[(x2 + y 2)1/2_ x ]-> v (P) = 0. 
x,y~R 

(8) 

In fact, for any hi > 0, and for any specific y0 > 0, by choosing 

xo = (A ~y ~o - 1 / ,~1) /2 ,  

we have 

- y 0  + ;~l((x~0 +y~)l/2-xo) = - y o +  i ,  

and thus the infimum in (8) is -co. For hi  = 0, again this infimum is -o0. 
This example also shows how the limiting Lagrangian [Eq. (2)] is 

concerned with quite a different phenomenon than is treated by the ordinary 
Lagrangian. The ordinary Lagrangian is related precisely to linear affine 
supports (or e-supports) to the value function of (CP) at the origin, and the 
augmented Lagrangians treat the case of more general (e.g., negative 
definite) supporting surfaces of the perturbation function. However, in our 
example (7), we have, as the one-dimensional perturbation function p(u), 

t 
+oo (inconsistency), if u < 0, 

p(u) = i n f { - y l ( x 2 + y 2 ) l / 2 - x  <- u} = 0, if u = 0, 

- ~ ,  if u > 0. 

There can be no kind of supporting surface for such a perturbation function. 
The limiting Lagrangian (2) is therefore concerned with a kind of 

phenomenon in convex optimization which was unknown until Duffin's 
paper (Ref. 3), although it can be obtained from bi-funcfion results (Ref. 6). 

3. Strengthening of a Result of Blair 

In this section, we strengthen Ref. 8, Corollary 2, to a form which we 
shall need in order to determine the implied linear inequalities of a semi- 
infinite system. 

Let cone (S) [respectively, cl cone(S)] denote the cone [respectively, 
the closure of the cone] spanned by S (see Ref. 6). The following result is 
well known (see, e.g., Ref. 6) and is a direct application of the separating 
hyperplane theorem. 

Lemma 3.1. For I ~ ~ an arbitrary index set, indexing a set of vectors 
{aili e I} in R",  suppose that 

a ix -> 0, all i ~ L implies cx >- O, for any x ~ R".  (9) 
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Then, 

Lemma 3.2. 

c 6 cl cone({aili c I}). 

For I ¢ • an arbitrary index set, suppose that 

i a x -- 0, all i e I, implies cx >- O. (lO) 

Then, there is a vector w with the following property: For any 0, 0 <  0 --- 1, 
there is a set of nonnegative multipliers {hili e I}, only finitely nonzero, such 
that 

c +Ow = Y. ala i. (11) 
i a I  

In fact, if v is any point in the relative interior of the set 

C'  = cone({a/[i ~ I}), 

we may set 

W = V - - C .  

(12) 

(13) 

Proof.  By Lemma 3.1, c E cl C';  and, since v is in the relative interior 
of C', then 0 < 0 -< t implies that Ov + (1 - O)c is in the relative interior of C',  
by the accessibility lemma (Ref. 6); hence, it can be expressed in the form of 
the right-hand side of (11), with {h~[ i ~ I} a finitely nonzero set of multipliers. 
However,  

Ov+(1-O)c=c+O(v-c)=c+Ow, 

and so (11) holds. Since any convex set C '  has a relative interior, at least one 
such w given by (13) exists. 

We now give our strengthening of Ref. 8, Corollary 2, which is closely 
related to Kortanek's  perfect duality results (Ref. 9). Our strengthening can 
easily be used to prove the main result of Ref. 8, but we omit the details. 

Theorem 3.1. 
the system 

a ix - bi, all i ~ L 

has a solution in R".  Suppose also that (14) implies that 

Let  I ~ O be an arbitrary index set, and suppose that 

(14) 

cx>-d ,  for any x ~ R  n • (15) 

Then, there is a vector w ~ R  n and a scalar woaR,  with the following 
property: For every 0 < 0-< 1, there are nonnegative scalars {hili e I}, only 
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finitely nonzero, which satisfy 

c + O w =  Y ).ia i, (16) 

d+Owo <- ~ Aibi. (17) 

In fact, if (v, - Vo) is any point in the relative interior of the set 

C" = cone({(a i, -bi) l i  ~ I}  u ((0, 1)}), (18) 

we may set 

i.e., 

(w, -Wo) = (v, -Vo) - (c, - d ) ,  

W = U - -  C, W o  -.~- u o -  d .  

(19) 

Proof. Since (14) is consistent, and since (14) implies (15), one easily 
proves that 

i a x ~ 0, all i ~ / ,  implies cx >- O. 

Therefore, for (x, r)~ R n+l (x ~ R ~) arbitrary, we have that 

r >t O, a ix - bfr >- O, for all i ~ L implies cx - dr >_ O. 

We apply Lemma 3.2 to reach the conclusion that there exists 

( w , - w o ) ~ R  "+1,  w ~ R  n, 

with the following property: For any 0 < 0 -< 1, there are nonnegative scalars 
{Aifi ~ I}, finitely nonzero, and a scalar ~ "---0, such that 

(c, - d ) + O ( w ,  -w0) = q~(0, 1)+ Y~ 2ti(a e, -b i ) .  (20) 

Also, if (v, -Vo) is any point in the relative interior of C", we may use (19). 
Now, analyzing (20) by components gives (16) and (17). [] 

Quite clearly, if the cone C" of (18) is closed, one may choose w = 0 and 
w0 = 0 in (16) and (17). A sufficient condition for tke closure of C" was given 
by Duffin and Karlovitz in Ref. 10. 

4. Main Result 

Our main result (Theorem 4. t  below) is obtained by applying 
Theorem 3.3 to a semi-infinite system of linear inequalities equivalent to (3), 
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and then interpreting this outcome by methods of algebraic manipulation 
developed in Ref. 1. We reproduce the latter here, for the sake of a 
self-contained presentation. 

Under the hypothesis (4), we may assume that K is closed, as are the 
functions fh for h e {0} u H ;  i.e., we may deal with (3) in place of (1). This is 
assumed throughout the remainder. Therefore, we have representations via 
hyperplanes: 

K = {x ~ R nlaix >- aJo, ] e I(-1)}, (21) 

ep i ( f~)={(z ,x )eR"+l ,  x eR"[bioz +aix  >-aJo, j~ I (h ) } ,  (22) 

for index sets 

I(h),  h e {-1}~{O}uh.  

where possibly 

x(-1)  = 0 ,  

but 

Ih # Q, for h ~ -1 ,  

and as usual epi(/h) denotes the epigraph of fh: 

epi(/h) = {(Z, X)•  R n+l, x e R ~ lz >--fh (X)}, (23) 

which is a closed, convex set. Obviously, in (22), 

bJo>_O, f o r a l l f e I ( h ) a n d h e { O } u H .  

Lemma 4.1. (Refi 1). Fix h e l l ,  and suppose that epi(/h) is given by 
(22). Then, for any x e Dh, fh(X) ~ 0 is equivalent to the semi-infinite system 

a~x>-ato, i e I ( h ) .  (24) 

Proof. We have 

fh(x) ~ 0<-~ (0, x) ~ epi(fh) 

<--)bio • O+aix >--aJo, a l l ] e I ( h )  

~,aix>_aio, a l l j e I ( h ) .  [] 
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Corollary 4.1. Assume that the condition (4) holds. Then, the value 
v(P) of the convex program is also the value of this semi-infinite program: 

inf z, 

subject to bJoz + a'x >- aJo, 

alx >. 01o, 

i~I(0) 

for all ] ~ I(h)  

and h ~ {-1} u H .  (25) 

Proof. It is immediate from Lemma 4.1. 5 

It is now the point to complete the program outlined at the beginning of 
this paper and invoke Theorem 3.3. 

Theorem 4.1. Suppose that the condition (4) holds and v(P) is finite. 
Then, there exists Wo, wl ~ R and w ~ R",  with the following property: For 
any scalar O in the range 0<8---1 ,  there exist y ~ R  ", y ° ~ R ,  and non- 
negative scalars {Ah I h ~ H}, only finitely many of which are nonzero, and 
[3h ~ R",  fl0 h ~ R for h ~ {0} u H, satisfying the three conditions below: 

Condition C1. ,/x + 3~o <- O, for x ~ K. 

Condition C2. [3hX + flh <-- fh (x ), for all x E Dh and h ~ {O}~H. 

Condition C3. "Ix + yo+  (1 + Owo)([3°x +[3 °) + O(wx + wl) 

+ ~ Ah([3hx+[3hO)>>-13(P), f o r a l l x ~ R  ~. 
h~H 

In fact, Wo, Wl, w can be chosen arbitrarily to satisfy 

(Wo, w, wl)=  (Vo, v, v l ) - (1 ,  0, -v(P)) ,  (26) 

where (Vo, v, vl), with vo, v z ~ R  and v ~ R " ,  is any point in the relative 
interior of 

C = cone({(b~, a i, -aJo)l j ~ I(0)} u U {(o,a i,-aio)lj~I(h)} 
h~{--1}wH 

u{(0, 0, 1)}). (27) 

Proof. By Corollary 4.1 and by Theorem 3.1, (16) and (17), which we 
saw is equivalent to (20), we have, for 0 < 0 --- 1, 

(1 ,0 , -v(P))+O(Wo, w, w t ) = ¢ ( 0 , 0 ,  1)+ Z ¢i(b~o,a ~, -aio) 
j~I(O) 

+ E E ~j(o, a j, -ag),  (28) 
h~{-1}~H ]eI(h) 
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since (25) implies 

z • l + x  • O>-v(P). 

Of course, in (28), ~o-> 0 and all q~j ~ 0, and only finitely many of the 
quantities ~¢j for all j ~ I ( h )  and all h ~{-1,  0 } u H  are actually nonzero. 
Also, (w0, w, wl) is any solution to (26), such that (Vo, v, vl) is in the relative 
interior of C of (27). 

We now analyze (28) by the methods of Ref. 1. From the first 
components in (28), we obtain 

1 + Owo = ~, ~jbio. (29) 
j~I(o) 
b~>o 

We will, in general, define for h ~ {0} ~ H 

,~h= Y ¢~jb~, (30) 
i~,I(h) 
b~>0 

with the understanding that 

Ah=0,  ifb~o=O, f o r a l l j ~ I ( h ) , w i t h ¢ j > O .  

Thus, we have 

A0 = 1 + Owo, 

from (29). Clearly, only finitely many Ah can be nonzero, and all ah --> 0, by 
the conditions on the scalars q~i -> 0. 

Next, we define these vectors and scalars: 

2 / = -  ~ q~ia 1 -  ~, ~, ~oja', (31) 
j~I(--1) h ~{0}~H ]el(h) 

b~=0 

Yo = E ~ja~+ E Z q~a~, (32) 
j~I(--1) h~{0}~H j~l(h) 

b~=o 

where an empty summation is zero. From (21), if j ~ I ( -1 ) ,  

a~x >-a~o, f o r x ~ K ;  

and from (22), if b~ = 0, we have again 

a~x>-a~o, f o r j ~ I ( h ) a n d h ~ { O } w H ,  

as x ~ Dh ~_ K. Hence, 

yx + yo <- O, for x c K ;  

i.e., Condition C1 holds. 
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For h ~ {0}uH, if b/0 >0 ,  since 

bJofh(X) + aix >_ aJo, 

we have 

fh(xl>(aJ/bJo)X i t +ao/bo,  

Combining (30) and (33) for hh > O, we have 

~f~(x)= E 'PYofh(X) 
j~!(h) 
bS>o 

- > E  
i~I(h) 
bS>0 

and so defining 

l~hx-k~h=(1/Ah) 2 
j~I(h) 
b~>o 

for x ~ Dh, 

for x ~ Dh. 

¢ibJo(-(ai/bJo)X +aio/bJo), for x ~ Dh, 

¢jbJo (-(a~/bJo)x + aJo/bJo), 

(33) 

(34) 

(35) 

we obtain Condition C2. To be precise, we actually have 

cl(fh)(X) -->/3 hx + flh, for all x ~ Dh ; 

but, since 

cl(fh)(X) <--fh(x), for all x E Dh, 

Condition C2 follows. 
If ha = 0, one can arbitrarily pick flhx +~ho to satisfy Condition C2, at 

least one such affine form existing since fh is somewhere finite, and hence has 
at least one subgradient at one point. 

For the concluding part of our analysis, we write (28) again with the first 
component dropped, in this form: 

(0, -v (P))+O(w,  Wl) = ~(0,  l)"b (--V, --~0) 

+ Z E J J ; ¢ibo (a /bo, -aio/bJo) 
b~>0 

=~,(0, 1)+(-%-~/o)+ 2 hh(-~ h, -B0~). 
h~{0}uH 

(36) 

It remains only to dot product both sides of (36) with (-x,  -1) ,  where x ~ R"  
is arbitrary, to obtain 

I')(P)'Ir'O(--WX--W1)-~---~-It-(~IX-r'~YO)-t- E Ah(~hx"~-Bh), (37) 
h~{O}~H 
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for all x e R n. Since ¢ -> 0, (37) imme,,ately yields Condition C3, using 

Ao = 1 + Owo. 

Corollary 4.2. Suppose that the condition (4) holds for the program 
(1) and that v(P) is finite. Then, there exists Wo, wl e R and w e R ~, with the 
following property: For any scalar in the range 0 < 0-< 1, there exist non- 
negative scalars {Ah I h ~ H}, only finitely many of which are nonzero, with 

(l+Owo)fo(x)+O(wx+wl)+ ~ Ahfh(X)>-v(P), f o r a l l x E K .  (38) 
h e l l  

Furthermore, w0, wl, w can be arbitrarily chosen, subject to the condition 
(26), where (v0, v, vl) is a point in the relative interior of the convex set C 
of (27). 

Proof. It is immediate from Theorem 4.1. [] 

5. Limiting Lagrangian Equation (2) 

In the usual Lagrangian and its associated Kuhn-Tucker  theory, typi- 
cally one seeks sufficient conditions for the equality 

maxinftf0(x)+ E XhA(x)}=v(e), 
Ah_O x e K t  h e l l  
h e H  

(39) 

where, in some instances, the max (maximum) is relaxed to a sup (supre- 
mum). The usual theory requires the cardinality of H to be finite. 

What our Corollary 4.2 is concerned with are relations more complex 
than (39), due to the presence of one more operation on the left-hand side: 
the taking of a limit. We next establish an inequality which will help us make 
this point. 

Lemma 5.1. Suppose that w (0) e R n is defined for 0 < 0 - 1, and the 
set of all vectors of this form is bounded. Then, if (CP) is consistent and has 
finite value v (P), 

l imsupsup inf {fo(x)+Ow(O)x + ~, Ahfh(X)}~v(P). (40) 
0 "~ 0 + A x ~ K  h e l l  

Proof. First, observe that, for any 0 and element of A, 

inflfo(x)+Ow(O)x + 2 Ahfa(x)l -< inf {fo(x)+Ow(O)x ]fh(x)--O, h EH}, 
x e K I .  h ~ H  J x ~ K  

(41) 
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since all hh --> 0, if (hh ] h ~ H)  e A. Therefore, the left-hand side in (40) does 
not exceed 

and 

lim sup inf {/o(X) + Ow(O)x lfh(X) <-- O, h ~ H}. (42) 
O ~  0 + x E K  

We first consider the case that v (P) is finite. 
Next, let x (n) be chosen so that 

fh(X("))--< 0, for h ~H,  

fo(x (")) -< v(P) + 1/n, 

which is possible, since v(P) is the value of (1). We see that (42) does not 
exceed 

lim sup {fo(x (")) + Ow(O)x (')} = fo(X (n)) <_ v (P) + 1/n, (43) 
0xa 0 + 

using the boundedness condition of w(O). Now if v(P)+l /n  is an upper 
bound on the left-hand side of (43) for any n, so is v (P). This establishes (40). 
If v(P) = -co, a quite similar argument obtains this result. [] 

From (38) of Corollary 4.2, for any 0 in the range 0 < 0 -< 1, such that 

1 + Owo > O, 

we have, upon division by 1 + Owo, 

' } inf (x)+O'wx+ F. Ahfh(X) >--v(P)/(I+Owo)-O wl, (44) 
x c K  h ~ H  

for suitable A ~, - 0, where we have set 

0' = 0/(1 + 0Wo), A'h = Xh/(1 + Owo), 

in terms of the quantities of (38). Therefore, 

lim inf sup inflfo(x)+O'wx+ 2 Ahfh(' X)} > v ( P ) . -  
0'"~ 0 + A x ~ K [  h ~ H  

(45) 

Putting together (40) and (45) above, we obtain (under the hypotheses 
of Corollary 4.4), after renaming 0' to 0 and A ~ to Ah, Eq. (2). Comparing the 
standard Lagrangian result (39) with ours (2), we see their similarity in 
nature. The limit appearing in (2) suggests the term limiting Lagrangian 
equation for (2). 

Note that, if K C R ~ is bounded, (2) becomes the ordinary Lagrangian 
statement (6), since Owx -~ 0 uniformly in x e K as 0 ~ 0. 
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To put these results in perspective, a main feature of the ordinary 
Lagrangian is that it "reduces" a constrained optimization to an uncon- 
strained one. The limiting Lagrangian reduces a constrained optimization 
to a sequence of unconstrained ones, as 0 $ 0 +. The ordinary Lagrangian, 
when a Kuhn-Tucker vector exists, allows an economic interpretation of the 
dual: with the correct "prices" of factors, the constraints can be dropped. 
Part of the economic interpretation of the limiting Lagrangian is that, with 
the correct prices and perturbation of the criterion function, one obtains an 
unconstrained profit maximization which is almost the same (in value) as the 
constrained one. 

As regards the determination of w ~ R n of (2), we first discuss a few 
points concerning the determination of relative interior points (vo, v, vl) of 
C in (27). We do not try here to give an efficient algorithm; we merely wish 
to indicate that these quantities are often, in principle, computable. 

For vectors v~ ~ R q and a nonempty index set I ~ ~ ,  the determination 
of a relative interior point of 

Cz = cone({v~ l i ~ I}) (46) 

is never, in principle, problematic, once one has some spanning set, say 
{v 1 . . . . .  v t} of  {v ~ l i e I}, in the sense of a vector space span. A relative 
interior point of Ct of (5 i) is always given by 

Indeed, for any vector 

v = v ~+" • "+v r. (47) 

W = p i V  
i = l  

in the vector space spanned by {v 1, . . . ,  v ~}, i.e., in the manifold spanned by 
C~ of (46), there is a sufficiently small E > O, so that 

1 + e& > O, for i = 1 , . . . ,  t, (48) 

and hence 

v + E w ~ G .  

Since w in the manifold spanned by CI is arbitrary, v of (47) is a relative 
interior point of Cx, by standard criteria (see, e.g., Ref. 6). 

To obtain { v l , . . . ,  v'}, it often suffices to know t, the dimension of the 
manifold spanned by Cx. Here, we have in mind primarily the case that a 
countable dense subset {v~[i ~ I'}, which can be effectively listed, can be 
effectively extracted from {v ~ I i e I}. Since 

cl cone({v ~1 i c I'}) __. cone({v~ I i ~ I}), 
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there are also t linearly independent  vectors in {viii el'}. Thus, one can 
simply continue a listing until t independent  ones are found. We avoid 
details on the points raised in this paragraph,  since a full discussion of these 
matters requires a knowledge of recursion theory, which we do not assume 
here. 

The simplest case in t = q; i.e., the cone Cx of (51) is fully dimensional, 
and our next result shows that this is indeed a very common case for the cone 
C of (27). Before we begin the proof of our next result, one may remark  that 
full-dimensionality occurs if 

v ix = 0, for all i ~ L implies x = 0. (49) 

Indeed,  if (49) holds, but the linear span of {v i ] i ~ 1} is a subspace L ~ R q, its 
perpendicular subspace L'-  has a nonzero vector $. Then, 

i -  
V x = 0, for all i ~ L 

but $ ~ 0, a contradiction. 

Proposition 5.1. Suppose that (1) is feasible and has finite value v(P). 
Barring the case that there exists a nonzero vector x* such that, for all 0 ~ R, 
we have, for any solution £ to (CP), 

fh($+Ox*)<--O, all h ~ H ,  (50) 

fo(~ + ox*) =fo(~), (51) 

~+Ox*~K, (52) 

then the cone C of (27) is of full dimension n + 2. 

Proof.  We have to show that there is no nonzero solution to all the 
equalities 

bJoz +aJx-aiow = 0 ,  ]el(O), 

aJx-a~ow=O, j~I(h)andh~{-1}uH, (53) 

w = O ,  

or, equivalently, to the equalities 

bJoz+a'x. = 0 ,  ] e l ( O ) ,  (54) 

alx=O, /~I(h)andh~{-1}uH. 

Since at least one bio > O, for / e I(0) ,  as }Co has a subgradient at least one 
point, we cannot have x = 0 in a nonzero solution to (54). 
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Suppose that (z*, x*) solves (59), so that x* ~ 0. By homogeneity, we 
may assume that z * - 0 .  Let £ be any solution to (1). Then, for any 0---0, 
fixing h e {-1} w H and letting ] e I(h)  be arbitrary, we have 

since 

from (54), and 

a J(2 + Ox*) = ai2 + OaJx * = aJ£ >- aio, 

aSx * =0, 

(55) 

we have 

since 

biz*+aix*=O. 

This gives (51) for 0 > 0, with = replaced by < ,  since 

(fo(2) + Oz*, 2 + Ox*) ~ epi(/o) 

and 

as 

(fo(2), 2) e epi(/o)), 

br(fo(2) + ez *) + ai(2 + Ox*) = (b~fo(2) + a J2) + O(biz * + agx *) 

= bJfo(2) + aig >. aJo, (56) 

z*<-O, fo(2)+Oz*<-f(£), for all 0>_0. 

Now, if z* < 0, from the above, ]:0(2 + 8x *) can be indefinitely decreased 
by sending 0/~ +co, and all the while 2 + e x *  is feasible in (1). This 
contradicts that (1) has finite value. Hence, z* = 0, and we can repeat the 
analysis with ( - z* ,  - x* )  replacing (z*, x*), and in this manner obtain (50) 
and (52) for all 0 e R. We also obtain 

fo(2+Ox*)<-fo(2), for all 0 e R ;  

since/Co is convex, we clearly have (51). []  
Thus, if it is known that the feasible region contains no full line, or that 

If(x)l/~ +oo, as Ilxll ~' + ~ ,  

aJg >_aJo, 

by Lemma 4.1. Thus, by Lemma 4.1, we have (50) and (52) for 8 ~ 0. Also, 
since 

biof(2)+aJ2>-aJo, for any j  ~ I(0), 
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or that fo is not constant on any line, or that fo is not constant on any line in 
the feasible region of (1), all of these being commonly occurring hypotheses, 
Proposition 5.3 shows that the dimension of the cone C of (27) is full, i.e., is 
n + 2 .  

From (26), once an interior point (Vo, v, vl) is found, we can compute w 
for use in the limiting Lagrangian as w = v. 

If the value of the dual is +oo, then we prove that (1) is not feasible quite 
easily. Indeed, if x* is a feasible solution to (1), we have, under a bounded 
ness assumption for w(O), 0 <  0-< 1, 

lim sup inflfo(x)+Ow(O)x + ~ Ahfh(x)} 
Ox~O + A x ~ K t  h ~ H  

- lim sup{ fo(X*)+Ox(O)x*+ Y~ l~hfih(X*)} 
Ox~O + h , ~ H  

-< lim {fo(x*) + 8w(O)x*} = fo(x*). (57) 
O-~O + 

This would contradict a value of +oo in the dual. 
Of course, as in any duality theory, there is the possibility that both 

primal and dual are inconsistant, i.e., the primal is inconsistent (nominally 
given value +oo) and the dual has value -oo.  
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