Nem - Perfect Validity, Entailment
TENNANT - and Paraconsistency

Abstract. This paper treats entailment as a subrelation of classical consequence
and deducibility. Working with a Gentzen set-sequent system, we define an entailment
as a substitution instance of a valid sequent all of whose premisses and conclusions
are necessary for its classical validity. We also define a sequent Proof as one in which
there are no applications 6f cut or dilution. The main result is that the entailments are
exactly the Provable sequents. There are several important corollaries. Every unsatis-
fiable set is Provably inconsistent. Every logical consequence of a satisfiable set is
Provable therefrom. Thus our system is adequate for ordinary mathematical practice.
Moreover, transitivity of Proof fails upon aceumulation of Proofs only when the newly
combined premisses are inconsistent anyway, or the conclusion is a logical truth. In
either case Proofs that show this can be effectively determined from the Proofs given.
Thus transitivity fails where it least matters — arguably, where it ought to fail! We
show also that entailments hold by virtue of logical form insufficient either to render
the premisses inconsistent or to render the conclusion logically true. The Lewis para-
doxes are not Provable. Our system is distinet from Anderson and Belnap’s system
of first degree entailments, and Johansson’s minimal logic. Although the Curry seb
paradox is still Provable within naive get theory, our system offers the prospect of
a more sensitive paraconsistent reconstruction of mathematics. It may also find ap-
plications within the logic of knowledge and belief.

§ 0. Iniroduction

My purpose in this paper is to create a new and systematic theory of
entailment satisfying certain explicit conditions of adequacy; and to
indicate its applications in the paraconsistent reconstruction of mathema-
tics. The system is provably distinet from any known to me. It is based
on an extremely natural and simple semantical relation of entailment,
which is captured by an equally natural and simple Gentzen sequent
system.

In my paper [1] I defined a Proof in a system of natural deduction as
an ordinary proof in normal form with no applications of the absurdity
rule (“ex falso quodlibet”). Main results were

(1) The Lewis paradoxes
A, —A: B
4: B,—B
are not Provable.
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(2) Every unsatistiable set of sentences is Provably inconsistent.

(3) Alllogical consequences of any satisfiable set of sentences are Provable
therefrom. ‘

(4) Tranpsitivity of Proof fails only where the new combined premisses
form an inconsistent set — in which case a Proot of their incon-
sisteney ig effectively determinable from the given Proofs.

These resulis are clearly significant for the paraconsistent reconstruc-
tion of mathematics. Let us define Theories by reference to Deductive
closure, that is, closure with respect to our new class of Proofs. In our
Proof system, contradictions do not Imply arbitrary sentences. There are
distinet inconsistent Theories. This raises the possibility that different
set Theories, for example, if inconsistent, might be so in “different ways”.
Some inconsistencies, as it were, might be less harmful than others.

I do not wish at this stage to raise unduly the hopes of naive set theo-
rists. For I shall also show below that Curry’s instance of naive abstraction
enables us to Prove arbifrary sentences of the language of set theory.
I have discussed elsewhere ([2], [3]) how & proper response to the early set
theoretical paradoxes is to adopt a free logic of sets. The Curry paradox
is Provable simply because the first order Proof system is still based on
the misguided assumption that every term of the language denotes. Thus
the possibility I would still hold out for those interested in paraconsistent
mathematics is that, in a free Logic of sets there might be interestingly
distinet inconsistent Theories, Different large cardinal assumptions in ZF,
for example, might be inconsistent in different sorts of ways.

Results (2) and (3) above show that our Proof system is adequate to all
the demands of our mathematical practice. What are these demands? We
are deprived of finitary consistency proofs for interesting theories like
arithmetic and set theory. Pending proofs of confradictions from our
axioms (such as Peano’s postulates, or the Zermelo-Fraenkel axioms)
we carry on proving theorems from these axioms. Whenever we do disco-
ver inconsistencies in our axioms we do not rejoice in the deluge of easy
consequences licensed by the first Lewis paradox, or absurdity rule. Instead
we turn our attention back to our starting points, to seek the source of the
contradietion. Thus it appears that the demands we make of our logic are
two-fold.

(i)  The logic should deliver all contradictions, wherever they may be

(i) The logic should deliver all consequences of our mathematical
axioms, should these be collectively consistent.

In our Proof system, as resulbs (2) and (3) above show, these demands
can be meé. In a nutshell, if ZF is inconsistent, then it is Provably so;
if it is consistent, then all its theorems are Theorems — that is, they are
Deducible from the axioms.
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Finally, result (4) shows that Deductive progress is cumulative in the
usual way. So by (1) we have excised the Lewis Paradoxes. By (2), (3)
and (4) we have done so with minimum mautilation to the deductive fabric
of mathematies — indeed, arguably disturbing no part of mathematics
as actually practised.

T ended [1] by suggesting that a slightly stronger notion of Proof
would preserve results (1) — (4), and also yield

{8) Any Proof of a conclusion other than absurdity from a non-empty
set of premisses is a substitution instance of a Proof the premisses
of which form & consistent set; and any Proof of & logieal truth from
a non-empty set of premisses is a substitution ingtance of a Proof of
2 eontingent conclusion

The gist of (5) is that Proofs contain no Lewis-like features. In a Proof
one does not trade illicitly on the inconsisteney of the premisses in order
to obtain a potentially irrelevant conclusion. Nor does one trade on the
logical truth of the eonclusion in order to obtain it “from” any premisses.
Rather, Proois establish conclusions from premisses by means only of so
much logical detail as is insufficient to reveal either the inconsistency
of the premisses or the logical truth of the conclusion (hence the talk about
substitution instances in (5)). For example, the Proof

4 & -4
A

is a substitution instance of the Proof

A&B
A

the premiss “set” of which is consistent; and the Proof
4
Av —4

is a substitution instance of the Proof

A
Av B

the conclusion of which is contingent. (These are of course trivial examples-
The general conjecture (5), however, is not trivial.)

My purpose in this paper, already briefly stated at the beginning, is
to re-work all these ideas and results in a Genftzen sequent setting. Proofs
of results are thereby simplified, and also slightly improved by symmetric
treatment of premiss sets and conclusion sets of sequents. Moreover I am
able also to prove conjecture (5) in a suitably Gentzenised form.
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To do this I employ a semantical notion of entailment, or validity of
sequents. In [1] I passed over this in silence, for the reason that I could
not say anything about it. Indeed, I even maintained that one might be
able to do without it. In this paper I am happy to address myself to the
semantical problem, even if only to secure (5). It might still turn out that
all the desired results can be obtained proof-theoretically. Whether one
would wish in that case to kiek the ladder away is an issue I shall not
discuss here. -

Once the semantical noticn of entailment has been defined, the pro-
blem of soundness and completeness results arises for our Proof system. It
is interesting that the usual burden of proof is shifted. In this paper it
will be the soundness theorems that call for less trivial proof. This, how-
ever, might have been expected. The usual problem for the entailment
theorist is to show that his Proof system does not let in too much — that it
excludes the Lewis paradoxes and other undesirable results. This problem
becomes that of proving a soundness theorem with respect to the new
gsemantics that has been designed to invalidate these undesirable results.

At this point it is worth mentioning that I regard disjunctive syllogism

AvB, —A: B

as a thoroughly desirable result, in opposition to those in the Anderson-
Belnap tradition. They preserve unrestricted transitivity at all costs.
One of these costs is the rejection of disjunctive syllogism, a mode of
inference indispensable in mathematical reasoning. In contrast, I give
up transitivity in a very controlled way, arguably where it least matters -
arguably, indeed, where it ought to be given up! — and thereby preserve
disjunctive syllogism. I shall say more about this below.

Apart from its promise for paraconsistent mathematics, the Proof
system given below might also be usefully applied in the logiec of know-
ledge and belief. Existing systems treat only of ideal or rational attitudes,
consistent and logically closed. What appears to be needed is a logic al-
lowing sensitive diserimination between different inconsistent belief
sets. This is a topie, however, that I shall not pursue in this paper.

§ 1. Semantics

Let us proceed now to the main semantical idea. I shall generalize the
basic idea behind a definition given by Smiley in [4] in eonnection with
entailment, a definition that he gave for a single conclusion system. This
generalization requires our being able to speak not just of premisses 4,,
..., A, entailing a (single) conclusion B, but of their entailing in general
a. set of conclusions By, ..., B,,. Thus we wish to speak of a sequent of the
form

A4,,...,4,: B,,...,B

m
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being valid, being perfectly valid or being an entailment (to mention
the three main notions to be defined in due course). Note that it is sefs
that stand on each side of the colon in a sequent. Order and repetition
of premisses on the left, or of conclusions on the right, are irrelevant.
Thus also when we come to the Gentzen systems of proof and Proof,
it will be set sequents with which we shall be dealing, rather than the
sequence sequents of Gentzen himself. So we shall not be needing rules
like Permutation and Contraction in the sequent system — but more of
that helow.

Olassically, a valid sequent X: Y is a sequent that cannot be “parti-
tioned” by any interpretation, or model, of the language. That is, there is
no way of making all of X true and all of Y false. Diagrammatically, an
invalid sequent X : Y is thus one for which there exists a model M resulting
in a partition of the sentences of the language I thus:

True-in-M False-in-M

The model M is a counterexample to the argument

All of X
ergo, At least one of ¥

or, more simply, a model of X: Y. Thus a valid sequent is one that has no
models.

¢ is the empty set. By our definition, X: ¢ is valid just in case X is
not satisfiable, and o: Y is valid just in case Y is not falsifiable. And
precisely for this reason the Lewis paradoxes are valid on the classieal
definition. Neither {4, —A4}:{B} nor {4}:{B, — B} has a model. (Hence-
forth I shall omit set braces wherever possible). This is because neither
of the respective proper subsequents

A, —A:9 o:B, —B

has any models. This motivates the following definition.

A sequent X: Y is perfectly valid iff it is valid and has no valid pro-
per subsequents. The Lewis paradoxes, though valid, are not perfectly
so. Likewise with the sequent A, B: 4. The sequent A & B: 4, however,
is perfectly valid, as is 4 & B: B. The sequent A &—A: B is valid,
but not perfectly so.
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A substitution is & mapping from atoms to formulae. It can be extended
to a mapping from formulae to formulae in the obvious way —

s(A & B) = s{d) &s(B) ete
and to sets of formulae —
$(X) = {s(4)|4 < X}
and thus also to sequents —
s(X: ¥) =s(X): s(Y)
‘We shall represent this diagrammatically as
X: Y
A, ... 4
si
B,...B

n

8(X: Y)

where s replaces each atom A; by the (possibly complex) formula B;.
Whenever

n

X: Y
s
Z: W

we say also that X: Y is a suprasequent of Z: W wia s.

We are now in a position to state our main definition.

A sequent X: Y is an entaitlment iff X: ¥ has a perfectly valid supra-
sequent. :

This definition of entailment deals only with classieal validity and
economy of statement in terms of set-inclusion and substitution. It invol-
ves no unusual or counterintuitive re-interpretation of the senses of logical
operators.

The sequent 4 & — A:4 is an entailment by virtue of the perfectly
valid suprasequent A & B: A. Some perfectly valid sequents have perfectly
valid proper suprasequents, e.g.

B, —B: —(4 &B): —Av(C, Dv—B

\ ¥
——A,v ——A: —(A4 &B): —Av —B

Every perfectly valid sequent is a proper suprasequent of some perfectly
valid sequent, a8 can be seen by simply mapping atoms to their double
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negations. A sequent can be an entailment by virtue of two perfectly
valid suprasequents neither of which is a suprasequent of the other, e.g.

A&C: Av D E &B: FvB
A CD \ / B B I
N YA
A BB A ' 4B A

A &B: AvB

The different suprasequents correspond to distinct “lines of argument”
that serve to establish the entailment — in this case, extracting right
or left conjuncts of the premiss A & B. Of course, much more radiecal
differences ean be expected in more complicated cases.

Our task in the next section will be to define notions of Proof and of
perfect proof in appropriate sequent caleuli and to obtain the adequacy
result.

The Provable sequents are precisely the entailments.

Our Proof theorywill then tell us some important facts about the enta-
ilment relation. The adequacy result is also of course the affirmative
solution of conjecture (5) in a Genfzen setting.

§ 2. Syntax

I shall confine myself throughout the body of this paper to the con-
nectives —, &. All the proof theoretical results hold for —, &, v, 3 and V
primitive. Towards the end of the paper I shall have more to say about
quantification and identity. For the time being, however, the ideas are
best illustrated in the simplest possible system.

In the classical sequent system each logical operator has two rules.
One tells us how to introduce a dominant oceurrence of the operator
in a formula on the left of the colon in a sequent derived by means of that
rule; the other tells how to do so on the right. For our chosen operators
these rules are ’

X, A: Y X: Y, 4
X: Y, —A X, —4: Y
X:Y, A Z:W,B X, A Y X,B:Y

X, %Y, W,A&B X, A&B:Y X,A&B:Y

The displayed formula A in the negation rules is called the component
for its application. Likewise for A, B in the conjunction rules. We have
a notational convention whereby the coroponent is assumed not to be
a member of the set separated off from it by a comma. Thus in the first
negation rule above, we assume 4 ¢ X.
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In addition to these rules for logical operators there are the following-
structural rules. ’

Dilution X: ¥ X: ¥
X: Y, A X, A: Y
Out X:Y, A A Z:W
X, Z: Y, W

Using any. of these rules one builds proofs from initial sequents of the form:
A:A in the usual way. For example

A: A B: B A: A B: B
4, -4 : B, —B AvB: A, B
: 4, —Av—B : B, —Av—B AvB, —A: B

: 4A&B, —Av—B
—(4 &B): —Av —B

These proofs of course also involve rules for disjunction. which are duak
to those we have given for conjunction. For the record, they are

X: Y, A X:Y, B X, A:Y Z, B: W

X: Y, AvB X: Y, AvB X, Z, AvB: Y, W

In neither of our two proofs above is the Cut rule applied. This is no aceident:
As is well known, Gentzen proved the following theorem.

CuT ELIMINATION THEOREM. Any proof of X : ¥ can be converted into
a cut free proof of X:Y.

But even in a cut free proof, dilutions can be a source of irrelevancy.
This can be shown clearly by the following cut free proof of the first Lewis
paradox.

A4: 4
A, —A:
m dilution

Our next theorem tells us what can be done about this. We define
a Proof (with uppercase ‘P’) as a cut free, dilution free proof.

DiLurioN ELIMINATION THEOREM. Any cut free proof of X : ¥ can be
converted imto a Proof of some subsequent of X:Y.

(We shall write % for “m can be converted into the Proof X7.)

Proor. By induction on the length of proof. The basis is obvious,
since A: A is already a Proof. In the inductive step we proceed by cases,
according to the rule last applied. If any Proof given by the inductive
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Thypothesis establishes a final sequent lacking the relevant component on
‘the relevant side, take it as the required Proof; otherwise, apply the rele-
-vant rule to obtain the required Proof. For example, if

BN
X: Y, A Z:W ZesX,WeY)
then
7 2
§’ __’ .YF\Z: W5
but if
w M2
X:Y, A Z:W,A Z<cX,WcY)
then

X:Y, A ~ Z: W, A
X, —-A:Y Z, —A:W

‘Other cases are similar and are left to the reader. Of course, if

7w N X
X:Y Z:wW
then
4 > and 24
X: Y X: Y
— Z: W — Z:
X: Y, A o X, A: Ym w

This completes the proof of the theorem.

The dilution elimination theorem is the sequent version of the extrac-
tion theorem for systems of natural deduction in [1]. Note how in its proof
the inductive step cannot be carried out for . The sequent rules for > are

X, A: Y, B X:Y, A Z,B: W
X:Y, Ao B X, Z, A>oB: Y, W

An example of a proof without cut that cannot be converted into a Proof
of any subsequent of its final sequent is

A: A
A, —A
4, —A: B
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We therefore restrict ourselves to a system with —, & and v as primitive
connectives. We can now obtain as corollaries of the eut - and dilution -
elimination theorems sequent wversions of our results (1) — (4) above.

CorOLLARY 1. The Lewis paradoxves A, —A:B agnd A: B, —B are
not Provable.

"Proor. The only possible forms of cut free proof of thé first paradox
are ' :

A: A A: 4
A: A, B A, —A:
4, —A: B A, —A: B

both of which involve &ilution and are therefore not Proofs. Similarly -
for the second paradox.

COROLLARY 2. If X is not satisfiable then for some subset Z of X there
is @ Proof of Z: @; and if Y is not falsifiable, then for some subset W of ¥
there is a Proof of @: W.

Proor. Suppose X is not satisfiable. By eclassical completeness there
is a proof of X': o for some subset X' of X. By eliminating cuts and then
dilutions we obtain a Proof of Z: @ for some subset Z of X', hence of X,
a8 required. The second half is proved similarly.

COROLLARY 3. If X is satisfiable and logically implies A, then for some
subset Z of X there is a Proof of Z: A.

ProoF. Suppose X is satisfiable and logically implies A. By classical
completeness, cut- and dilution-elimination there is a Proof of Z: g or of
Z: A, for some subset Z of X. By satisfiability of X and classical soundness,
only the latter can be the case.

Corollary 3 has been formulated with an emphasis on single conelusions,
but this is unneecessary. A general and symmetric statement is

If X is satisfiable and Y is falsifiable and X: Y is valid, then for
some non-empty subsets Z, W of X, Y respectively there is a Proof
of Z: W.

Note that a proof (hence algo a Proof) of a subsequent Z: W of X: Y tells
us something stronger than a proof of X: Y itself. It is much harder for
a sequent to be valid (provable), the fewer sentences it has — ‘fewer’ in
the sense of proper inclusion. Hence the subsetting mentioned in Corol-
laries 2 and 3 (and 4 below) does not detract at all from the result — in
fact, it enhances it. If one can ‘winnow down’ a sequent without loss of
validity or of provability, one is improving matters. One might even
come to learn that the premisses were inconsistent or the conclusions not
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falsifiable, or that fewer of the premisses served to ensure that the truth
lay among fewer of the conclusions. This epistemie gain should therefore
be bhorne in mind in assessing the next result.

COROLLARY 4. For 1 <i<n, let m; be a Proof, and let P
X,::YLA,,: Xo,A],...,An:YG

be a Proof. Then there is a Proof = for some subsets X, Y of the respective
XY
unions of the X, and of the Y.
n n
ProOF. By n-fold cut obtain a proof of the sequent | JX;:|JY,.

=0 t=0

By cut- and dilution-elimination turn this into a Proof as required.

Thus if we have Proofs of Axioms: Lemma 1 and of ... and of Axioms:
Lemma n and of Axioms, Lemmata 1 —n: Theorem, then we can deter-
mine from them a Proof either of Axioms: Theorem or of Axioms: g or of g:
Theorem. In the last two cases — where transitivity of Proof “fails” —
we learn either that our axioms are incounsistent (in which case we are
hardly likely to mourn the loss of Theorem) or that Theorem was a logical
truth anyway (in which case we are pleased to have a Proof of it outright).
This is why I insist that transitivity of Proof fails where it least matters —
indeed, where it ought to fail.

Note that every substitution instance of 2 Proof is a Proof.

We now introduce the notion of perfect proof, designed to capture
perfect validity. But note that not all perfect proofs will be Proofs, nor will
all Proofs be perfect proofs, as will become evident in due course. First
we need some notalion and terminclogy.

When X and Y are non-empty sets of formulae, X & Y is the set of
all conjunctions with left conjunets in X and right conjuncts in Y.
When X is a non-empty set of formulae, and 4 is a formula, then X & 4 is
the set {B & A/B e X}. Likewise for 4 & X. ~X iy {~AfAd e X}.

Now perfect proofs are built up from initial sequents A: A (with 4
atomic), without cut or dilution, by means of the following ‘Frobenian’
rules having sets of formulae in general as components:

X: Z, ¥ X, Z: Y
X, —%4: ¥ X: ¥, ~Z

X, Z:Y X:Y, zZ U:V, W
X, Z&A: Y X, U:Y,V,Z&W

X, Z: Y where the upper sequents have
m no atoms in common (i.e. are

vocabulary disjoint)
where 4 is an atom
that does not occur
in the top sequent
(i.e. 4 is a fresh atom)
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PERFECTION THEOREM Any Proof m can be converted info a perfect
XY
proof 2 for some suprasequent Z: W of X: Y.
zw

Proor. We obtain X by working from the top down in n. At &: we
re-label so as to achieve foreignness of atoms, and at : & we re-label go as to
achieve vocabulary disjointness. Via the substitution mapping thus indu-
ced at each stage we keep track of what subsets within the new sequents
thus formed “on the way to” X correspond to the components of each
step in the original Proof =; and as we work down x we mimie its steps in
the new perfect proof X under construction in the appropriately “Frobenian”
fashion.

Exavprrrs. Our Proof above of disjunctive syllogism 4 vB, —4: B
18 already a perfect proof. Our Proof of the de Morgan sequent (4 & B):
:—Av — B,however, is not. Bearing in mind that the rules for v are simply
dual te those for &, so that the same sorts of considerations apply, we
can turn our Proof of the de Morgan sequent into the following perfect
prootf.

A: A B: B

4, —A :B, —B AB ¢ D
:4, —AvC :B, Dv—B s A
:4 &B, —Av (0, Dv —B AB —-B -4

—(A &B): —Av(C, Dv —B

Note how in the third line ¢ and D are foreign atoms for :v, and how
the sequents in the third line are “vocabulary disjoint” for : &. As a final
example, consider the Proof

A: A B: B
4, —A :B, —B
:tA —-Av-B :B, —Av—B
:A & B,—~Av —B
—(—Av —B):4A &B

with the perfected version

A: A B: B
A, —4 :B, —B AB ¢ D
:4, —Av(C :B, Dv—B sy 3 4 i
AB —B —A4

:A &B, {—Av (0, Dv —B}
—~(—4v0), —(Dv—B):A &B
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The final step here is an application of the “Frobenian” rule —: of perfect
proof. The set braces are ingserted to make clear what the component is
for the application of the rule. Note how under the substitution s this set
component “collapses” to the single formula —Av —B which, in fhe
original Proof, was the component for the application of the negation rule
in question.

§ 3. Soundness and Completeness Results

CoMPLETENESS THEOREM. Hwvery enfailment is Provable.

ProoF. Suppose X : Y is an entailment. Let Z : W be a perfectly valid
suprasequent of X: Y via s, as required by the definition of entailment.

By Corollaries 2 and 8 above there is a Proof « for some subsets Z’', W’ of Z,
zw

W respectively. By soundness of proof, hence of Proof, Z': W' is valid.

By perfect validity of Z: W, Z = Z’ and W = W’'. Substituting via s in =

we obtain a Proof of X: Y.

PERFECT COMPLETENESS THEOREM. Every perfectly valid sequent has
a perfectly provable suprasequent.

Proor. Let X : ¥ be perfectly valid. By classical completeness there
is a proof of X: ¥, which by eut- and dilution-elimination, and then perfec-
fmon, can be turned into a perfect proof = for some Z: W such that

zw
Z: W
§ v
X:¥YcX: Y

Since X: Y is perfectly valid, X = X’ and ¥ = ¥’. Hence the result.

COROLLARY. Huvery entailment has a perfectly provable suprasequent.

Thus we can generate the entailments not only by Proof, but also by
perfect proof and substitution.

PERFECT SOUNDNESS THEOREM. Every perfectly provable sequent is
perfectly valid.

Proor. Initial sequents are perfectly valid. It is clear that the rules
of perfect proof preserve ordinary validity. Thus it remains to show that,
if their upper sequents are perfectly valid, then so are their lower sequents.
To do this we assume the perfeet validity of the upper sequents, and show

that any proper subsequent of a lower sequent has a model (i.e. is invalid).
We proceed by cases, according to the rule m questmn

13 — Studia Logica XLIII/1-2
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The rule : —

Congider X, Z: Y

X: Y, —Z
Suppose the upper sequent X, Z: Y is perfectly valid (i.e any proper
subsequent of X, Z: Y has a model). Consider any proper subsequent

TI: U of the lower sequent X: ¥, —Z. So T': U is the result of dropping
at least one formula 4 say in X: ¥, —Z.

(i) Suppose A is dropped from X. Let the result be X’'. Then
X', Z: Y is a proper subsequent of X, Z: ¥ and thus has a model
M say. M is a model of X': ¥, —Z, hence also of T: U.

(ii) Suppose 4 is dropped from Y. Let the result be ¥'. Then X, Z: ¥’
is a proper subsequent of X, Z: ¥ and thus has a model M say.
M is a model of X: ¥', —Z, hence also of T: U.

(iii) Suppose 4 is dropped from —Z. Then the result is of the form —Z’
for some proper subset Z' of Z. X, Z': Y is a proper subsequent
of X, Z: Yjand thus has a model M say. M is a model of X: Y, —Z/,
hence also of T': U.

The reasoning for the rule —: is similar,
The rule &:

Consider X,Z:Y where B is a foreign atom. (The reasoning for
X, Z&B: XY

B & Z is similar.) Suppose the upper sequent X, Z: Y is perfectly valid.

Consider any proper subsequent T': U of the lower sequent X, Z & B: Y.

So T': U is the result of dropping at least one formula 4 sayin X,Z & B: Y.

(i) Suppose 4 is dropped from X. Let the result be X', Then X', Z: ¥
is a proper subsequent of X, Z: Y and thus has a model M say.
Since B is foreign, extend M to & model N in which B is true. N
is a model of X', Z & B: Y, hence also of T: U.

(iiy If A is dropped from Y, the reasoning is similar.

(ili) Suppose 4 is dropped from Z & B. Then the result is of the form
7' & B for some proper subset Z' of Z. Now X, Z': ¥ has a model M
say. Extend M to a model N in which B is true. & is a mode! of
X, Z’' & B:Y, hence also of T:U.

The rule : &

Cousider X:Y,Z U:V, W with the upper sequents vocabulary dis-
X, U:Y,V,Z&W
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joint and perfectly valid. Consider any proper subsequent T: R of the
lower sequent, resulting from it by dropping at least one formula A4 say.

(i) Suppose A is dropped from X. Let X’ be the result. X': ¥, Z has
a model M say. By truth table for &, M isamodelof X' : V,Z & W.
U: V has a model N say. By vocabulary disjointness the union
of M and N is a model of X', U: Y, V, Z & W, hence also of T: E.

(i) If 4 is dropped from U, Y or V the reagoning is similar.

(iii)  Suppose 4 i3 dropped from Z & W. Suppose 4 is B & C, where
Bisin Zand Cisin W. X: ¥, Z\{B} has a model M say, and
U:V, W\ {C}has a model N say. By vocabulary disjointness the union
of M and N is a modelof X, U: Y, V, Z & WN\{B & (}, hence of
T: R. This holds no matter how the union model may have to be
extended to deal with atoms involved in B and € that might not be
agsigned values in M and N respectively.

SOUNDNESS THEOREM. Hvery Provable sequent is an entailment.

Proor. Take any Proof m . Then it can be turned into a perfect

Xy
proof 2 of some suprasequent Z: W of X:¥Y. By perfect soundness, Z: W
is perfectly valid. Hence X: Y is an entailment.

In a readily graspable sense explained in the proof of the perfection
theorem, = is a “substitution instance” of X, even though & may not be
perfect. Moreover if X and Y are non-empty, so are Z and W, with Z
satisfiable and W falsifiable (by virtue of perfect validity of Z: W). Hence
conjecture (5) above has been answered affirmatively.

§ 4 Quantifiers and Identity

So far we have been discussing only propositional logic. Now that the
reader is familiar with the main ideas, we can indicate how to extend the
treatment to deal with the guantifiers. For the time being we shall consider
first order logic without identity.

An important point to note is that perfecting Proofs is a process that
produces sefs of sentences in general as components for applications of
rules. Consider now the rule for introducing the existential quantifier on
the left.

X, A2: Y ) ~
ﬁm where a does not occur in the lower sequent.,
A proof = might be perfected as b where the associated

xAZT V18 a7
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substitution mapping is

1x nx .

Z, A% , AP
sl \ / l
X, 4% : Y

Our rules in the propositional case mentioned “foreignness of atoms”
and “vocabulary disjointness”. In the case of first order logic without
identity we now understand this to apply to function and predicate ex-
pressions, but not necessarily to names or parameters. In perfecting
a Proof we can leave the pattern of name- and parameter-occurrences
untouched, save for the proliferation of their occurrences under the set-
creation just mentioned. To apply 3: in the perfect proof X above, we
need the notion of a set conjunction ‘

& (A7, ...y A)
30 that we can form its existential closure
dz & (Af, erey A™)

The set conjunction is a new kind of “sentence” the truth conditions of
which are that every member should be true. Likewise for V we shall
need a mnotion of set disjunction.

Under substitution via s, the existential sentence just given collapses
to 32 & (4), which we simply identify with 34, Equipped with these.
notions, the reader can carry out all the proofs above for first order logic
without identity. Most importantly, the perfect soundness theorem requires
that we be able to form model unions and extensions. By the respective
disjointness and foreignness conditions, this is easy, given that the language
does not contain identity. For, consider what is involved in forming the
union of two models. If they differ in cardinality, add indiscernibles to
the smaller model in order to make the domains have the same cardinality.
Then define a 1-1 onto map between the domains by assigning to named
individuals their namesakes in the other model, and extending the map
arbitrarily on nameless individuals. Vocabulary disjointness then ensures
the consistency of the model formed by the union of the relational strue-
tures via the 1-1 map just constructed, in the obvious way. In this union,
an individual has all the relational properties that it (via the map) has in
either of the two models forming the union.

In the language of the first order logic with identity the identity predi-
cate itself will not be distinguished. Identity will be treated axiomatically.
Logical truths of the first order logic of identity will be just those sentences
that follow from the axioms of identity, namely all instances of reflexivity
and substitutivity.
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§ 5. Comparison with other systems

The system of entailment and Proof set out above is distinet from the
Anderson-Belnap system of first degree entailment. For disjunctive
syllogism is Provable, but is not a first degree entailment.

Nor will the restrietion of ¥ to singletons make our system of Provable
sequents X: ¥ coextensive with minimal logie. For disjunctive syllogism
is not provable in minimal logic either. Moreover, the sequent 4, —A4:
: — B 4s provable in minimal logic, but is not Provable.

Note that Johansson obtained minimal logic from Gentzen’s sequent
system for intuitionistic logic simply by dropping dilution. But the rules: &
and :v had the more restrictive form

X:Y, 4 X: Y, B X, 4:Y X, B: Y

X: Y, A&B X, AvB: Y
In our Proof system, the rules
X: Y, A Z:W,B "X,A:Y Z,B: W
X, Z:Y,W,A&B X, Z,AvB: Y, W

ironically allow in a little of the dilution that would otherwise be required
to top up the upper sequents to the same X and Y before applying the
more restrietive rules.

§ 6. The Curry paradox in naive set theory

As noted by Meyer, Routley and Dunn [7], some people had hoped that
a paraconsistent logic might be found in which naive set theory, despite
its inconsistency, would not collapse onto the whole language. As they
show, the relevance logic R cannot serve this purpose, because using R
one can derive arbitrary sentences as theorems of naive set theory by
choosing suitable substitution instances, due to Curry, of the naive
comprehension axiom scheme. In this section I show that the same is
true of the logical system of this paper.

Remembering that we do not have o primitive, let y be the set abstract
{w]—(wex & —q)}. Let p be the sentence y € y. The naive comprehension
schema has the instance

Vifgey = —(2e2 & —q))
which in (-, &) language is
(4) Vz(—(z ey & ——(2e2& —¢)) & —(—(262& —q) & —2 ey)).
Taking ¢ for # we obtain by universal elimination the instance

P& —~—(p & =) & ~(—-(p & —9) & —p)
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The following Proof = shows that this entails p:

P& —~q:p & —q

_ prp P& —¢ —(p & —g):
& —q: p P& —q¢: ——(p & —q)
P& —q p& ——(p & —9q)
P& —q —(p& ——(p & —q)): p:p
—(p& ——(p & —q): —(p& —q) Dy —P
—p&——p& —q): —(P& —9) & —p, P
—p& ——(p & —9), —(—(p& —q) & —p): p

—~p&——(p&—q) & —(—=(p&—q) & —p), —(—(p & —¢q) & —p):p
—P&~——P&—-0) & —(—(p & —9) & —p): D

Abbreviate the final sequent to r: p. We can then continue the Proof
to one of 4: g as follows:

g q: q

r:p 1, —q
r:p & —q, g

xz Hh—p&—q:q

rip rr——(p & —9q), ¢

r:p & —-—(p & —4q), q
rH —(p& ——(p & —4q): ¢
r:iq
A:q

(The reader might, out of interest, try to perfect this Proof!)

Thus our Proof systemn cannot save naive seb theory from triviality.
Nevertheless, this need not count against the possibility of discovering
distinet inconsistent set theories — perhaps even theories extending ZF.
The problem with naive set theory is that it is so thoroughly naive! More
precisely, the first order logic on which it is based is naive. The first and
most obvious response to the inconsisteney of naive set theory is to adopt
a free logic, freed of the assumption that every set abstract denotes.
Curry’s paradox has been shown above to arise within a non-free logic
from a naive axiom schema. We might, however, prefer to treat the latter
inferentially, by incorporating into a “Logic of sets” the two sequent rules

X: ¥, Ff X, Fy: ¥
X: ¥, te{x|F} X, te{z|F}: Y,
Of course we can then no longer prove that every (classical) proof can

be converted into a cut-free version, so the new Proof system (in which
cut is prohibited as before, as well as dilution) does not automatically
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satisfy results (1) — (4) about Proofs above, results that relied on cut-
elimination in the underlying proof system. Nevertheless, the suggested
“Logic of sets” is not without interest, being such a simple extension to
set theory of our earlier proof system. Neither Russell’s paradox nor
Curry’s paradoxical instances appear to admit of Proof in this system.
It would be most interesting to investigate just how much of naive set
theory could be thus Developed.

§ 7. Varia

Our definition of entailment in this paper is reminiscent of Smiley’s
definition ([4], p.240) of an entailment relation F:

A4, ..., 4, F Bif and only if the implication (4, & ... & 4,) > B
is a substitution instance of a tautology (A; & ... & 4,)> B,
such that neither F B nor F —(4; & ... & 4,).

Tony Dale has pointed out to me that on this definition the premisses
(Av B), —(Av B) do not entail A & B. Now on my account —(Av B)
entails each of — A4, — B, so by applying disjunctive syllogism twice one
would expect 4 & B to be entailed by the given premisses. And indeed
the following Proof shows this to be the case:

B: B 4: 4
A: A B: Av B A: AvB B: B
AvB: AvB, A Av B: Av B, B

Av B, —(Av B): A AvB, —(AvB): B
AvB, —(AvB): A&B

The perfected version of this Proof is

B: B E: B
A: A B: OvB E:OvD F: F
AvB: CvB, A vi: EvD, F

AvB, —(CvB): A EvF, —(EvD): F
AvB, EvF, —(CvB), —(EvD): A&F

Note how the re-lettering with ¢ and .D brings out the different lines of
argument indicated in the remarks above. Note also how by liberalizing
to sets of premisses on the left of a colon, rather than conjoining them to
form the antecedent of an implication, we achieve an important degree
of freedom in seeing how one argument (i.e. a sequent) can be a substitu-
tion instance of another. Substitution can importantly “merge” previously
distinet formulae, as has happened in our example, in which the distinet
formulae —(Cv B), —(4v D) merge, upon substitution of 4 for ¢ and B
for D, into the single formula —(Av B).
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The relation of entailment in propositional logic is decidable on finite
X and Y, because there are only finitely many suprasequents (up to
isomorphism via re-lettering) to check for perfeet validity.

Entailment for first order logic is compaect and undecidable because
ordinary logical consequence is.

I conjecture that the mutual entailment of two sentences is a sufficient
condition for their interreplaceability salva veritate in all statements
of entailment.

Finally, it is worth noting an agreeable philosophical stability in our
choice of a Logic. If all the background theory of sets efe. that has been
used in our metalogical treatment is consistent, then by Corollary 3 above
we have secured all our meta-results about our Logic using the same as
our metaLogic!
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