
Perfect Validity, Entailment 
and earaconsistency 

Abstract. This paper treats entailment as a subrelation of classical consequence 
and dedueibility. Working with a Gentzen set-sequent system, we define an entaihncnt 
as a substitution instance of a valid sequent all of whose prcmisses and conclusions 
are necessary for its classical validity. We also define a sequent Proof as one in which 
there arc no applications of cut or dilution. The main result is that  the entailments are 
exactly the Provable sequents. There are several important corollaries. Every unsatis- 
liable set is Provably inconsistent. Every logical consequence of a satisfiable set is 
Provable therefrom. Thus our system is adequate for ordinary mathematical practice. 
Moreover, transitivity of Proof IMls upon accumulation of Proofs only when the newly 
combined premisses are inconsistent anyway, or the conclusion is a logical truth. In 
either case Proofs that show this can be effectively determined from the Proofs given. 
Thus transitivity fails where it least matters -- arguably, where it ought to fail! VVe 
show also that entailments hold by virtue of logical form insufficient either to render 
the premisses inconsistent or to render the conclusion logically true. The Lewis para- 
doxes are not Provable. Our system is distinct from Anderson and Belnap's system 
of first degree entailments, and Johansson's minimal logic. Although the Curry set 
paradox is still Provable within naive set theory, our system offers the prospect of 
a more sensitive paraconsistent reconstruction of mathematics. I t  may also find ap- 
plications within the logic of knowledge and belief. 

w O. Introduction 

M y  p u r p o s e  in this  p a p e r  is to  c r ea t e  a new  a n d  s y s t e m a t i c  t h e o r y  of 
e n t a i l m e n t  sa t i s fy ing  ce r t a in  expl ic i t  cond i t ions  of a d e q u a c y ;  and  to  

ind ica te  its app l ica t ions  in t h e  p a r a c o n s i s t e n t  r e c o n s t r u c t i o n  oi m a t h e m a -  

tics. The  s y s t e m  is p r o v a b l y  d i s t inc t  f r o m  a n y  k n o w n  to  me.  I t  is b a s e d  
on  an  e x t r e m e l y  n a t u r a l  a n d  s imple  s eman t i ca l  r e l a t ion  oi entaf lment~ 

w h i c h  is c a p t u r e d  b y  an  equa l ly  n a t u r a l  a n d  simple G e n t z e n  s equen t  
sys t em.  

I n  m y  p a p e r  [1] I def ined  a Proof in  a s y s t e m  of n a t u r a l  d e d u c t i o n  as 
an  o r d i n a r y  p roof  in n o r m a l  f o r m  wi th  no app l ica t ions  of t he  a b s u r d i t y  
ru le  ("ex falso quodlibet'). MMn resul t s  were  

(1) The  Lewis  p a r a d o x e s  
A, --A: B 

A : B~ --B 
are  n o t  P rovab l e .  



182 2Yeil Tennant 

(2) Eve ry  unsatisfiable set of sentences is Provably  inconsistent.  

(3) All logical consequences of any  satisfiable set of sentences are Provable  
therefrom. 

(4) Transi t ivi ty  of Proof fails only where  the  new combined premisses 
fo rm an inconsistent  set - - i n  which ease a Proof  of thei r  incon- 
sistency is effect ively determinable  f rom the  given Proofs. 

These results axe clearly significant for the  paraconsis tent  reconstruc- 
t ion of mathemat ics .  Let  us define Theories by  reference to Deduct ive 
closure, tha t  is, closure with respect  to our new class of Proofs. I n  our 
Proof system, contradict ions do not  Imply  a rb i t ra ry  sentences. There are 
dist inct  inconsistent  Theories. This raises the  possibility t h a t  different  
set Theories, for example, if inconsistent,  might  be so in "di iferent  ways".  
Some inconsistencies, as it were, might  be less harmful  t han  others. 

I do not  wish a t  this stage to raise undu ly  the  hopes of naive set theO- 
rists. For  I shall also show below tha t  Curry 's  instance of naive abst ract ion 
enables us to Prove arb i t ra ry  sentences of the  language of set theory.  
I have discussed elsewhere ([2], [3]) how a proper response to the  early set 
theoret ical  paradoxes  is to adopt  a free logic of sets. The Curry paradox  
is Provable  simply because the  first  order Proof sys tem is still based on 
the  misguided assumption tha t  every  t e rm of the  language denotes.  Thus 
the  possibility I would still hold out  for those interes ted in p~raconsistent  
mathemat ics  is tha t ,  in a free .5ogle of sets there  might  be in te res t ing ly  
distinct inconsistent  Theories. Different  large e~rdinal assumptions in Z/~, 
for example,  might  be inconsistent  in different  sorts of ways. 

Results (2) and  (3) above show tha t  our  Proof  sys tem is ~dequate  to M1 
the  demands  of our mathemat ica l  practice. What  are these demands  ? We 
are deprived of f in i tary  consistency proofs for interest ing theories like 
ar i thmet ic  and  set theory.  Pending  proofs of contradict ions f rom our 
axioms (such a s  Peano's  postulates, or the  Zermelo-Fraenkel  axioms) 
we car ry  on proving theorems from these axioms. Whenever  we do disco- 
ver inconsistencies in our axioms we do not  rejoice in the  deluge of easy  
consequences licensed by  the  first  Lewis paradox,  or absurd i ty  rule. In s t ead  
we t u r n  our a t ten t ion  back to  our s tar t ing points, to seek the  source of the  
contradiction.  Thus it appears t ha t  the  demands  we make  of our logic are  
two-fold. 

(i) The logic should deliver all contradictions,  wherever  t h e y  m a y  be 

(ii) The logic should deliver all consequences of our m a t h e m a t i c a l  
axioms, should these be collectively consistent.  

I n  our Proof system, as results (2) and  (3) above show, these demands  
can be met.  I n  ~ nutshell,  if Z/~ is inconsistent,  t h e n  it is Provably  so; 
if it is consistent,  t hen  all its theorems are Theorems -- tha t  is, t h e y  are 
Deducible f rom the  axioms. 
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Finally,  result  (4) shows tha t  Deduct ive  progress is cumulat ive  in the  
usual  way.  So by  (1) we have  excised the  Lewis Paradoxes .  By  (2), (3) 
~nd (4) we have  done so wi th  min imum muti la t ion to the  deduct ive  fabric 
of mathemat ics  - - i ndeed ,  arguably  disturbing no pa r t  of ma themat ics  
as ac tual ly  practised.  

I ended [1] by  suggesting tha t  a slightly s t ronger  not ion of Proof  
would preserve results ( 1 ) -  (4), and  also yield 

(5) Any  Proof of ~ conclusion other  t h a n  absurd i ty  f rom a n o n - e m p t y  
set of premisses is a subst i tut ion instance of a Proof  the  premisses 
of which form a consistent  set ;  and  any  Proof  of a logicaI t r u t h  f rom 
a non-empty  set of premisses is a subst i tut ion instance of a Proof  of 
a cont ingent  conclusion 

The gist of (5) is tha t  Proofs contain no Lewis-like features.  I n  a Proof  
one does not  t rade  illicitly on the  inconsis tency of the  premisses in order 
to obtain a potent ia l ly  i r re levant  conclusion. Nor does one t r ade  on the  
logical t r u t h  of the  conclusion in order  to obtain it " f rom"  any  premisses. 
l~ather, Proofs establish conclusions f rom premisses by  means  only of so 
much  logical detail  as is insufficient to reveal  e i ther  the  inconsis tency 
of the  premisses or the  logical t r u t h  of the  conclusion (hence the  talk about  
subst i tut ion instances in (5)). For  example,  the  Proof  

A & - - A  

A 

is ~ subst i tut ion ins tance  of the  Proof  

A & B  

A 

the  premiss "se t"  of which is consistent;  and the  Proof  

A 

A v  - - A  

is ~ subst i tu t ion ins tance of the  Proof  

A 

A v B  

the  conclusion of which is contingent .  (These are of course trivial examples.  
The  general  conjecture  (5), however,  is not  trivial.) 

NIy pro'pose in this paper,  a l ready briefly s ta ted e~t the  beginning, is 
to re-work all these ideas and  results in a Gentzen sequent  setting. Proofs 
of results are the reby  simplified, and  also slightly improved by  symmet r ic  
t r ea tmen t  of premiss sets and  conclusion sets of sequents.  Moreover I am  
able also to prove conjecture  (5) in ~ sui tably Gentzenised form. 
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To do this I employ a semantlca~ notion of entailment, or vMidity of 
sequents. In [1] I passed over this in silence, for the reason that  I could 
not say anything abou~ it. Indeed, I even maintained that  one might be 
able to do without it. In  this paper I am happy to address myself to the 
semantical problem, even if only to secure (5). I t  might still turn  out tha t  
all the desired results can be obtained proof-theoreticMly. Whether one 
would wish in that  case to kick the ladder away is an issue I shall not 
discuss here. 

Once the semantical notion of entailment has been defined, the pro- 
blem of soundness and completeness results arises for our Proof system. I t  
is interesting that  the usual burden of proof is shifted. In  this paper it 
will be the soundness theorems that  call for less trivial proof. This, how- 
ever~ might have been expected. The usual problem for the entailment 
theorist is to show that  his Proof system does not let in too much -- that  it 
excludes the Lewis paradoxes and  other undesirable results. This problem 
becomes that  of proving a soundness theorem with respect to the new 
semantics that  has been designed to invalidate these undesirable results. 

At this point it is worth mentioning that  I regard disjunctive syllogism 

A v  B, - - A :  B 

as a thoroughly desh'able result, in opposition to those in the Anderson- 
Belnap tradition. They preserve unrestricted transitivity at all costs. 
One of these costs is the rejection of disjunctive syllogism, a mode of 
inference indispensable in mathematical reasoning. In  contrast~ I give 
up transitivity in a very controlled way, arguably where it least matters -- 
arguably, indeed, where it ought to be given up l -- and thereby preserve 
disjunctive syllogism: I shall say more about this below. 

Apart  from its promise for paraeonsistent mathematics, the Proof 
system given below might also be usefully applied in the logic of know- 
ledge and belief. Existing systems treat only of ideal or rational attitudes, 
consistent and logically closed. Wha~ appears to be needed is a logic al- 
lowing sensitive discrimination between different inconsistent belief 
sets. This is a topic, however, that  I shall not pursue in this paper. 

w 1. Semantics 

Let us proceed now to the main semantical idea. I shall generalize the 
basic idea behind a definition given by Smiley in [4] in connection with 
entailment, a definition that  he gave for a single conclusion system. This 
generMization requires our being able to speak not just of premisses A1, 
.... , A s entailing a (single) conclusion B, but of their entailing in general 
a set of conclusions B1, . . . ,  B,~. Thus we wish to speak of a sequent of th~ 
form 

A1,  . . . ,  An:  B I ,  . . . ,  B m 
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being valid, being perfec t ly  valid or being an entMlment  (to ment ion  
the  th ree  main  not ions to be  defined in due course). Note  tha t  i t  is sets 
t ha t  s tand on each side of the  colon in a sequent.  Order and repet i t ion 
of premisses on the  left, or of conclusions on the  right,  are i rrelevant .  
Thus also when we come to the  Gentzen sys tems of proof and Proof ,  
i t  will be  set sequents  with which we shall be  dealing, ra ther  than  the  
sequenee seqaents  of Gentzen himself. So we shall not  be  needing rules 
like Pe rmu ta t i on  and Contract ion in the  sequent  sys tem - - b u t  more of 
t ha t  below. 

Classically~ a valid sequent  X :  1 z is a sequent  tha t  cannot  be  "part i-  
t ioned"  b y  any  interpreta t ion,  or model, of the  language. That  is~ there  is 
no w a y  of making  all of X t rue  and all of 2" false. DiagrammaticMly,  an 
invalid sequent  X :  I z is thus  one for which there  exists a model  M result ing 
in a par t i t ion of the  sentences of the  lamguage Z thus :  

True-in-M 

G 
. , . ,  � 9  . . . .  

False-in-M 

The model  M is a counterexample  to the  a rgument  

All of X 
ergo, At least  one of :Y 

or, more  simply, a model of X :  Y.  Thus a valid sequent  is one tha t  has no 
models.  

o is t he  e m p t y  set. B y  our definition, X :  o is val id jus t  in case X is 
not  satisfiable, and 0: Y is valid jus t  in case Y is not  fals~fiable. And  
precisely for this reason the  Lewis paradoxes  are valid on the  classical 
definition. Neither  {A, - -A}:  {B} nor {A}: {B, - -B} has a model. ( t tence- 
for th I shall omit  set braces wherever  possible). This is because nei ther  
oi the  respect ive  proper  subsequents  

A,  - - A :  o o: B, - - B  

has any  models. This mot iva tes  the  following definition. 
A sequent  X :  1 z is perfectly valid iff it is valid and has no valid pro- 

per  subsequents .  The Lewis paradoxes~ though  valid, are not  perfec t ly  
so. Likewise with the  sequent  A~ B:  A. The sequent  A & B:  A~ however,  
is per fec t ly  valid, as is A & B:  B. The sequent  A & - - A :  B is valid, 
b u t  no t  per fec t ly  so. 
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A substitution is a mapping from atoms to formulae. I t  can be extended 
~o a mapping from formulae to formulae in the obvious w a y -  

s ( - - A )  = - - s (A)  

s(A &B) = s(A) &s(B) ere 

.and to sets of formulae -- 

s ( x )  = ( s ( n ) t ~  ~ X }  

and thus also to sequents - -  

s(X: 17) = s (X):  s(17) 

5u shall represent this diagrammaticMly as 

X:  17 

A 1 ... A n 

~4' 4, 
B1 ... B.~ 

s ( X :  17) 

where s replaces each atom A~ by  the (possibly complex) formula Bi. 
Whenever 

X:  17 
s +  
Z: W 

we say also that  X:  17 is a suprasequent  of  Z :  W via s. 

We are now in a position to state our main definition. 
A sequent X:  17 is an e~tai lment  iff X:  17 has a perfectly valid supra- 

sequent. 
This definition of entMlment deals only with classical validity and 

economy of statement in terms oi set-inclusion and substitution. I t  invol- 
ves no unusual or counterintuitive re-interpretation os the senses of logical 
operators. 

The sequent A & - -A :A is an entMlment by  virtue of the perfectly 
vMid suprasequent A & B: A. Some perfectly valid sequents have perfectly 
valid proper supraseqaents, e.g. 

B, - -B :  --(A &B) :  - -ARC,  D v - - B  

--A, - - - - A :  --(A &B) :  - - X v - - B  

Every perfectly vMid sequent is a proper suprasequent of some perfectly 
valid sequent, as can be seen by simply mapping atoms to their double 
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negations. A sequent can be an entailment by  virtue of two perfectly 
valid suprasequents neither of which is a suprasequent of the other~ e.g. 

A &G: A v D  E & B :  T v B  

A B B  
A & B :  A v B  

The different suprasequents correspond to distinct "lines of ~rgument" 
tha t  serve to establish the entailment - - i n  this case, extracting right 
or left conjuncts of the premiss A & B. Of eours% much more radical 
differences can be expected in more complicated cases. 

Our task in the next section will be to define notions of _Proof and of 
:perfect proof in appropriate sequent calculi and to obtain the adequacy 
result. 

The Provable sequents are precisely the entailments. 
Our Proof theorywill then tell us some important facts about  the entn- 

ilmant relation. The ~dequaey result is also of course the affirmative 
solution of e~njecture (5) in a Gentzen setting. 

o 

w 2. Syntax 

I shall confine myself throughout the body of this paper to the con- 
nectives --, &. All the proof theoretical results hold for --~ &~ v,  3 and V 
primitive. Towards the end of the paper I shall have more to say ~bout 
quantification and identity. For the time being~ however, the ideas are 
best  illustrated in the simplest possible system. 

In the classicM sequent system each logical operator has two rules. 
One tells us how to introduce a dominant occurrence of the operator 
in a formula on the left of the colon in a sequent derived by  means of that  
rule; the other tells how to do so on the right. For our chosen operators 
these rules are 

X, A: :~ X:  :Y, A 
X:  :Y, - - A  X~ - -A:  :Y 

X:  :Y, A Z: W, B X,  A: :Y X , B :  
X ,  Z: :Y, W, A & B X~ A & B: :Y X~A & B: Y 

The displayed formula A in the negation rules is called the component 
for its application. Likewise for A~ B in the conjunction rules, i'Ve have 

notational convention whereby the component is assumed not to be 
member of the set separated off from it by  a comma. Thus in the first 

negation rule above, we assume A r X. 
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In  addition to these rules for logical operators there are the following: 
str~wtural rules. 

Dilution 

Cut 

X:  I: X:  ~: 

X:  :Y, A X ,  A : :r 

X :  :Y, A A,  Z: W 
X, Z: I7, W 

Using any. of these rules one builds proofs from initial sequents of the form~: 
A : A  in the usual way. For example 

A: A B: B A :  A B:  B 

: A,  --.A : B, - - B  A v B :  A,  B 

: A,  - - A v - - B  : B, - - A v - - B  A v B ,  - - A :  .B 

: A & B ,  - - A v - - B  

- ( A  &B):  - - A v - - B  

These proofs of course also involve rules for disjunction, which are duaI: 
to those we have given for conjunction. For the record, they are 

X :  ~,  A X :  ~,  B X ,  A:  ~ Z, B: W" 

X :  ~, A v B X:  X~ A v B X ,  Z, A v e :  i -  W 

In neither of our two proofs ~bove is the Cut rule applied. This is no aceident~ 
As is well known, Gentzen proved the following theorem. 

CUT ~ELI:M/~ATION THE01~E~. Any  proof of X : ~ can be converted inte, 
a cu~ free proof of X : Y .  

But even in a cut free proof, dilutions can be a source of irrelevancy. 
This can be shown clearly by the following cut free proof of the first Lewi~ 
paradox. 

A: A 

A, - - A i  
dilution 

A, - -A:  B 

Our next theorem tells us what can be done about this. We define 
a Proof (with uppercase 'P') as a cut free, dilution free proof. 

D~uTIo~ ET.~V[INATIO~ Tn:EO~E~. Any  eu~ free proof of X : ~ ea~ be 
converted into a ]Proof of some subsequent of X : Y .  

(We shall write ~ ' ~ X  for "~ can be converted into the Proof Z".)  

P~ooF. By induction on the length of proof. The basis is obvious~ 
since A: A is already a Proof. In  the inductive step we proceed by eases~ 
according to the rule last applied. If any Proof given by the inductive 
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:hypothesis establishes a final sequent lacking the relevant component on 
t h e  relevant side, take it as the required Proof; otherwise, apply the rele- 
v a n t  rule to obtain the required Proof. For example, if 

X :  Y , A  Z: W (Z ~_ X,  W ~ Y) 

t h e n  

:but if 

~hen 

z~ Z 

X :  Y , A  
XI - -A :  :~("~Z: W; 

( ' ,  Z 
X :  Y , A  Z: W , A  (Z c_ X,  W ~_ Y) 

z~ Z 

X :  :Y, A Z: W, A 

X ,  - -A :  Y Z, - -A :  W 

,O~her cases are similar and are left to the reader. Of course, if 

~hen 

X:  Y Z: W 

Z ~ n d  z Z 
X: Y X:  Y 

(-~Z: W (-~Z: W 
X:  Y, A X, A: Y 

This completes the proof of the theorem. 

The dilution elimination theorem is the sequent version of the extrac- 
tion theorem for systems of natural deduction in [1]. Iqote how in its proof 
the inductive step cannot be carried out for =. The sequent rules lor = are 

X,  A : :Y, B X :  :Y, A Z, B: W 

X :  :Y, A ~ B X ,  Z, A = B: X, W 

An example of a proof without cut that  cannot be converted into a Proof 
of any subsequent of its final sequent is 

A : A  

A,  - -A :  

A,  - -A :  B 

- -A :  A ~ B 



190 ~eil Tennan~ 

We therefore restr ict  ourselves to a system with --~ & and v as pr imit ive  
connectives. We can now obtain as corollaries of the  cut - and  dilution - 
el imination theorems sequent versions of our results ( 1 ) -  (4) above. 

C o ~ o L L ~ u  1. The Lewis paradoxes A,  - - A  : B and A:  B, - - B  are 
not Provable. 

P~ooF. The only possible forms of cu t  free proof of the  f irst  paradox 
are 

A: A A:  A 

A:  A,  B A,  - -A :  

A,  - -A :  B A,  - - A :  B 

both  os which involve dilution and  are therefore not  Proofs. Simil~zly 
for the  second paradox.  

C0~OLLA~u 2. I f  X is not satisfiable then for some subset Z of X there 
is a Proof of Z: o; and i f  Y is not falsifiable~ then for some subset W of Y 
there is a Proof of o: W. 

P]cooF. Suppose X is not  satisfiable. By  classical completeness there  
is a proof of X ' :  o for some subset X '  of X. By  el iminat ing cuts and  then  
dilutions we obtain a Proof of Z: o for some subset Z of X' ,  hence of X~ 
as required. The second half is proved similarly. 

CoroLlArY 3. I f  X is satisfiable and logioally im~plies A,  then for some 
subset Z of X there is a Proof of Z: A. 

P~ooF. Suppose X is satisfiable and logically implies A. By  cIassicM 
completeness, cut- and dilution-elimination there  is a Proof of Z:  o or of 
Z:  A, for some subset Z of X. By  satisfiability of X and  classical soundness~ 
only the  la t ter  can be the case. 

Corollary 3 has been formula ted  with an emphasis on single conclusions~ 
bu t  this is unnecessary.  A general and symmetr ic  s ta tement  is 

I f  X is satisfiable and  IT is fMsifiable and  X :  X is valid, then  for 
some non-empty  subsets Z, W of X, Y respectively there is a Proof 
of Z:  W. 

Note tha t  a proof (hence Mso a Proof) of a subsequent  Z:  W of X :  Y tells 
us something stronger t h a n  a proof of X :  I7 itself. I t  is much harder  for 

sequent to be valid (provable), the  fewer sentences it has -- 'fewer' in 
the  sense of proper inclusion. Hence the  subset t ing ment ioned in Corol- 
laries 2 and  3 (and 4 below) does not  det ract  a t  all f rom the  result  -- in 
fact~ it enhances it. I f  one can ~winnow down'  a sequent  wi thout  loss of 
va l id i ty  or of provabil i ty,  one is improving mat ters .  One might  even 
come to learn t ha t  the  premisses were inconsistent  or the  conclusions not  
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falsifiable, or t ha t  fewer of the  premisses served to ensure tha t  the  t r u th  
l~y ~mong fewer of the  conclusions. This epistemic gain should therefore  
be  borne  in mind in ~ssessing the  nex t  result .  

CO]~OLLA]~Y ~ . . F o r  1 ~ i ~-~ n, let ~f be a Proof, and let X 
.Xi:YI,A i XO,A 1 ..... A n : Y  ~ 

be a Proof. Then there is a Proof ~ for some subsets X,  ~ of the respective 
X:Y 

unions of the X, and of the Y,. 

P~ool~. B y  n-fold cut  obta in  a proof  of the  sequent  U X , : U Y ~ .  
i=0 i=o 

B y  cut- ~nd dilution-elimination tu rn  this into ~ Proof  ~s required.  

Thus if we h~ve Proofs  of Axioms:  Lemma 1 ~nd of ... ~nd of Axioms:  
Lemm~ n ~nd of Axioms, Lemmata  1 - - n :  Theorem, then  we can deter- 
mine f rom them ~ Proof  ei ther of Axioms:  Theorem or of Axioms:  o or of e" 
Theorem. In  the  l~st two cases - - w h e r e  t rans i t iv i ty  of Proof  "fails" -- 
we learn ei ther  t ha t  our ~xioms ~re inconsistent  (in which c~se we are 
hard ly  likely to mourn  the  loss of Theorem) or tha t  Theorem was ~ logical 
t r u th  ~nyway (in which e~se we are pleased to have  ~ Proof  of it outr ight) .  
This is why  I insist tha t  t rans i t iv i ty  of Proof  fails where it least  mat ters  --  
indeed,  where  it ought to f~il. 

Note  tha t  eve ry  subs t i tu t ion  instance of ~ Proof  is a Proof.  
We now int roduce the  not ion of perfect proof, designed to cap tu re  

perfect  validi ty.  B u t  note  tha t  not  all perfect  proofs will be Proofs,  nor will 
all Proofs  be  perfect  proofs, ~s will become evident  in due course. Fi rs t  
we need some nota t ion  ~nd terminology.  

When  X ~nd Y ~re non-empty  sets of formulae,  X & :Y is the  set of 
all conjunct ions with left  conjuncts  in X ~nd right conjuncts  in Y. 
W h e n  X is a non-empty  set  of formifl~e, and  A is ~ formula,  t hen  X & A is 
the  set { ] P & A / B e X } .  Likewise for A & X .  ~ X  is { ~ A / _ 4 e X } .  

Now perfect proofs are bui l t  up f rom initial sequents  A:  A (with A 
~tomic), wi thout  cut  or dilution, b y  means of the  following 't~robenian ~ 
rifles having sets of formulae in generM ~s components :  

X :  Z, :Y X,  Z:  Y 

X,  - Z :  Y .X: 17, - Z  

X , Z :  17 X :  Y , Z  U: V , W  

X , Z & A :  :Y X i U: Y, V , Z & W  

.~/7, Z :  :Y where t he  Upper sequents ha.re 
X ,  ~ ~ Z : ~  no atoms in common (i.e. are 

vocabulary disjoint) 

where A is an ~tom 
tha t  does not  occur 
in the top sequent 
(i.e. A is a fresh atom) 
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PEI~FECTION TKE01~E~ A n y  Proof z can be converted into a perfev~ 
X : Y  

proof  X for some suprasequent Z:  W of X :  Y.  
Z:W 

P~ooP. We obtain 2: by working from the top down in ~. At &: we 
re-label so as to achieve foreignness of atoms, and at : & we re-label so as to 
achieve vocabulary disjointness. Via the substitution mapping thus indu- 
ced at each stage we keep track of what subsets within the new sequents 
thus formed "on the way to" X correspond to the components of each 
step in the original Proof x; and as we work down x we mimic its steps in 
the new perfect proof X under construction in the appropriately "Frobenian" 
fashion. 

EX~PLES. Our Proof above of disjunctive syllogism A v B, - - A  : B 
is already a perfect proof. Our Proof of the de N[organ sequent (A & B): 
: -- A v -- B, however, is not. Bearing in mind that  the rules for v are simply 
dual to those for &, so that  the same sorts of considerations apply, we 
can turn our Proof of the de ~organ  sequent into the following perfect 
proof. 

A :  A B: B 

:A~ - - A  :B, - - B  A B C D 

:A, - - A v ~  :B, D v - - B  s ~ $ $ 
:A & B ,  - - A R C ,  D v - - B  A B - - B  - - A  

--(A &B): - - A v  C~ Dv - -B 

Note how in the third line C and D are foreign atoms for :v ,  and how 
the sequents in the third line are "vocabulary disjoint" for : &. As a finaI 
example, consider the Proof 

A :  A B:  B 

:A, - - A  :B, - - B  

: A  - - A v - - B  :B, - - A v - - B  

:A & B , - - A v - - B  

- - ( - - A v - - B ) : A & B  

with the perfected version 

A: A B: B 

:A, - -A :B, - -B 

:A, - - A v  C :B, D v - - B  

:A. &B, {--ARC,  D r - - B }  

- - ( - - A v C ) ,  --(Dv--.B):A. & B  

A B  C, D 

A B - - B  - - A  
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The final step here is an application of the "Frobenian" rule -- : of perfect 
proof. The set braces are inserted to make clear what the component is 
for the application of the rule. Note how under the substitution s this set 
component "collapses" to the single formula - - A v - - B  which, in the 
original Proof, was the component for the application of the negation rule 
in quest ion.  

w 3. Soundness and Completeness Results 

CO_~[PLET:E~-ESS T:t:I~O~:Eh[. Every entailment is Provable. 

PnooF. Suppose X : 17 is an entailment. Let Z : W be a perfectly valid 
suprasequent of X:  17 via s, as required by the definition of entailment. 
By Corollaries 2 and 3 above there is ~ Proof = for some subsets Z'~ W' of Z, 

Z,.BT, 

W respectively. By soundness of proof~ hence of Proof~ Z':  W' is valid. 
By perfect validity of Z: W, Z = Z' and W = W'. Substituting via s in s 
we obtain a Proof of X:  1 z. 

P E ~ C T  COm~L~,TE~SS T~E0~E~r. Every perfectly valid sequent has 
a perfectly provable suprasequent. 

P~ooF. Let X : :g be perfectly valid. By classical completeness there 
is a proof of X:  :g~ which by cut- and dilution-elimination, and then perfec- 
tion, can be turned into a perfec~ proof g for some Z: W such tha t  

Z:W 

Z: W 
8 

X':  ~ '  _~ X:  17 

Since X:  1 z is perfectly valid, X = 32' and 17 = t 7'. Hence the result. 

COrOLLArY. Every entailment has a perfectly provable suprasequent. 
Thus we can generate the entMlments not only by Proof, but also by 
perfect prooi and substitution. 

PE~:EC~ SOVND_NESS T~O~]~5~. Every perfectly provable sequent is 
peU'eetIy valid. 

P~ooF. Initial sequents are perfectly valid. I t  is clear that  the rules 
of perfect proof preserve ordinary validity. Thus it remains to show that,  
if their upper sequents are 1)erfeetly valid~ then so are  their lower sequents. 
To do this we assume the perfect validity of the upper sequents, and show 
that  any proper subsequent of a lower sequent has a model (i.e. is invalid). 
We proceed by ease% ~ecording to the rule in question. 

IS- Studia Logica XLIII/I-2 
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:The rule : -  

Consider X, Z: :Y 

X: :Y~ - -Z  

Suppose the upper sequent X, Z: :Y is perfectly valid (fie a, ny proper 
subsequent of X, Z: Y has a model). Consider any proper subsequent 
~/': U of the lower sequent X:  Y~ --Z. So T: U is the result of dropping 
at least one formula A say in X:  :Y, --Z. 

(i) Suppose A is dropped from X. Let the resul t  be X'. Then 
X', Z: Yis a proper subsequent of X~ Z: Y ~nd thus has ~ model 
M say. M is a model of X' :  Y~ --Z~ hence also of T: U. 

(ii) Suppose A is dropped from :Y. Let the result be ~Y'. Then X, Z: Y' 
is a proper subsequent of X, Z: Y and thus has a model M say. 
M is a model of X:  :Y'~ --Z, hence also of T: U. 

(iii) Suppose A is dropped from --Z. Then the result is of the form --Z '  
for some proper subset Z' of Z. X, Z': Y is a proper subsequent 
of X, Z: Yiand thus has a model M say. M is a model of X: Y~ --Z'~ 
hence also of T: U. 

The reasoning for the rule --:  is similar. 

The rule &: 

0onsider X, Z: Y where B is a foreign atom. (The reasoning for 

X~Z &B: ~Y 
& Z is similur.) Suppose the upper sequent X~ Z: Y is perfectly valid. 

Consider any proper subsequent Z: U of the lower sequent X, Z & B: Y: 
So T: U is the result of dropping at least one formula A say in X, Z & B: Y. 

(i) Suppose A is dropped from X. Let the result be X'. Then X', Z: :Y 
is u proper subsequent of X, Z: Y and thus has u model M say. 
Since B is foreign, extend M to a model N in which B is true. N 
is ~ model of X'~ Z & B: Y, hence a~lso of T: U. 

If A is dropped from Y, the reasoning is similar. 

Suppose A is dropped from Z & B, Then the result is of the form 
Z' & B for some proper subset Z' of Z. ~ow X, Z' : Y has a model M 
say. Extend M to a model 37 in which B is true. 37 is a model of 
X~ Z' & B:Y~ hence also of T:U. 

(ii) 

(iii) 

The rule :& 

Consider X : : Y , Z  U : V , W  

X, U: Y, V , Z & W  

with the upper sequents vocabulary dis- 



Perfect validity, entailment... 195 

joint  and perfectly vMid. Consider any proper subsequent T: /~ of the  
lower sequent~ resulting from it by  dropping at  least one formula A say. 

(i) Suppose A is dropped from X. Let X '  be the result. X ' :  :Y, Z has 
a model M say. By t ru th  table for &~ M is a model of X ' :  3(, Z & W. 
U: V has a model  ~T say. By vocabulary disjointness the  union 
of M and Z T is a model of X% U: Y, V, Z & W, hence Mso of T: R. 

(if) If  A is dropped from U, Y or V the  reasoning is similar. 

(iii) Suppose A is dropped from Z & W. Suppose A is B & C~ where 
B is in Z and C is in W. X:  :Y, ZX(B} h~s a model M say, and 
U: V, W \  (C} has a model N say. :By voc~bul,~ry disjointness the  union 
of M and 2 / i s  a model of X~ U: ~ V~ Z & WN {B & C}~ hence of 
/ ' : / ~ .  This holds no mat te r  how the union model may have to be 
extended to deal with atoms involved in B a n d  C tha t  might  not  be 
assigned values in M and h T respectively. 

SOU~DNESS TI~EOI~]~. Every P~'ovable seffuent is aq~ eq~tailment. 

P~ooF. Take any Proof ~ . Then it can be tu rned  into a perfect 
X:Y 

proof X of some suprasequent  Z: W of X::Y. By perfect soundness, Z:  W 
is perfectly valid. Hence X:  I7 is an entMlment. 

I n  ~ readily graspable sense explained in the  proof of the  perfection 
theorem~ ~ is a "subst i tut ion instance" of X, even though g may  not  be 
perfect. )[oreover if X and 17 are non-empty~ so are Z and W~ with Z 
satisfiable and W fMsifiable (by virtue of perfect vMidity of Z:  W). Hence 
conjecture (5) above has  been answered affirmatively. 

w 4 Quantffiers and Identity 

So far we have been discussing only propositional logic. Now tha t  the  
reader is familiar with the  main ideas~ we can indicate how to extend the  
t rea tment  to deal with the  quantifiers. For the  t ime being we shall consider 
ffl'st order  logic without identi ty.  

An impor tan t  point  to note is tha t  perfecting Proofs is a process tha t  
produces setg of sentences in general as components  for applications of 
rules. Consider now the  rule for introducing the  existential quantifier on 
the  left. 

X, A~: :F 
X, 3 xA : 

where a does not  occur in the  lower seqllent. 

A proof z might  be perfected as X where the  associated 
X,2iax: Y Z ~1~r znx .v~  
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substi tut ion mapping is 

Z A I x  A nx  �9 W 

X, 

Our rules in the  propositional case ment ioned "foreignness of a toms" 
and "vocabulary disjointness". I n  the  case of first order logic without  
ident i ty  we now unders tand this to apply to funct ion and predicate ex- 
pressions, but  not  necessarily to names or parameters.  In  perfecting 
a Proof we can leave the  pa t te rn  of name- and parameter-occurrences 
untouched,  save for the  proliferation of their  occurrences under  the  set- 
creation just  mentioned.  To apply 3:  in the  perfect  proof X above,: we 
need the  notion of a set conjunction 

(Aa , . . . ,  A~, ) 

so tha t  we can form its existential closure 

3x a ( A ' , . . . ,  X ~) 

The set conjunction is a new kind of "sentence" the  t ru th  conditions oi 
which are tha t  every member  should be true. Likewise for V we shMl 
need a notion of set disjunction. 

Under substi tut ion via s, the  existential sentence just  given collapses 
to 3x  & (A), which we simply identify with ~]xA. :Equipped with t h e s e  
notions, the  reader can carry out  all the  proofs above for first order logic 
wi thout  identity,  iKost important ly ,  the  perfect soundness theorem requires 
tha t  we be able to form model unions and extensions. By the  respective 
disjointness and foreignness conditions, this is easy, given tha t  the  language 
does not  contain identi ty.  For, consider what  is involved in forming the  
union of two models. If  they  differ in eardinality, add indiscernibles to 
the  smaller model  in order to make the  domains have the  same eardinMity. 
Then define a 1-1 onto map between the  domains by assigning to named 
individuMs their  namesakes in the  other model, and extending the  map 
arbitrarily on nameless individuals. Vocabulary disjointness then  ensures 
the  consistency of the  model  formed by the  union of the  relational struc- 
tures via the  1-1 map just  constructed,  in the  obvious way. I n  this union, 
an individual has all the  relational properties tha t  it (via the  map) has  in 
either of the  two models forming the  union. 

In  the  language of the  fh'st order logic with identi ty the  identi ty predi- 
cate itself will not  be distinguished. Ident i ty  will be t reated axiomatically. 
Logical t ru ths  of the fh~ order logic of ident i ty  will be just  those sentences 
t h a t  s from the  axioms of identi ty,  namely all instances of reflexivity 
and substi tutivity.  
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w 5. Comparison with other systems 

The system of entai lment  and Proof set out above is dist inct  fl'om the 
Aaderson-Belnap system of first degree entai lment.  For disjunctive 
syllogism is Provabl% but  is not  a first degree entai lment.  

Nor will the restriction of :Y to singletons make our system ef Provable 
sequents X:  Y coextensive with minimal logic. For disjunctive syllogism 
is not  provable in minimM logic either. ~[oreover, the  sequent A, - A :  
: - B  is provable in minimM logic, bu t  is not  Provable. 

Note tha t  Johansson obtained minimal logic from Gentzen's sequent 
system for intuitionistic logic simply by dropping dilution. But  the rules: & 
and :v had the more restrictive form 

X:  Y, A X:  Y, B X, A:  

X :  :Y, A & B X,  

i n  our Proof system~ the  rules 

X:  Jc% A Z: W, B 

X ,  Z: :Y, W, A & B 

Y X , B :  :Y 

A v  B: :Y 

X,  A: :Y Z, B: W 

X~ Z, A v B:  Y', W 

ironically allow in a little of the  dilution tha t  would otherwise be required 
to top up the  upper  sequents to the  same X and ]( before applying the  
morc restrictive rules. 

w 6, The Curry paradox in naive set theory 

As noted by NPeyer, igoutley and Dunn  [7], some people had hoped tha t  
a paraconsistent logic might  be found in which naive set theory~ despite 
its inconsistency, would not  collapse onto the  whole language. As they  
show, the  relevance logic R cannot serve this pttrpose, because using R 
one can derive arbitrary sentences as theorems of naive set theory by 
choosing suitable subst i tut ion instances, due to Curry, of the  naive 
comprehension axiom scheme. In  this section I show tha t  the  same is 
t rue of the  logical system of this paper. 

I~emembering tha t  we do not  have = primitive, let y be the  set abstract  
{x[ -- (x s x & -- q)}. Let  p be the  sentence y e y. The naive comprehension 
schems~ has the  instance 

Vz( z  s =_ - ( z  s z - q ) )  

which in (--,  &) l anguage  is 

Taking ~ for z we obtMn by universM elimination the  instance 

--(p a - - - - (p  a --~)) a - - ( - - ( p  & - - q ) &  --~) 
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The following Proof z shows that  this entails p:  

p & --q: p & --q 

P: P P & --q, - - (p  & --q): 

p & - - q :  p P & - - q :  - - - - (p  & - - q )  
p & - q :  p & - - ( p & - - q )  

p & - q ,  - ( p  & - - ( p  & -q)):  P : P  
- ( p  & - - ( p  a -q)): - ( ~  �9 -q )  :p, - p  
- ( p  & - - ( p  & -q)): - ( p  & - q )  & - p ,  p 

- ( p  & - - ( p  & -q)), - ( - ( p  & -q)  & -p ) :  p 

- ( P  & - - - ( P  & -q ) t  & - ( ' ( P  & --q) & - P ) ,  - - ( - ( P  & --q) & --P):P 
- ( p  & - - ( ~  & -q))  & - ( - ( p  & -q )  a - ~ ) :  

Abbreviate the final sequent to r: p. We c~m then continue the Proof 
to one of A: q as follows: 

z~ q: q 

r: p : q, - q  

r: p & - - q ,  q 

r, --(p & - q ) :  q 

r: p r: - - - (19 & - q ) ,  q 

r: p & - - - - (p  & - q ) ,  q 

r, - ( p  & - - ( p  & -q) ) :  q 
r: q 

A : q  

(The reader might, out of interest, t ry  to perfect this Proof!) 
Thus our Proof system cannot save naive set theory from triviality. 

Nevertheless, this need not count against the possibility of discovering 
distinct inconsistent set theories --perhaps even theories extending Z~. 
The problem with naive set theory is that  it is so thoroughly naive I More 
precisely, the first order logic on which it is based is naive. The first and 
most obvious response to the inconsistency of naive set theory is to adopt 
a free logic, freed of the assumption that  every set abstract denotes. 
Curry's paradox has been shown above to arise within a non-free logic 
from a naive axiom schema. We might, however, prefer to treat  the latter 
inferentially, by incorporating into a "Logic of sets" the two sequent rules 

x :  y, t ~ {zlF} x ,  t ~ {xlr}: 3~ 

Of course we can then no longer prove that  every (classical) proof can 
be converted into a cut-free version, so the new Proof system (in which 
cut is prohibited as before, as well as di lut ion)does not automatically 
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satisfy results (1) --(4) about Proofs above, results tha t  relied on cut- 
elimination in the  underlying proof system. Nevertheless~ the  suggested 
"Logic of sets" is not  without  interest,  being such a simple extension to 
set theory of our earlier proof system. Neither RusselPs paradox nor 
Curry's paradoxical instances appear to admit  of Proof in this system. 
I t  would be most  interest ing to investigate just  how much of naive set 
theory could be thus  Developed. 

w 7. Varia 

Our definition of entMlment  in this paper is reminiscent of Smiley% 
definition ([4], p .240)o f  an entai lment  relation k: 

A l, . . . ,  A n k B if and only if the  implication (A 1 & ... & An) m B 
is a subst i tut ion instance of a tautology (A'~ & ... & A'~) = B', 
such tha t  neither k B' nor k--(A'~ &. . .  &A'~). 

Tony DMe has pointed out  to me tha t  on this definition the  premisses 
(Av B), - - ( Av  B) do .not entail A & B. Now on my account - - (Av  B) 
entails each of --A,  --B, so by applying disjunctive syllogism twice one 
would expect A & B to be entailed by the  given premisses. And indeed 
the  following Proof shows this to be the  case: 

B: B A: A 

A: A B: A v  B A: A v B  B: B 

A v B :  A v B ,  A A v B :  A v B ,  B 

A v  B, - - ( A v B ) :  A A v  B, - - ( A v B ) :  B 

A v B ,  - - ( A v B ) :  A & B  

The perfected version of this Proof is 

B: B E: E 
A: A B: Cv B E: E v  D F: F 

A v  B: Cv B, A E v 2 ' :  .Ev/ ) ,  

A v B ,  - - ( C v B ) :  A E v f f ,  - - ( E v D ) :  .E 

A v B ,  JEv.F, - - (CvB) ,  - - ( E v D ) :  A &/~ 

Note how the re-let tering with C and D brings out  the  different lines of 
a rgument  indicated in the  remarks above. Note also how by liberMizing 
to sets of premisses on the  left of a colon, ra ther  than  conjoining them to 
form the  antecedent  oi an implication, we achieve an impor tant  degree 
of freedom in seeing how one argument  (i.e. a sequent) can be a~ substitu- 
t ion instance of another.  Substi tut ion can impor tant ly  "merge" previously 
distinct formulae, as has happened in our example, in which the  distinct 
formulae - - (Cv B), - - ( A v  D) merge, upon subst i tut ion of A for C and B 
for D, into the  single formula - - ( A v  B). 
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The relation of entMlment  in propositional logic is decidable on finite 
X and Y, because there are only finitely many  suprasequents (up to 
isomorphism vim re-lettering) to check  for perfect  validity. 

EntMlment for first order logic is compact  and undeeidable because 
ordinary logicM consequence is. 

I conjecture tha t  the mutuM entMlment of two sentences is a sufficient 
condition for their interreplaceability sagva veritate in all s ta tements  
of entai lment.  

Finally, it  is worth noting an agreeable philosophical stability in our 
choice of a Logic. If all the background theory of sets etc. tha t  has been 
used in om ~ metMogicM t rea tment  is consistent, then  by Corollary 3 above 
we have secured all our meta-results about  our Logic using the  same as 
our metaLogic! 
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