R. E. Jenxnines  The Preservation
P. X. SCHOTCH Of Coherence

Absiract. It is argued that the preservation of truth by an inference relatiom
is of little interest when premiss sets are contradictory. The notion of a level of cohe-
rence is introduced and the utility of modal logics in the semantic representation of
sets of higher coherence levels is noted. It is shown that this representative role cannot
be transferred to first order logic via frame theory since the modal formulae expressing
coherence level restrictions are not first order definable. Finally, an inference relation,
called yielding, is introduced which is intermediate between the coherence preserving
forcing relation introduced elsewhere by the authors and the coherence destroying
mference relation of classical logie.

The study of inference has suffered too long from the complacent:
recitation of a mischievous dogma. It is contained in the dictum to the:
effect that to say a sentence o follows from a set 2 of sentences is pre-
cisely to say that if every sentence in 2’ is true, then o must be true as.
well. Half of this dictum is at best half true; the other half is at best quite
false and at worst a nuisance. The less objectionable half of the dictum.
says only that inferability preserves truth. With this sentiment we must
not quarrel overmuch, but offer only this comment: The intellectual
enterprise is still offen given as the search for truth. This sounds good
and with a catch in the voice sounds even better. But much of the energy
of the physical sciences is spent warding off contradiction and looking
for a suitable language. In such circumstances truth is at best a remote
concern, while inference is nevertheless a fact of working life. Inferability
also preserves well-confirmedness and also tentatively —suggestedness.
There is a deeper mischief worked here. If we had a coherent vehicle com-
patible with every possible experience and enabling us to say everything
that we wanted to say about these experiences, would we care whether
the account that we gave in that language were, in addition, true? If we
had an unfungible bost of such vehicles and such accounts, would we
insist that somehow either one of them was true or the truth was yet to be
discovered ? It seems rather that the notion of truth as a unique commodity
is a kind of theological conception to be outgrown. Whatever character
the charm of such an account would confer upon its constitutive sentences,
we want inferabilily to preserve.

The other half of this doctrine, that teaches that a is inferable from
X if the truth of all the sentences of X implies the truth of @ has run a
deeper and, we feel, more malignant course through much recent writing on
the theory of inference. It has confounded the theory of inference with



90 B. E. Jennings, P. K. Scholch

the theory of implication, seeming to infect the former with conundra
Pbelonging more properly to the realm of the latter. Nowhere more clearly
is this to be seen than in the case where X' is contradictory. On the doetrine,
since the supposition that all the sentences of X are true is contradictory,
therefore anything is inferable from X even though X contains no single
contradictory sentence. The distinetion between a set which includes
{¢, Tlo} and one which includes {aA TJa} is one which the doctrine tends
to obliterate.

Not everyone has been content to live with the absurd myth of infer-
entially fulminant sets. But even the brave pioneers who have sought to
teach us to pass among these sets with a song in our hearts have worked
their reforms in the shadow of the doctrine. Most have wanted to reform
our theory of implication so that not even contradietory formulae explode
or to alter the notion of truth so as to make contradictory sets satisfiable.t
Our course has been to recuse the doctrine, to accept contradictory premise
sets as an unpleasant fact of inferential life and to ask what is to be done
with them. To the researcher, forced to work with eontradictory data,
it is unlikely to be of interest to be told only what would be the case if
all of the data were correct, if the researcher is ultimately after a theory
in which that case cannot arise. It is likely to seem to her mere philosophi-
cal badinage at a moment when she wants advice.

The constraint that our general approach sets upon inference is that,
in point of eoherence, inferential closure of a premise set should not make
matters worse than they are. This we take to be the chief failure of classical
inference since it permits the inference of aA ~ja from the set {a, ~la}.
To make precise what was to be avoided, we introdueced in [6] a notion of
a coherence function which assigns a level of coherence to a set of sentences.
In that preliminary and highly specific study, we exploited this notion
as & means of relating contradiction-tolerating inference relations, weak
modal logics and generalized modal frame theory. In [7], a substantially
imore general account of level theory makes possible a Gentzen-style presen-
tation of such an inference relation, a presentation of greater concision
and elegance than that of [6]. Here we explore more fully the modal and
frame theoretic connexions, testing in particular the capaecity of modal
logic and generalised first order relational frame theory for expressing
the central conceptions of level theory.

As in [6] we mold the desired inference relation in the comiortable
matrix of modal logic. ‘

Level theory

The central idea of level theory is that of a eoherence function from
the set 21 of subsets of a language F of propositional logie to the

IFor a partial list of these approaches see D. Lewis [5].
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set of ordinals up to w, and satisfying:

Va, l{a)< ©

(@) =0

Vae24 l(a) =1

Vac {alFa}, I(a)=0

If acd then I{a)<<I(d)

If l{a) = n and I(b) = m then I(aud) < (n+m)

One such funection assigns 0 to sets containing only tautologies, 1 fo
all other classically consistent setis and n to sets partitionable into » but
no fewer than n sets of level 1. This is by no means the only funection
satisfying 0-5. Other examples are discussed in [1]. This function will

assign 1 to {p}, 2 to {p, TIp}, 3 to {PA g, TIpA ¢ pA Tig} ete. It will agsign
o to the set {0}, Where for each k, oy = A(TIpj)Ap, 0<ji<k—1.

SUls Lo o

Level preserving and level reducing operations

Certain logical operations have the property that level is preserved
through the closure under that operation. Thus, for example C, (X) is the
closure of X under the operation of taking finite disjunctions of elements
of X, Z(CV(Z)) = [(X). Other logical operations preserve particular levels
but not others. For example, C, (X) (taking finite conjunctions) has level
1(0) if 71(X) = 1(0) But Z(CA(Z.')) is undefined if I(X) > 2. On the other
hand, the operation XX; of taking disjunctions of pairwise conjunctions
of elements of triple subsets of X' (i.e., (a;A ay)Vv (e A @)V (asA a;) for
{ay, ay a;} < X) preserves any level <2, but Z(Cxxz(z’)) is undefined if

3

1(Z) > 3. In general, the operation XX}, , preserves any level < n. Of
particular interest is that level is preserved by closure under eclassical
consequences of unit subsets and the empty subset. Thus closnre under
logical implications preserves leve! as does augmentation by tautologies.

The connexion with modal logic arises from the eminently exploitable
fact that modalizing, even under a recognizably strong necessity operator,
has the effect of produeing a set of level 1 irrespective of the level of the
original set. That is I(C4 (X)) =1 even for a [-operator satisfying [RN]
[RR] and [K], whatever I(X), indeed even if I(Z) ‘s undefined. Only in
the presence of [D](Fp—"1071p) is I({Op, O 1p}) = 2. Only in the
presence of [Con] (F 710 L) is the level of { 0 |} undefined. Th's feature
of the ‘]’ operation makes it possible to study sets of level greater than
1 within the framework of classical semantics. While a set I" may perhaps
have level 1, the set {«| Ja € I'} can have whatever level we please or no
level at all.

The derivation of modal semantics

Samvatically, 2 senbence is represented as a set, and 2 set of sentences
ag an inbtersection. A set of senbences having level 0 is represented by the
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universal set, a set X of sentences such that 1(2) = 2 by @. A set of sentences.
having level 1 can be represented as a non-empty intersection. Thus if
0(Z) = {a| Oa € 2} has level <1, it too ean be represented as a non-
empty intersection. In particular if ||a|] is the set representing e, then
O = N{llall | O e Z}.

Define H(X) = {{m} el (X )H}, let the sets representing sentences:
a be sets of maximally consistent sets such that o € I', and we have the
makings of a notion of model structure. Now H(X) = {{4}| 0(2) A}..
Each 4 such that {4} € H(X), is a realization of [1(X)and bears an obvious
kinship to the frame theoretic notion of an alternative, or an accessible.

So much for the case in which [1(Z) has level 1, If I{ (X)) = 2, then
clearly [(Z) is not realizable in a single maximally consistent set. But,
by the choice of I and Lindenbaum’s lemma, [1(X) is realizable in a pair
of maximally consistent sets in the sense that there is a function »: X —2
such that both #~'[0] and = '[1] are consistent. We simply redefine
H(Z) as {{dy, 4A}}13f: 22 &f'[i] < 4,(0<i<1). When 0O(Z) has
level 2, the natural semantic representation seems to be one in which the
accessibilia are pairs. In the general case, where Z( D(Z)) < n, we must
use the definition

H(Z) = {{doy ovvy dui}|3f: Z>n ST € 4,00 < i< n)}

a definition whose frame theoretic counterpart seems to be a notion of
n+-1-ary alternativeness.

The connexion can be made precise. A modal logic which admits sets
of modalized sentences with level n bears the same relationship to (n -+ 1)-
ary frames that the standard modal logics tolerating sets of modalized
sentences of level < 1 bear to binary frames. We summarize the fundamen-
tal results in what follows:

The usual notion of a frame ig a notion of a binary frame defined by:

F = (U, R) is a (binary frame) iff
U is a non-empty set and B < U?is a binary relation

A model # on £ is a pair (¥, V) where V:At->2V is a valuation.
The truth condition for modal formulae is given by:

k¥ Da <> Vo, uRe = £¥a

The modal logic determined by the universal elass féz of binary relational
frames is the logic K axiomatised by:

[P] Fpce= Fga

[MP] tga—>f &tga=Ftgf
[K] FrOpA Og— O(pAg)
[RR] Ftga—f=tgOe—>0OF
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[RN] l-K a = I-K Oa
[US]  ‘tga=tgalp/p]

Alternatively K can be axiomatised by adding to an adequate base for PC,
the single rule:

I'ta
[RT] “SIFF Oa (O[I = {Qalael}

the notion of a n-ary frame is obtained by the obvious generalisation of
binary frame.

F =<U, R) is a n-ary frame iff
U is a non-empty set and B < U™ is an n-ary relation

A model # is as before, with the truth condition for e given as:

M M v
by OaeVoy, ..., 2, uBsy, ... 0, , = Ff aor..ork’ a

The logic determined by the class %, ., of (n+1)-ary frames is the logic
K, which is most economically axiomatised by replacing [RT] with therule:
't a

RT - -
(BT, O[]t Oa

Here I'l, abbreviates: Vf: I'—sn, f'[i]F a for some ¢ (0 < i< n~1).
Alternatively, the axiom [K] is replaced by the axiom [K,]

[X,] OpiA oo A QP —0 ((P1’\p2)v V(pn/\pn-i-l))

all 2-member conjunctions from {p, ..., p,.}

Set n = 1 and [RT], is [RT] and [K,] is [K].

Frames and levels

At first blush the relationship between frame arity and level seems
straightforward enough. We can state the most superficial eonnexions
quite simply. Define O(u)* = {a| ¥ O} and O@w)¥ = ﬂ {O(u

Let us say that 1(#) < n<l(0O(u)”) < n wherever (O f) 1s defined.
Then the fundamental relationship is simply that if # € C,,,, then I( £) < n
where it is defined. Our interest in the frame theory-level theory connexion
arises from the fact that the corresponding biconditional does not hold.
Although the (n-1)-arity of the frame relation is sufficient to impose
a maximum level it is not necessary. Again, some of the other frame the-
oretic ways of imposing I(#) < n are less interesting than others. First,



94 RB. B. Jennings, P. K. Schotch

binarity imposes I(,#) < » for any » > 1 since it imposes the stronger re-
striction 1(#) < 1. Secondly, any frame restriction sufficient to validate

[T] Op-p

will impose the condition that I(#) < 1, since a consequence of this prin-
ciple is that w e || O(w)?|*.

In imposing level restrictions two paths seem to be open to us. One is to
mess with the frame. The other is to mess with the modal logic. The two
are not in general equivalent. Consider the second way first. If our logic
has the principle [Con], ~] 0 |, the class of frames for the logic (the class
of frames with respeet to which the logic is sound) will have the property
that I( O(w)”*) is defined for every « € U. In fact for every model ({0 (x)*)
will be defined for every # € U. If our logic has the principle [D], Dp
—T] 07 Tp then the class of frames for the logic will have the property
that I( O(u)”) < 1. If the logic has [K] the class of frames for the logie
will have the property that I{ O(#)”) <1 where it exists. We can see
that in the presence of [K], the level theoretic effect of [D] is identical
to that of [Con]. This is not surprising since in the presence of [K], [Con] -
and [D] are deductively equivalent. Finally, if the logic has [K,] [Op
A DqADr»[:’l((p‘/j\ v (pAar)v(ga ?)}, and # is in the class of frames
for the logic, then I(#) < 2 and in general, if # is a frame for a logic having
as a theorem [K,]OpiA ... AOp,n—~>0(v(@ve) 1<]j #i<n+1)
then () << n. These examples illustrate the way in which by defining
a class of frames a modal formula may be seen to impose a level restriction
on a frame #, by imposing a level restriction on [I(#)# for each % € U and
each model ./ on #. How could these levels otherwise be imposed?

One might hope that modal correspondence theory would offer some
guidance here. That hope would, however be brief and forlorn. Modal
correspondence theory has as one of its central notions, the notion of
a modal class. This in its simplest version is the notion of a class ¢ of
frames such that for some modal formula a, € k o and for any frame
F €%, #nonka; a modal class is a class of frames which is exactly the class
of frames for the formula a. Correspondence theory is concerned in part
with the question as to which modal classes are also elementary classes
and which elementary classes are meodal classes. We might ask similar
questions concerning levels. Let €, be the class of frames # such that
1(7) < n; call such a class a coherence class. Is that class a modal class?
We can sée immediately that such questions have a significance in the
context of level theory different from their correspondence theoretic mea-
ning. What is meant in definability theory as it is usually studied, by the
question, “Is the class of frames for a¢ an elementary class?” Is this:
“Is there some sentence o’ in the first order theory of a single binary rela-
tion, such that the class of frames for a is the class of models (in the first
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order sense) for «’'?” We might generalise such a question to the n-ary
case; the generalisation is non-trivial since a modal sentence corresponding
to a first order theory of a binary relation may correspond to no formula
in the first order theory of an n-ary relation for n > 2. See [3] and [4].
But such questions of correspondence arise only against an assumption
of arity. What defines a modal formula in the language of binary relations
may be inexpressible in the language of ternary relations. So if we libera-
lise the notion of frame, as it seems we ought, to include ternary, quaterna-
ry, and, for each n, n-ary frames, correspondence theory acquires a new
(and one feels compelled to say a less spotty) complexion, but certain of
its questions lose their force. Certainly the clags of frames defined by
a particular arity of the frame relation is not a modal class sinee the logic
which (assuming zn-arity) corresponds to the universal class of n-ary frames
for some n, also corresponds to a proper subclass of the class of all (n +m)-
ary frames, for any m> 1, and is sound with respect to all frames of arity
less than ». Thus, for example, the formula [K] which corresponds to
(¢ = o) in the class of binary frames, corresponds to uRzy={(r = y)
v (uRxx)v (uRyy) in the class of ternary frames. A similar claim can be
made for [K,] and in general for [K,]. In addition each logic K, is sound
with respect to the class of n-ary frames. We will show later than this
is true, perhaps surprisingly, even for K. In the generalisation to n-ary
frames, without an assumption of fixed arity, it is unlikely that any modal
formula defines an elementary class. For similar reasons it is doubtful
whether any coherence class of relational frames is identical to any ele-
mentary class. The question remains whether any coherence class of
frames are modally definable or elementarily definable in the context of
a fixed arity assumption. Let us look at some of the formulae already
mentioned.

As we have noted, the arity of the frame relation imposes a level
restriction; in particular if £ is (n+1)-ary, then I(#) < n. But the fol-
lowing points must be stressed:

(a) the universal class of (n-1)-ary frames is not an elementary class
except trivially within a restriction to the first order theory of a single
(n - 1)-ary relation, in which case it is defined by # = .

. (b) this class is not.a modal class, since the modal logic K, whose class
of (n+1)-ary frames it is, is also sound with respect to a subeclass of the
class of (n + 2)-ary frames, and is sound with respect to the class of n-ary
frames.

(¢) this elass is not a coherence class since the K, (n --2)-ary frames also
have level < n. -

‘These three facts taken together suggest that if a correspondence is to
be found which does not depend upon an assumption of fixed arity, it will
be between modal classes and coherence classes. Let us ask more directly,



96 R. E. Jennings, P. K. Schoich

-does the logic K,, define a coherence class of frames? Consider the simplest
such ease, K. Under the assumption of binarity, K corresponds to the
universal class of binary frames. Under the assumption of ternarity.
K corresponds to the first order formula

[Dii] wuRxy = uRxzv uRyyv o =1y
Under an assumption of quaternity, K corresponds to the first order formula
[Di}] wRzyz = wRexz or wRyyy or wRezz or ¢ =y = 2.

:and so on. For each K frame #, whatever its arity, I(_#) < 1. Thus ¥x < €,
Does the converse hold? Consider the substitution instance

[C] OpAaO7lp—~0OL

of [K]. Sinee [C] is a theorem of K, [C] is valid in every K-frame includ-
ing n-ary frames defined by [Di},]. [C] has the look of a formula which
is explicitly about the level of the set of necessities. It ‘says’ (assuming
[US]) that if the set should contain two formulae which would raise the
level of the set above 1, then the set has no level. That [C]is a deductively
‘weaker formula than [K] is proved by reference to the ternary frame

Fioy = <U, B)

f [cy

3 2

where U = {0, 1, 2, 3} and R = {0, 1,2, <0, 2, 3), <0, 3, 1L>}.
[C] is valid or j[C], but [K] fails at 0if V(p) = {1 3} and V (9) = {2, 3}.
Unfortunately, this does not answer our question as to whether %1, S €y
one way or the other since I( ;) L 1. To see that this is so, cons1der
a modal # on £, in which V(p,) = {1} and V(p,) = {2}. Then k¥ O(p,
VPIA O7IpA O7Ipy but monk O, Bub Up,vps “Ipn ~1p2) = 2.
So by axiom 41{1(0)#) > 2 and by our acecount of frame level, I( Fio) =2
as well,

A proof that even under an assumption of ternarity, [C] is not first
order definable is easily adduced which refers to the compactness of first
order logic and the following sequence of ternary [C] frames:
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While these remarks about [C] do not answer the question whether [K] de-
fines the class ¢, they are a first step toward an answer. Consider the
model 4" on #ig; in which V(p,) = {2, 3} and V(p,) = {1, 3}, then k' Op,
A OpaA O(piA P,) but & 0. That is, the formula

[C3]  OpiA OpeA O HpaAD,) DO L

fails on .
However, consider the frame

Here both [C] (which in anticipation we call [Cl]) and [C;] are valid.
Again, similar remarks can be made about [C;]) and ¢ o First, we can
3

show that [C;] is not triadically first order definable by reference to the
sequence of frames

T - Studia Logica XLITI/1-2
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Secondly, the frame f[ol] has a level greater than 1. Let .#Z be a medel
3
on f[o;] such that V(p,) = {2, 3, 4}, V(p,) = {1, 3, 4} and V(p,) = {1, 2,
4}, Then Ef Op,A OpyA OpsA O(PyA PaAp 3), and non k¥ | . But then
Homy?) =2; (f[cl]) >2; and the formula
3
[Ci1  OpiA Opea OpsA OTHPADAR) >0 L

fails on f[ol]' To validate this formula, we construct
3

4 [o1] validates [C}], [C;] and [C}], does not validate [C;], and is the first
4

member of a sequence of frames by reference to which [C}] may be proved
triadically first order undefinable.

Clearly a general theorem is in the offing. First, we can give the general
form of [CL]:

[071'&] OpiA oo A OPp 1A OTHPLA oo APy)—>0O L

The m th frame fﬁc'}, is the pair (U‘l’:"om, RE”O;]> where UE’:%] ={0,1,...,
kE =mn-+-2m—1}, and Rﬂ[nol]’ treated as a function U—2(U?) is defined as
n.

follows:

R’["al](fi) =0 if 1<i<<k

n

={h, PLSE #j<E&GE) <n}if i =0

Of particular interest to us is the sequence of frames #. ;. The m-th

[
1 0 - 2 1 1
frame, j[C}n of this sequence is the pair <U[O11n 7 R[C,In ]> where
1
Vrer,
Rl
(o]

1 ={0, 1, ...,m+1}, and

regarded as a function U—>2(0U?) is defined:
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RE 1@)‘. i l<ig<m+1
m

= ("F1) it ¢ = 0 (where ("™J')is the set of pairs of distinet
objects drawn from {1,...,m+1}.
Each frame, ¢ l[ojn ] validates [C)]forevery n (2 < n< m). But for each m,
[CL,..] fails on 7] [T Thus ne frame in the sequence has level 1 and no
finite subset of the sequence defines the class €. What of the sequence

as a whole?

More can be said, however. Let C" be the logic generated by replacing
[K] with the sequence {C}|¢ € Nat} in the axiomatization of K. It is easy
to prove the following:

THEOREM. If £ is a frame for C', then 1( #) = 1.
We prove this via two intermediate results.

LeMmMA. Let A be a model on g and n a point in F. Then for every finite
subset A of O(n)?, L4)< 1.

Proor. Let 4 be a finite subset of 0i(n)# such that I(4) = m for m > 1.
Let f be a funetion: 4—-m. Then A4’ = f~[0Juf~'[1] is a finite subset
of O(n)y* and U(A') =

Let @ be a minimal subset of 4’ having level 2. Let ® = {a,, ..., o;}.
Then F a;—>(JagV ... v lag). Therefore (Tla,v ... v Tla) € O(n)7.
Therefore by [Ci.,], L € O(n)?. Then I{O(n)?) is undefined, contrary
to hypothesis.

As a second result, we prove a compactness property for level theory.
FINITENESS THEOREM For LEVEL THEORY. VI e 27, I(I) < » iff for
every finite subset 4 of I, I(4)< n.

PrROOF. = trivial by axiom 4.
<= by induction on 1(I");for I{I") = 0, the proofis trivial and for I(I") = 1, the
result follows from compactuness of . Suppose that the result holds I(I") = n.

Let (1) =n+1 and let f: '>n4-1 be such that Vg, f4 non v L.

Define IL(I") = {f* []:HO\ < n}. Clesrly, Vae(ﬂfn ), W Ua) = n.
For each @, choose @, U a such that @, is finite and 1(O) = n.

For each 6, define fo :0,—>n+1: Vj, 70,01 < f'[j]. Define b

n

= U {fe.[illa e (Of (T ))} Clearly each b 1s finite and of level 1, and (| J
j=0
{b;}) = n+1. Moreover U {b;} = I' and U {b;} is finite.

The desired theorem f@ IOWS nnmedmtely The logic C* imposes a frame
level 1. That is ¥¢1 = ;. We are now in a position to prove that K does

not define €.
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Define a frame £, =<{U, R,> with

U, = {u}uNat

R, (u) = (*) and R,(4) = O for ¢ e Nat

F ., is a frame for C', but #Z, does not validate [K].
Therefore 7, € %;. Therefore ¢, < %g.

We have of course established at the same time that non ke [K]. Thus C*
is a proper sublogic of K and the class of K frames is a proper subelasss
of the class of C' frames.

We can now prove that C* defines the coherence class %, by demonstrating
Lemuma. If U(#) =1 then JZ e¥g.

Proor. Suppose that ¢ ¢ €ci. Then for some model .# on # and some
point u € #, there is some [Cl] such that k¥ [C}]
That is, 3o, ... ¢, EX O(ayv ... Va)A O JagA ... A O o, Snon B0
Then l( D(n)“”) > 2. Therefore 1(¢) = 2 contrary to hypotheses.

Thus we may assert:

THEOREM. €¢1 = €.

The general case

What we have been able to prove about [K] and the class €; of frames
can be proved in general, mutatis mutandis about [K,] and the class €; of
frames. The class €, is defined, not by [K,] but by the infinite sequence
{C}|i > n}. For each n, the first formula in this sequence is:

n
[Chsa] _/_\O{D(Z’o’\ e ATIDEA e AL L

To understand the forms of later formulae in the sequence, we must first
become acquainted with the notion of a trace. The topic of traces is a mathe-
matically rich one, of which we nevertheless give here only a sketch.

A trace over a set A4 is a finite collection of finite subsets of A which
has a rather special property, namely that for every partition 4 up to
a given size, some member of the collection survives the partition intact. If
T is a collection of subsets of A having this property for partitions up to
m-fold partitions, then we say that T is a m-trace over 4. We call the set
ot such traces over 4, 7, (A). More precisely, we may define an m-trace
over A as follows:

DEFINITION. Let T < 24 be finite, and of finite sets. Then 7' e 7, (4)
m—1
ifft VfitAd—-m, Jacd, i:acf'[i]

=0

Now our particular interest is in traces over sets of formulae, and this
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gives rige to the notion of a formulated trace or trace formula. Let A be

k
a set of formulae and let T' = {a, ... a,} be am-trace over A. Then \/ (A (a;))
i=1
is the formulation of 7. The importance of formulated traces lies in the
following:

PROPOSITION. Let 4 = {a, ... a,} and f the formulation of some trace,
T in 7,(4). Then g, Oayh ... AQay,—>0Op.

The proof of this proposition is a non-trivial exercise in propositional
logic. That the formula is valid in (m < 1)-ary frames follows straightfor-
wardly from the definitions of m-trace and trace formulation and the truth
condition for O-formulae on (m - L)-ary frames. With the aid of this notion
we may outline the proof that K, does not define %, . We illustrate the
case for m = 2,

[C3]  O{TIPeA LA D) A TP TIPsA Do) A D (DA Py A TIpg) ol

is universally valid on ternary frames, but also valid in the quaternary
frame

ALz 1

3
in which [K,] fails. The formula
[Ci]  OpoA OpiA OpeA OTH(BeA DIV (PoA PV (1A P2)) >0 L
fails on ¢! , [T Therefore fl 03]
<U10§]’ [ ]>, where Ul[ = {0, 1, 2, 3, 4, 5} and
[CZ](') =@ if 1<i<5

_ ({1’ 5 5}) i 4 =0

The sequence of frames / ! [c2] (and for ¢, Eom] is the quaternary (m--2)-ary
n

) > 2. Both are valid in

[04]

version of the sequence j[ described above.

%l
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Additionally, each formula [C.] ([CI']) can be shown to be quadradically
({(m +2)-adically) first order undefinable by an cbvious generalisation of

the proof outlined above. The frame jEC2 ig this:
3

Unary frames

‘We earlier made the claim that each logic &, was sound with respect
to the universal class of n-ary frames, and that this held even for XK.
We eonclude our modal logical remarks by showing briefly that this is so.
A unary frame is simply a frame whose relation is a set of singletons.
Understood as a function, R assigns to each object of the frame a (pos-
sibly empty) collection c¢f 0-tuples. Thus we may identify the relation
with the set of points to which it assigns & non-zero collection of 0-tuples,
in other words the serial points. At these points the truth-conditions for
modal formulae are unsatisfiable and therefore we have:

{#} e R>Va, ¥ Oa.

At the non-serial points, which in this case are the points whose singletons
are excluded from the relation, the truth-conditions are vacuously satisfied
and therefore we have:

{x} ¢ R=Va, non k¥ Oa.

Clearly, in these frames, the formula [K,] is sound. But the aggregation
prineciple whose class of unary frames is the universal class %, is the cor-
respondingly stronger aggregation principle:

[Ko Op—>DO(pAg)
On these frames, the formula

[Co] Op—0O_L
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is of course also valid. Thus all unary frames are frames of coherence
level 0. Again, [K,] has a class of binary frames, those which are modals for

[DiY] wRz =2 .

The inferential connexion

In numerous other places, we have argued against the logic K that
the strong aggregative principle [K] makes the modal operator incapable
of a doxastic or deontic interpretation. This was precisely because the
formulae [C],] are theorems of K, and entail that conflicting beliefs com-
mit us to every belief and conflieting obligations commit us to every ob-
ligation. Put another way, we have argued that neither the set of one’s
beliefs nor the set of one’s obligations is closed under elassical inference.
‘We have put forward, as plausible alternatives, various inference relations
which lack the unrestricted A-introduetion rule:

Zha, X Fp
Zhanp

t might be argued that [ A1]is deontically and doxastically unobjectionable
provided that I({e, §}) = 1, that we have, in effect, thrown away with the
bath water a rather attractive rubber duck. This study of level theory enables
us in some measure to put the matter right.

In [4] we offered a study of the XK, logics and showed that the limit
of this decreasing sequence of modal logics is the logie? 8 axiomatised
with [RN]and [RR] as the only modal principles. Since we now have before
us the logies C™ axiomatised by adding to [RN] and [RR] exactly those
principles to which we object, we have at our disposal a means of saying
more exacbly what it is we do want. What we do not want in each case ig
the set of theorems W, = (C"—8). What we do want in each case is the
set K, = (K,—W,). In the particular case which we consider here, the
logic is the logic K* = (K, —W,). Now this logic is 2 queer one in requiring
axiomatisation without unrestricted uniform substitution; its frame theory,
if it has one, remains a mystery. But the logic is straightforwardly axiomi-
sable by the rule:

[AL]

Z>a
OZ1F o’
Here MO[2] = {alae 2}, and > is an inference relation explained as

follows: We define a singular set as a set which is empty, or a unit set or
a set of level < 1. We call the set of singular subsets of a set X, Sing(2).

[RT]

DEFINITION >*, X>*aedd e Sing(X): 4t a

2The “S” is for ‘Segerberg’. This logic is called ‘N’ in [21.
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DEFINITION (... Os.(Z) = {a|Z>*a}.
DEFINITION X>a (read X derives a) < dn:Cy . (X)>*a.

>* satisfies the most important two struetural requirements for an
inference relation, namely:

[Ref] ael = 2>*q and

[Mon] 2X>*a &2 < A=>4>*a Itfollowsthat > satisfies [Ref]
and [Mon] as well. >* does not, however, satisfy the usual structural requi-
rement.

[Cut] Zu{a}>*B &L >*a=>2 >*f
to which the following is a counterexample:

Let 2 ={pATlg, p—>q} U(Z) =2). Let O = {pArTlg} and 4 = {p—>q}.
Then 10 =1(du{p}) =1 and both Au{p}tgq; Zu{p}>*q and O+ p;
2 >*p. But neither @} ¢ nor 4 F q. Therefore X non>*gq. It is easily
shown, however, that [Cut] holds for >* in the special cases in which
I(2) =1 or is nndefined. Moreover, we may also prove:

THEOREM. [Cut] holds wunresirictedly for >.

Proor. Assume that ZU{e}>f and 2> a. Then Im: CL(X)>*a. Then
a € 02+ (Z). Therefore XU {a} = OZ*1(Z). Therefore CT*'(2)>*p. (Mon)
ie. dn: C’”"*(C’erl ))>=*p But O *((2(X)) =CL*(X) for some I
Therefore I1: O™*(X) ~* f Therefore 2> f. Thus > is a genuine inference
relation, in the techmcal sense of [8]. It is also a natural inference
relation inasmuch as its definition is in accord with the ordinary infere-
ntial procedure of freating consequences of premise sets as newly gained
premises. It preserves the distinetion which we have argued elsewhere
ought to be preserved between premise sets which contain a contradictory
n-tuple of premises and those which contain an explicitly contradictory
sentence. Only in the latter case does inferential detonation occur. In
the former case, we may retain, with certain restrictions, nontrivial
classical procedures. In this respect > is like the forcing relation [F}
of [6]. It differs from foreing chiefly in admitting a relatively strong
version of A-introduction.

Zea, Z>p

[AL] 2=anf

(e, B}) =

as well as the mixed introduction rule:
2>‘ Ogy eeey 2>‘ al(2)+1
(z
2> v(gn ) ({i,j} e ( )+1))

[XXL,. ]
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The other operator rule requiring mention is the rule

Zra, XFa—f

[—>T] SFp

There is no such rule for forcing which survives coherence levels greater
than 1. In the case of >, the rule survives in a restricted form even when
I(Z)>1:

Z>a, X>a->f B
g (e ) =)

The rule may actually survive in the unrestricted form, depending upon the
character of the language in which inferences are drawn. In a language in
which, if F a—"g but non + T)f-+aq, there is an o’ such that F a = o'A 75,
the classical form of the rule is preserved intact.

Forcing, in our sense, is well-named. Certainly if we at once abandon
the distinction between incoherent premise sets and premise sets containing
contradictions, we reasonably regard as forced upon us anything which fol-
lows from some cell of every least partition into consistent sets. But,
as the name implies, forcing is an extremely conservative account of infer-
ability. We may well ask whether an account of inference that conservative
is quite what we are after. Perhaps we want to note not only the inferences
which we are forced to draw, but also those which in conscience we ocught to
draw, or those which we can draw withouth playing upon the conflicts
among our sources, but only upon their agreements. This last conveys
the relatively liberal posture that yielding is intended to reflect. Put
another way forcing represents an account of inferability according to
which conflicting sources are treated as suspect inasmuch as they con-
flict; yielding treats distinet sources of premises as suspect only insofar
as they conflict.

There is, however, a positive connexion between yielding and a sub-
sidiary notion of forcing discussed in [7] under the name of A-foreing.
This notion results from a restriction on the class of permissible parti-
tions of a set 4 of premises. In particular it contemplates the possibility
of corpora of premises which form natural units and which we do not
permit our partitions to disperse. For ease of exposition, it was assumed
that these sets are disjoint, but we might easily adopt an account of
forcing in which decompositions replace partitions, and in which therefore
the set A of exempt sets need not be a disjoint collection. Suppose that we
have made this alteration. (It will make no difference to what forces what.)
Then >* is that limiting case of A-forcing which results when we take A
to be the set of consistent sets of the language. There will, in this case,
be exactly one acceptable decomposition of 4 into consistent sets, namely
the decomposition into the largest consistent subsets of 4. We have seen
that >* is not an inference relation in the sense of Tarski.

[—E.]



106 R. E. Jennings, P. K. Schotch

In [7] we also consider a generalisation of forcing called Z-forcing.
This is the inference relation which results when a set X of contingent
sentences replaces the null set in the difinition inconsistency and related
definitions. When the adoption of an otherwise useful mathematical model,
as say in Quantum field theory, has a theoretically undesirable conge-
quence such as that a particle could have infinite potential energy, that
theory, while not contradictory, is less than perfectly coherent in a physical
senge. It may nevertheless be o useful theory provided that the eonsequen-
ces drawn from it do not depend upon the physically suspect consequence
cited or any other of like kind. In possession of such a theory, our position
is clearly analogous to that of a person having to process coniradictory
information from diverse sources. 2-forecing seems a natural procedure
to adopt, with only one flaw. Z-forcing like natural foreing represents
a conservative strategy, missing any inferences requiring premise sets
which do not survive partitions. The ZX-generalisation of yielding will
inherit the usefulness of Z-foreing whilst maintaining the comparatively
liberal character of yielding.
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