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Optimum Design of Vibrating Cantilevers ~ 

B. L. K.,mm.J~Loo 2 AND F. I. NXORnSON 3 

Communicated by W. Prager 

Abs t rac t .  We determine the optimum tapering of a cantilever 
carrying an end mass, i.e., the shape which, for a given total mass, 
yields the highest possible value of the first fundamental frequency 
of harmonic bending vibrations in the vertical plane. 

Three different cases are considered. In the first case, all cross 
sections are assumed to be geometricaJly slmilat. In the second 
case, the cross sections are assumed to be r e ,  angular and of given 
width. F;nally, we consider a rectangular cross section of given 
height. This third case is shown to be degenerate in the absence of 
end mass. 

1, I n t r o d u c t i o n  

A straight cantilever beam made of an elastic mateliaI can perform 
small, harmonic,  transverse vibrations. T h e  lowest natural f requency 
~o for such vibrations depends on the length, shape, and material 
propert ies of  the beam. We shall assume that the material of the beam 
is homogeneous and isotropic arid obeys Hooke's  law. 

T h e  problem with which we shall deal in this paper is to find 
the tapering that yields the highest possible value of co 0 for a given 
length and volume of the beam. 

T h e  corresponding problem for a simply supported beam has 
been the subject of an earlier paper by one of the authors (Ref. 1). 
Although our  analysis follows closely that o f  Ref. I, the extension 
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is not trivial, due to the different types of singularity encountered at 
the free end of a cantilever. It is interesting to note that, while the 
increment in natural frequency achieved with optimum tapering of 
simply supported beams (with geometrically similar cross sections) 
is only approximately 6.6 % compared with the unhorm beam (Ref. I), 
the corresponding figure is as high as 678 % for the cantilever, as will 
be shown here. An increment of 425 % is obtained by the best tapering 
of cantilevers having rectangular cross sections of given width. 

We shall also discuss and solve the problem c,f optimum tapering 
of cantilevers in the presence of a mass at their tip. It will be seen 
that even a small mass has a substantial effect on the optimum shape 
of the beam. For a very large mass at the free end, the mass of the 
beam itself becomes negligible, and the solution can be given in a 
closed form (massless cantilever beam of maximum stiffness). 

We shall assume throughout this paper that there is a relation 
of the following form between tie bending rig'dity E1 and the mass 
per unit length of the beam: 

I = cap, (!) 

where A is the area of the cross section and c is a constant. We are 
especially interested in three casc~= viz., p = 1, 2, 3. The cases p = 2 
and p = 3, e,~rre.~ponding to beams with geometrically similar cross 
sections and rectangular cross sections of given uniform width, respec- 
tively, have so much in common that they can be treated in much 
the same way. For p = 1, however, we have a degenerate case that 
needs separate treatment. This case corresponds to a beam. of given 
uniform height and tapered width. It will be shown that, in this case, 
no optimum shape exists in the absence of mass at the tip. This has 
also been pohited out in another work (Ref. 5), which considered the 
case corresponding to p = 1 for beams with homogeneous boundary" 
conditions. 

2. T r a n s v e r s e  Vibra t ions  of  a T a p e r e d  Can t i l eve r  B e a m  

Let us consider small harmonic transverse vibrations of a tapered 
cantilever beam carrying a mass Q at its tip. If  shear de;%rmations 
and rotary inertia are neglected, the differential equation of motion and 
the boundary conditions can be written in the following dimensionless 
form: 

(~Py')" -- ~ y  = O, (2) 

y(1) = y'(1) = aPy'(0) = O, (c, Py')~o = Aqy(O). (3) 
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Here, y is the amplitude of the lateral deflection in the plane of bending, 
and a dash indicates differentiation with respect to the dimensionless 
coordinate x - - - - ~ / I .  T he  dimensionless area function i s  denoted 
o~ = A I / V ,  where Vis  the total volume of the beam. In the last boundary 
condition (3) ,we have 

a = o~(vr~ , IEcW- , ) ,  q = QIv~; (4) 

where c is the constant determined by the relation (1). 
From the definition of a, it follows that 

1 

j'o~ dx = I. 0)  

The  eigenvalues A of the problem (2)-(3) are uniquely determined 
by tl',e function .a(x). In the sequel, A will refer ~o the first' fundamental 
eigenvalue and y to its associated eigenfunction. ,I( the problem under 
study has an optimum, our aim is to find the nonnegative function 
o,(x), satisfying the condition (5), that renders A a maximum. We shall 
employ a variational method for solving our optimization problem. 

3. V a r i a t i o n a l  P r o b l e m  

An expression for ,~ is :;btained by multiplying both sides of 
Eq. (2) by y and integrating between the limits 0 and I. If the first 
term is integrated by parts and the boundary conditions (3) are taken 
into account, we obtain the well-known formula for A 

Application of the variational procedure outlined in Ref. l leads to 
the following expression for determining 5: 

px~l (y ' )  2 -- ~y~ = ,~aL (7) 

where a 2 is a number  independent of x. Multiplying both sides by 
and integrating, we obtain 

a 2 = ( p  - -  I )  fo 1 ~ 2  dx -{- pq.y~(0), (8) 

which indicates that a 2 is positive for all p >~ 1. 
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Solving Eq. (7) for a, we get 

~, = [aCa~ + y~)/p(y")~]~/~'-~}, p > 1, (9) 

which, upon substitution into Eq. (2), yields the following nonlinear 
differential equation for y: 

{[(a2 + y2)ip(.,.)2],.,.-~, y . } .  _ [(a s + y2)/p(y.)2]~..-n y _. O, (I0) 

which, together with the boundary conditions (3), constitutes a (non- 
linear) elgenvalae problem for the parameter a ~" (tbe eigenvalue). 

Substitution of a from (9) into (5) and (8) leads to the following 
equations for determining a"- and ~, p > 1, 

11 [a(a-" -~ y O - ) ! p ( y " ) " - ] " , - "  o~x = l ,  
"0  

a'* = (p -- 1) fo x [A(a" + y,,)/p(y.)~]l,,~-l, y2 dx %. pqy'(O) 

( l l )  

In the present cpntext, we shall consider three different cases, 
correspondmg to p = 2, 3, I. The last case, corresponding to p --= 1~ 
is degenerate and will therefore be treated separately. 

4. B e h a v i o r  o f  the  Solut ion N e a r  the  F r e e  E n d  

Before we attempt to solve the differential equation (10), it is 
expedient to analyze the behavior of the solution near the free end. 
For this purpose, we assume that the solution y (x )  near x = 0 can 
be expanded in a power series of x with a characteristic term bx k. On 
substituting y = bx a + ... into Eq. (10) and equating the coefficients 
of leading terms to zero, we get the following equat;gns for determining, 
respectively, the smallest noninteger value of k and the smallest integer 
value of k: 

( - -pk  t + 2p --  kt + 2)(--pk x + p -- kx + 3) --= O, 
(12) 

( # ~  + 2p - k, + 2 ) (pk ,  + p - -  .~  + 3) - -  p ( p  - -  1)' k # ,  - -  1) = O. 

Here, k I is the smallest noninteger and k 2 is the smallest integer, p > 1. 
The respective values for p -~ 2 and p = 3 are 

kl---- { and k l = ~ ,  

k 2 - - - 2  and k 2 = - - 1 .  
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Taking 

y = a~x + a . ~  + . . .  + b~x ~" + -.., 03) 

we satisfy the boundary conditions (3) at x -~ O. 
On the ether hand, the solution near x = 0 must be taken in 

the following form in order to satisfy the boundary conditions in the 
absence of a mass at the fi:e end" 

y = axx + a~x ~ + "'" q- blx k* + "". (14) 

It  should be noted here that, in order to get a correct estimate 
of the behavior of function y, and her.ce of .(x), in the transition region 
from no-mass to very small mass at the free end, it was necessary to 
analyze the behavior of the solution in more detail at x = 0. This 
involved determination of the next term in the series expansion for y 
near x = 0 by assuming 

y -~ b~x ~, + b~x ~+~ + ..- 

and calculating ~ in a m~nner similar to that described above. The 
respective values of ~ for p := 2 and 3 are: ~ = 5.4 and 3.6. 

Substitution of (13), or (14) as the ease may be, into (9) gives 
an idea of the variation of c~ near x = 0. For example, substitution 
of (13) into (9) with p = 2 shows that the area function ~ is proportional 
to x~/3 near x = 0 and that the linear dimension--or diameter--of the 
cross section is thus proportional to xl/3. On the other hand, substitution 
of (14) into (9) shows that, when the beam carries no mass at its tip, 
the area fun~ion ~ is propertional to x 4 for small values of x, and the 
linear dimension of the cross section is thus propol~ional to xL 

5. Solu t ion  by  Successive I t e ra t ions  

As a '.~olution of the differential equation (10) cannot in general 
be obtained in a closed form, the solution was found numerically by 
successive iterations; the method is based upon a formal integration 
of the differential equation, with the introduction of one of the boundary 
conditions at each integratior.. Care was taken to separate the differential 
operator of the highest order on the left-hand side at each step. This 
was found necessa~ in order to obtain convergence by successive 
iterations. We demonstrate the numerical procedure briefly with respect 
to two specific cases. 
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5.1. p = 2 and  q = 0. By formal integration of(10) wi thp = 2, 
w e  find, after satisfying the boundary conditions at x = 0, that 

z' z dxt ]  1/3 
..cx) = It°' + :,q, f. f. t(°" + :,,'(y'~'> . 05) 

from which we could construct a procedure for successive iterations. 
However, in order to take care of the singularity in y near x = 0, 
we proceed in a slightly different way. The expansion formula (I4), 
for y near x = 0, indicates how to define a finite function f (x)  in the 
closed interval 0 ~ x ~< 1 by the following equation: 

such that 

/(x) =x,~(x), 06) 

y" = x- ,y ' (x)  - ,t,.-,f'(x) + 6:y(x). 

Furthermore, we define 

such that 

. (x)  = : / ' - ¢ q ' + 6 L  (17) 

y'=x-~z(x). (is) 

The functions f(x) and z(x) introduced abo,,e, are regular in the 
interval 0 ~< x < 1, and we have f ( l )  = f ' ( l )  =" 0, since y and y" 
vanish at x = I. 

By a formal in teg~t io :  of (17) and by taking into account the 
boundary conditions irap.,sed on f (x)  at x = 1, we have 

f(x) = x~ f:  g [z(x)[xt] dx ", 0 < x ~< 1. (19) 

From (15) and (17), we get 

~, ~ ]1/3 
.~ = .r=, [~°. + :~.I', f. fo E~a-" + ,"/<,Vl " . 

(20) 

which can thus be written as 

.(.~ = [<o'- + fv 4~ f~ f~ C(a'. . f'~.::'.: "l'". C'' 

Here, it may be noted that, in numerical integration procedures, 
it is often preferable to operate on single integrals instead of double 
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integrals. By the rule of transformations, the expression for f tx~ and 
the double integral in the expression for z(x) can be written as 

f(x) = x~ [~(~)/~q(-~ - 0 a,r, 

(l:.÷) fff4cx): a+-= 

By a change of variables, the expressions for f ( x )  and z(x) :an 
be further reduced to the following expressions contahaing only single 
integrals bet,xeen limits 0 and I: 

f ( x )  = : ( t  - x - )  +-(~ - ~ . ,  + .r)[~ ()~ - ~ x  + ~)~] ~ ,  ( 2 2 )  

11/3 
z(s) = [(as.v ~ --<- f')'+/2 f :  ~(.<,)(~'-' - t~)d~] , (23) 

where ~(x) is defined by 

$ ( x )  = (a-+.÷ ' "~ . . . .  -r g H/z'. (24) 

The scheme for successlve iter-ations can now be written as follows, 
where only finite functions are subject to numerical treatment4: 

(i) /.(~) --- x-+(l - :) fo' =.(,7 - ,~ + x)[~ (,7 - ~x + ~),] as, 
1 ,  , o ~ I , ,) (ii) a 4  = Lf:, L:+.,~..)- dr] [J'o ( : ,~ , )"  d::]. 

(iii) 4.+,(x) = (a,,*'.: + f.')f,,/z. °', 
~ . ) .  ~) ) A  ,.I 

(iv) z,,+x(x ) = [(a,,'x ~ + j.-)-, : Jo 4,++x(-~)(¢'-+ - ,~') d~]'/'. 

The sequence of successive iterations is started with an arbitrary 
regular function zo(x ) (not necessarily satisfying the boundary condi- 
tions). The new functions z I and f t  will satisfy all the boundary 
conditions. The sequence of iterates z , ,  f,, converged very rapidly to 
functions z and f, from which the solution y(x) and its derivatives 
were determined using equations (16) and (17). The optimum eigenvalue 
A (corresponding to %) was then found from the following equation, 
which is obtained by solving the system of equations (1 I) in no, and ,~: 

/iy,' fs,' ' '"' = z (./:.÷/~), a.,: + ( / , /~) , ,~  fo (,:/~), axj }. (2s) 

' The expression for a a is obtained by solving the system of equations (11). 
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Using tke relation (9), we finally computed the area function c~(x) and, 
hence, the linear dimension V'c¢ of the opt imum cantilever in the interval 
0 < x ~ < l .  

5.2. p = 3 a n d  q = f ini te .  The  formal integration procedure 
leads to the followi.qg equation for y(x): 

1 

y(x) = -- -- 
,t 

where 

l [(a' + y2)/3]a~' 

fz U: f :  A(x)y dxZ + ~ qy(O) dx f :  A(x) dx] ~/2 dx2' (26) 

A(x) = [(a ~ + y2)/311/2 (1:)"). (27) 

The  expansion formula (13) indicates that we can define a finite function 
g(x) in the closed interval 0 ~ x ~ I as follows: 

g(x) = v' ,y:(x).  (28) 

Furthermore, we define 

where 

.4(:,) = A*(x) Vx, 

A*(x) = [(a ~- + y2)/31~ "[l/g(x)]. 

(29) 

(30) 

T h e  functions g(x) and A*(x) introduced now are regular in the interval 
0 ~ < x ~ < l .  

The  iteration process, involving integration of finite functions only, 
i~ carried out in the following sequence: 

(i) 

(ii) 

(iii) 
where 

y.'(x) = --~ [g,,(x)] -~/2 dx, 
1 t y,,(x) = --.f~ y,, (x) dx, 

a , '  = 215ol A,,*(x) Vxy,, '(x) dx], fro A,, (x) vtx dx] + 3qy,=(0), 

A,,*(x) = [(a~ ~ + y,~'(x))/3] tn [leg.(. )]. 

(iv) M,,+,(x) = ~o ~ A~*(x) v/xy,,(x) oL# 
+ ~gyn(O) dx.fao [A,,*(x)] ''-~ dx}. 

(v) g~,+l(x) = y~,+~(x), v'x = v'x[(a,; + y,~*-)/3]a/'/[M,,+,(x)] l& 

The  expression for a 2 and )~ are obtained by solving the system 
of equations (11). As the expression for a °- is an implicit one, a,, 2 is 
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determined in an inner loop in the iteration scheme. Similar situations 
often arise in optimization problems of vibrating plates (Ref. 2L 

As in the previous case, the iterations were started with an arbitrary 
regular function go(x). The  iterates g,,, .4,~*, y~', y,, converged rapidly 
to the functions g, A*, y '  and y, from which y" was obtained using 
equation (28). The  opt imum eigenvalue )t was then found from the 
following expression, which is obzained by solving the system of 
equations (11) ~i th  the designation (30): 

Using the reladors (9) and (30), we did finally compute the area 
function a(x) of the opt imum cantilever for various values of non- 
dimer.3ional mass q from the expression 

=(x) = ~/AA*(x) ~ , .  (32) 

Numerical integration was performed by subdividing the interval 
0 ~ x ~ 1 into a number  of equal parts and applying a polynooHal 
formula. T h e  mesh length d was varied, and the result was extrapolated 
to d = 0 by means of ~e~.~on's formula. Starting with an arbitrary 
initial function (z o ~ 1 for p = 2 a.~d go ~ 1 for p = 3), the accurate 
estimate of solution y(x) was obtained within a few iterations. 

(a) 

Co) 

(c) 

(d) 

Fig. 1 
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(a) 

(b) 

(c) 

(d) 

Fig. 2 

Figures 1 and 2 show the variation of linear dimension of-cross 
section as a function of nondimenslotaal x for various values of non- 
dimensional mass q for p = 2 and 3, respectively. 

Dotted lines in the figures for q = 0 indicate a cantilever beam 
of uniform cross section and the same length and volume as the optimum 
beam. The  corresponding percentage increase in the lowest natural 
frequency co 0 in comparison with that of the cantilever beam with 
uniform cross section and the same volume, material, and length as 
the optimum beam is indicated in Table 1. 

Knowing that '~c = 12.35 for a cantilever beam of uniform circul,~r 
cross section or with uniform rectangular cross section (Ref. 3), we 
conclude that the most appropriate (optimum) tapering--keeping the 

Table 1, Ratio of ~/(~/~) for various values of q (p ----= 2, 3). 

. . . . . . . . . . . .  - -  . . . . . . . . . . . . .  I I IIIII 

q = 0 q = 0.0003 q = 0.03 q = I00 

p = 2 6.78 5.48 3.36 1.27 
(Fig. la) (Fig. lb )  (Fig. lc) (Fig. ld) 

p = 3 4.25 3.71 2.30 1.33 
(Fig. 2a) (Fig. 2b) (Fig. 2c) (Fig. 2d) 

8o9lz z/6-6 
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total volume constant--will increase the lowest natural frequency by 
as much as 678% in the former case (p = 2), and 425% in the latttr 
(p = 3). 

It may be noted that optimum shapes corresponding to q = I00 
closely approximate the classical solution obtained by considering the 
corresponding static problem of a massless cantilever with a heavy 
mass at its tip. 

6. Cantilever of  Given C o n s t a n t  Heigh t  and  Vary ing  Wid th  
( / ,=  I) 

It is evident from Eq. (9) that, for p -~ 1, we have a degenerate 
case. Furthermore, ~ drops out of Eq. (7) for ~p = 1, suggesting that 
the problem under stvdy does not bave an optimum in the sense used 
in this text. For a cantilever beam carrying no mass at its ti~, this fact 
--which is not so evident at the first sight--can be explained physically 
in the following way. 

For a cantilever of given height and varying width, whick is 
symmetric:d with respect to the plane of bending, we can always divide 
the cantilever into two symmetrie~_l halves alo,~:g the plane of bending, 
each half vibrating with the frequency of the original cantilever. Now, 
by symmetrically superimposing one-half on the other near the clamped 
end, thereby retaining t! e volume of the original cantilever, the frequency 
of vibrations of the resulting cantilever will be increased. Fol lov ' rg  
this process of division of.the cantilever into two symmetrical halves 
indefinitely with subsequent superi'mposition of one-ball . . n  the other 
symmetrically, near the clamped end, the frequency of the resulting 
cantilever can similarly be increased indefinitely while at the same 
time retaining its total volume. However, the same argument does not 
hold in the ease of a cantilever carrying a mass at its tip. In fact, as 
will be shown later in this section, such a cantilever does have an 
optimum shape in the present sense. We will presently try to give 
a mathematical interpretation of the former ease. We will show briefly 
that, for a certain family of curves defining the area function a(x), 
the first fundamental frequency of the cantilever can be increased 
indefinitely with ~.n increase of the characteristic parameter of the 
family of curves, the total volume being retained. 

Let us assume that o~ = k x  "~ is a family of curves defining the 
area function, where n can assume any value between --oo and oo. 
The  coefficient k is determined by the condition that the total volume 
of the cantilever is constant (5). 
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From (6), we obtain for q = 0 and ~ = k x  "~ 

4% ] a = x " ( y " )  ~ x " y  2 d~: . 

The upper limit of the first eigenvalue A l can be obtained by 
Rayleigh's method, taking y = (I - - x )  -~, which satisfies the kinematic 
boundary conditions at x = 1. After performing the simple integrations, 
we get 

h I ~< 2n 2 + 10n + 12. 

Obviously, the upper limit of the first fund~m~ atat eigenvalue of the 
cantilever tends to approach oo for n --+ oo. However, it is also necessary 
to determine the lower bound of the first cigenvalue. To  do so, we 
adopt a procedure similar to the Dunkerley method involving Green's 
rune:ion. 

Green's function G ( x ,  ~) is the deflect:on at x due to a unit load 
2t ¢ which, in terms of the qormal modes v,  and by making "lse of 
the Bessel inequality (Ref. 4), can be wrkten as 

[G(~, ,~)],=~ = ~ [(ll,,,,.S)v,'Cx)]. 

Multiplying both sides of the above expression by m(x) (mass 
per unit length at x) and irtegrating over the length of the cantilever, 
we get 

(ll,. , , . ,) = C(x, x) re(x) ~x, 

since 

Obvio,,,sly, 

flora(x) v,?(x) ,ix = 1. 

e l  
1/oJ~ < Jo G(x, x) re(x) dx, 

where oJ t is the first fundamental frequency of the cant{lever. With 
the assumed family of area functions, Green's function G ( x ,  x )  turns 
out  to be 5 

G ( x ,  x )  = ( 1 2 1 E k ) [ 2 l O  - -  1) (n  - -  2 X n  - 3 ) ( I  - x )  " - 8  - - 2 I ( n  - t ) ( n  - 2 ) ( n  - 3 )  

- -  2x / (n  - -  1)(n -- 2) -- x~l(n - -  1)], n :/: 1, 2, 3. 

s For the sake of convenience, ~he origin has been taken at the clamped end. 
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Thus, we get 

oJ# > (El 12y)[2(n- 1)(n + 1)(n-2)(n + 3)./[(1 -2n)(n +2)(n + 3) +(3n + 4)(n ÷ 1)]]. 

As the degree of n in the numerator is greater than that in the denomi- 
nator, the lower limit of oJ x tends to approach infinity az n --~ oo. 

We have therefore been able to s~,ow that, for a cantilever of 
prescribed I~eight and with no mass as its free end, the first fundamental 
frequency can be increased indefinitely (at least for the family of curves 
used here for defining the area function) or, in other words, that the 
problem at hand does not have an optimum solution in the sense "used 
in th,~s paper. 

However, as mentioned earlier, the same is not true if t~c ~ntilever 
carries a mass at its tip. We proceed here in a sort of inverse way, as 
will become clear later. We specifythe  first eigenvatuc ,~ and try to 
find the optlmb.~, width function and the corresponding q giv,Zng this A. 
Clearly, a backward interpretation f'eads us to the optimum design 
in the sense it has been used so far in the text. 

7. Can t i l eve r  of  Given Heigh t  and  Vary ing  Width  (p = 1) 
wi th  a Mass  at  the  Free  E a d  

Equation (7) can be rewritten as 

Making the substitution 

(y,)~ = )t(a 2 + y2). (33) 

y = a / (x  C/a), (.,4) 

we get, instead of (33), the following different;al equation for f (x  ¢/A), 
which is independent of a: 

(f,)a = 1 + f z .  (35) 

Note the difference in the arguments of fur.,ctions y an~. f.  For con- 
venience, the origin is taken at the clamped end, so we have 

f(O) = f'(O) ----- 0. (36) 

After satisfying the kinematic boundary conditions (36), we see that 
the solution of differential equation (35) is given by 

f f .~a  = V'[½f a/(1 + f2) + aresinh(f)] d(x ~/~). (37) 
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The function y and its derivatives can thus be readily obtained 
from (34) to the accuracy of constant a, knowing that 

f"  = - x / [ ~ f v / ( l  q-S 2) + arccosh(f)], f "  = ~/(1 +f~).  

Having thus found the function y and its derivatives, we return to 
the .original differential equation (2) in order to find the corresponding 
optimum shape function. 

By a formal integration of (2) and by satisfying the boundary 
conditions (3), we get 

- 's;s; s; va)  ax- -r qy(~:~) 0':~. (38) ,4x)  = [, , /a,y (.,: ¢,a)]  ~ ~(.,~y(.,. ' . . . . . .  

From (6), we have 

1 = ~ q ~ -~, ~; )')j, 

whence 

,~orr'"'~ y-,, , , , t  ~ _ ,of' o,,~ ~.,x ,:~, ~l ,39, [ l ' f ( ~  a)] q =  

Substitution of (39) into (38) gives the following ;mplicit expression 
for a(x): 

LCJ: ~(~) = W~,'~r'(.~ ¢'~)] ~(x) yCx ~/~) a.~-" 

a f~ d.,,'Idx ]. (40) 

Having found a(x) from (40), we can now determine the nondimensionat 
mass factor q from (39). 

Note that condition (5) is not, in general, satisfied, but this only 
changes the numerical values of the ordinates and not the shape of 
the function itself. 

8. Solution by Successive Iterations 

The iteration scheme used for determining y and ~(x) as a funct;on 
of x is in itself quite simple and will, therefore, not he described here. 
However, it is necessary to analyze the behavior of f (and hence y) 
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and a in order to choose proper functions for their approximation. 
For this purpose, let us first consider the differential equation (35). 

For x ~'A --* 0 (which also corresponds to very small A or indirectly 
very large q), f is very small compared with unity, and hence (35) caq 
be approximated by 

f"  1, (40 

the solution of which for all values of A, after satisfying the kinematic 
boundary conditions, is 

f = ~x*~, x* = x ~/A. 

On the other hand, for x ffA ~ 1 (which corresponds to very large A 
or, k,~directly, very small q), f is very large compared with unity, and 
hence (35) can be approximated by 

f~ ~ f ,  

the solution of which is 

f = A e x p ( x * ) .  (42) 

Note that (42) does not satisfy the kinematic boundary conditions (36) 
and hence cannot be carried through to the clamped end. 

I t  is-found that (41) gives a good approximation up to x* = 1, 
which corresponds to 2~ = 1; and (42) gives a good approximation 
for x* > 4, which corresponds to ), > 256. Between these two extremes, 
f is determined from (37). 

Let us next investigate the behavior of a for small values of x. 
For a small value of x, we obtain from the differential equation (2) 
and its solution (41) the following differential equation for a for all 
values of ;t: 

a' ,ldx" - . = o .  (43) 

Assuming that a can be expanded in a series of x near x -~ 0 in the form 

c~ = A -  Bx  + Cx~ + Dx  a + E x  i + ..., (44) 

and ~ubsdtuting (44) into the differential equation (43), we get, after 
equating the coefficients of like powers of x, 

C ---.--- D = 0, E = 0 /24)A .  
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Therefore, for small x, 

,z  = A - -  B x  + (,~/24) Ax 4, 

which means that, for small values of A, e, is linear with negative slope. 
For larger values of x (and, thus, ~), ~ has to be determined from 

(40) by a process of successive iterations° 
Having assumed )t, we perform a numerical integration by sub- 

dividing the interval 0 ~ x ~tA ~ ~/A irtto a number  of equal parts and 
applying a polynomial formula in the interval 0 ~ x ~YA ~ 0.2 and an 
exponential formula in the rest of the interval. The  seqaenee of 
successive iterations is sta;ted with an arbitrary f0 ~- 1 in expression 
(37) and ~0(x) ~ I, with %(1) = 0 in expression (38). The  sequence 
of iterates converges very rapidly to f and ,(.r). Knowing ~(x), v,e 
determine tile corresponding q from (39), subject to the condition (5). 

The  optimxam shape as a function of nondimensional x is showy. 
in Fig. 3 .for selected values of first natural frequency. Table 2 shows 
the increment in first fundamental frequency in comparison with that 
o£ a cantilever beam of rectangular cross section. It will be seen from 
the figures that the width goes on increasing toward the clamped end 
with the increase in A (i.e., with a decrease in q), as was to be expected. 
Dotted lines indleate a cantilever of constant cross sectior, and the 
same volume as the opt imum cantilever. It  may also be noted that 

(a) 

(b) 

(c) 

(d) 

Fig. 3 
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Table 2. Ratio of -v/(;~/Ac) for various values of q (p ----- 1). 
! , i l l  i i  , ii i J / i 

q ~- 0.0375 q = 0.2233 q =: 1.1027 q = 4 >e lO t 

p----1 28.42 2,56 0.28 
(Fig. 3a) (Fig. 3b) (Fig 3c) (Fig. 3d) 

l l l , l . . i  i,i i i . r - - : -  

the graph (Fig. 3d) corresponding to q -- 4 × I0 a approximat~_~ almost 
exactly the classical op t imum width shape of  a ma~sless ca qtilever with 
a heavy mass at its tip. The  width function, which can "be easily found 
in this case by considering the corresponding static problem, varies 
linearly from zero at the free end to a finite value at the clamped end 
(in our case equal to 2). 
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