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Stepsize Analysis for Descent Methods 

A. I. C O H E N  I 

Communicated by D. Q. Mayne 

Abstract. The convergence rates of descent methods with different 
stepsize rules are compared. Among the stepsize rules considered are: 
constant stepsize, exact minimization along a line, Goldstein-Armijo 
rules, and stepsize equal to that which yields the minimum of certain 
interpolatory polynomials. One of the major results shown is that the 
rate of convergence of descent methods with the Goldstein-Armijo 
stepsize rules can be made as close as desired to the rate of convergence 
of methods that require exact minimization along a line. Also, a descent 
algorithm that combines a Goldstein-Armijo stepsize rule with a secant- 
type step is presented. It is shown that this algorithm has a convergence 
rate equal to the convergence of descent methods that require exact 
minimization along a line and that, eventually (i.e., near the minimum), 
it does not require a search to determine an acceptable stepsize. 

Key Words. Descent methods, rates of convergence, stepsize rules. 

1. Introduction 

Descen t  me thods  for  minimizing real-valued funct ions f on  R ~ are 
methods  of  the fo rm 

xi+l = xi + Aihi, (1) 

where  hl is a search direct ion such that, for  all i, 

-(hdlhil, f'(x,)/If'(x,)l)-> p > 0 (2) 

and hi > 0 is a stepsize. A special type of descent  m e t h o d  is the def lected 

gradient  me thod ,  defined by 

x,+l = xi - h iFi f ' ( x i ) ,  (3) 

where  Fi is uni formly positive definite, or  equivalent ly the eigenvalues of Fi 
lie in the interval [g, G]  for  all i, where  g > 0 and G < oo. 
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The purpose of this-paper is to compare upper bounds on the linear 
convergence rates that result when different rules are used to determine the 
stepsize in (1) and (3). Linear convergence rate is defined as follows. 

Definition 1.1. A sequence xi converges linearly to a point x* with rate 
at least q c (0, 1) if lim~_,oo xi = x* and, for some constant c > 0 and for all n, 

lim [lxi+n - x*l/txi  - x*[] -< cq n. 

The following stepsize rules (in some cases, two of these rules will be 
combined in one algorithm) will be investigated. 

(a) Set Ai equal to a predetermined constant. 
(b) Set Ai equal to the value which yields the minimum of some 

polynomial (usually quadratic or cubic) that interpolates 

~,(,~) = f(xi + ah~) - f(xi)  

and /o r  its derivative at one or more values of X. 
(c) Set Ai to be the smallest value of A such that 

f(xi  + Aihi) <- f(xl  + Ahl), for all positive A. 

This stepsize rule will be referred to as the minimizat ion rule or Rule  (M).  
(d) Require that Ai satisfy a condition that is a function of the ratio 

(f(xi + Aihi) -f(xi))/(f~(xi), hi)Ai. 

Stepsize rules in the class described in (d) have received much attention 
i~ the recent literature, and they will be considered in detail in this paper. 
One type of requirement is that ,~i satisfy 

rl~ <- [f(xl + Aihl) - f(xi)  ]/ Ai(f '(xi),  hi) <- r12, (4) 

where 0 < m  < n 2 <  1. This condition is equivalent to requiring that the 
decrease in f lie between the lines 

l~(a)  = m(f'(xi), hi)a 

and 

12(;,) = n 2 ( f ( x , ) ,  hj),~ 

(see Fig. 1). 
It can be shown (Ref. 1) that conditions (2) and (4) are sufficient to 

ensure convergence of a subsequence of (1) to a critical point of f, if f has 
continuous first partial derivatives and the level set of f at x0 is compact. 
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Allowed Stepsizes 

/ \ 

Fig. 1. Illustration of stepsize rule (4). 

A stepsize rule in the form of (4), due to Goldstein (Ref. 2), is the 
following. 

Rule (G). Pick Ai to satisfy (4), with r t l = a ,  ~ 2 = 1 - a ,  where 
a~(0 ,~) .  

Another stepsize rule, suggested by Armijo (Ref. 3) is the following. 

Rule (A). Let Ai = t3Jd, where /3 ~ (0, 1), d >0 ,  and / is the first 
nonnegative integer such that, for a ~ (0, 1), 

[f(x, + Aihl) - f (x , )] /Ai( f ' (x i ) ,  hi) >- a, (5) 

or equivalently such that the decrease in f lies below the line 

/(A) = o~(f'(x,), h,)A. 

Note that Rule (A) implies either 

,~i = d, if ] = 0 ,  

o r  

[/(x, + (,W/3)h,) -d(x,)]/(,~,//3)<f(x,), h,> <,~. 

A variant of Rule (A) is the following. 

Rule (A'). Let d > 0 and a e (0, 1). If 

[f(x, + dh,)-  f(x,)]/ d </'(x,), h,>-< ~, 

pick Ai according to Rule (A). If not, let 

,~i = d /  t¢ ,  

(6) 

(7) 
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where fl ~ (0, 1) and j is the first nonnegative integer such that (6) is satisfied. 
Therefore, for this stepsize rule, Ai satisfies both (5) and (6). 2 

Known Results. The following results in the rate of convergence of 
descent methods are known. If f" exists and has eigenvalues between m > 0 
and M < o0, then these results hold. 

(i) The descent method (1) converges linearly if A~ is chosen according 
to either Rule (M) or Rule (G); see Ref. 5, pp. 242-246. 

(ii) Descent methods of the form (3), with A~ chosen according to Rule 
(M), converge linearly; see Ref. 5, pp. 248-249. 

(iii) The descent method (1) with hi =-f(xi) and A~[6 ,  2~M-G],  
where G e (0, 1/M),  converges linearly. The best rate estimate on this 
method occurs when 

The resultant rate is 

l~i = 2 / ( M + m ) ,  for all i. 

q = ( M -  m) / (M + m); 

see Refs. 6-8. 
(iv) I f f  is quadratic, then (3) with Rule (M) converges with rate at least 

q = (R - r ) / ( R  +r), 

where R < oo and r > 0  are, respectively, bounds on the maximum and 
minimum eigenvalues of Fif"(x); see Refs. 8-10. 

Remark 1.1. The ratio (R - r ) / ( R  + r) is sometimes referred to as the 
Kantorovitch ratio. Given the assumptions, this is the tightest bound on 
convergence that is known. It has been shown by Akaike (Ref. 11) that, for 
Fi equal the identity matrix, barring certain degenerate starting points, the 
convergence rate is exactly ( M -  m) / (M + m) (note that, since Fi = L M = 
R, re=r). 

Lemma 1.1. Kantorovitch Lemma. The proof of (iv) uses the 
Kantorovitch lemma which states (Ref. 10) that, for a positive-definite 
matrix A, 

(s, s)2/(s, As)(s, A - i s )  >- 4aM/(a + M) 2, (8) 

where a and M are respectively the smallest and largest eigenvalues of A. 
Bauer and Householder (Ref. 12) extended the Kantorovitch result to show 

2 Wolfe (Ref. 4) gives some other stepsize rules that differ from (4). However, as he shows, they 
are closely related. 
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that, for all nonzero vectors u and v and positive-definite matrices A where 

I<u, v>l---lul" Ivlp, (9) 

for p ~ [0, 1], then 

<u, u)<v, v) 4x 
> (10) 

(u, Au) (v ,  A - i v )  - [(x + 1) + (x - 1)~/(1 _ pe)]2, 

where x = .~/a,  the ratio of the largest and smallest eigenvalues of A. 
Clearly, if 

s = u  = v and p = 1, 

then (10) and (8) agree. Inequality (10), however, will allow us to obtain 
tighter bounds on descent algorithms of the form (1) than appear, for 
example, in Ref. 4. It should be noted, however, that these tighter bounds 
require an additional assumption (i.e., f must be continuously three times 
differentiable). 

Major Results. The major results in this paper are given in five 
theorems. Theorem 3.1 reviews results (i) and (ii) with some extensions, and 
Theorem 3.2 reviews result (iii). Theorem 3.3 extends (iv) to convex, but not 
necessarily quadratic, f. The theorem also gives a tighter bound on con- 
vergence rate for descent methods of the form (1) using the extension of the 
Kantorovitch lemma. The theorem also shows that the convergence result 
still holds if Rule (M) is replaced with a Newton step, i.e., 

A, = ¢ i ( 0 ) / ¢ 7  (0), 

where 

¢i(A) = f (x,  + Ah i ) - f ( x i ) .  

Theorem 3.4 shows that (1) or (3) with Rules (G) and (A') has a convergence 
rate that can be made as close to the Kantorovitch ratio (or extended 
Kantorovitch ratio) as desired by adjusting the stepsize parameters.  Finally, 
an algorithm is defined which combines Rule (A) with a secant-type step. 
Theorem 3.5 shows that this algorithm has a rate of convergence equal to the 
Kantorovitch ratio, and eventually does not require a one-dimensional 
search at each step. 

2. Assumptions on f 

Throughout  this paper, we shall make some or all of the following 
assumptions on f :  R n ~ R. 
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Assumption (A1). 
tives. 

Assumption (A2). 

Assumption (A3). 

Assumption (A4). 

f has continuous first and second partial deriva- 

f has continuous third partial derivatives. 

For all x, y ~ R n, there exists an rn > 0, such that 

m ]y 12 _< (y, f"(x)y). 

For all x, y e R  ~, there exists an M < o o ,  such that 

(y, f"(x)y)-< Mly[ 2 . 

These assumptions are made for all x ~ R n; however, since rate-of- 
convergence results are local results, these assumptions can be relaxed to be 
needed only in some neighborhood of the minimum. 

3. Rate of Convergence Results 

Descent Methods. We shall first show that the rate of convergence of 
descent methods of the form (1), with Rules (M), (G), (A'), are linear [the 
linear convergence of the descent method with Rule (A) needs some extra 
requirements]. Later in this paper, tighter bounds on the rate of convergence 
of these methods will be given. These bounds will, however, require an extra 
condition on f ( f  three times continuously differentiable, as opposed to 
twice). The convergence result follows easily from the following lemma. 

Lemma 3.1, (Refi 1, p. 477, and Refi 4, p. 245). Suppose that f 
satisfies Assumptions (A1), (A3), (A4), {xi} converges to x*, where f '(x*) = 
0, and that 

f(xi) - f(xi+ l) >- h [f'(xi)l 2. (11) 

Then, {x~} converges linearly with rate at least 

q = -,/(1 - 2Am2/M).  

Using this lemma we shall calculate convergence rates for the descent 
method with various stepsize rules. 

Theorem 3.1. Suppose that f satisfies Assumptions (A1), (A3), (A4). 
Then, the descent method (1) converges linearly with rate 3 

(i) q = x/[1 - (pm/M)2], if Rule (M) is used, 

3 For (i) and (ii), see Ref. 4. 
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(ii) q = ~/[1 - (2apm/M)2], if Rule (G) is used, 

(iii) q = 4 1 1 - a ( 1 - a ) B ( 2 p m / M ) 2 ] ,  if Rule (A') is used. 

Also, the descent method (3) with Rule (A) converges linearly with rate 

(iv) q = - , / ( 1 - 2 y m 2 M ) ,  

where 

3' = min(adg, 2a (1 - o~)~g2/G2M). 

ProoL In general, 

f(xi) -f(xi+l) = -&(f ' (xi) ,  hi) - ½ X ~ (hi, Hihi), (12) 

where, for some t~  (0, 1), 

Hi = f"(xi + t&hl). (13) 

Using (2), (12), and Assumption (A4), we have 

f ( x , ) -  f(xi+ l) >- &plf'(xi)[ ]hil - (Ma ~ /2 )[h,I 2. (14) 

(i) Using Rule (M), we know that the decrease in f is at least as large as 
the maximum of the right-hand side of (14) with respect to &. Thus, 

f(x,) - f(xi+l) -> (p2/2M)lf'(x,)l 2. (15) 

Using Lemma 3.1, we have 

q = ~/[ 1 - (pro~M)2]. (16) 

(ii) From (12) and Rule (G), one has 

-Ai(f'(x,), hi)-½a~(h,, H,h,)<--Ai(1 -a)( f ' (x , ) ,  hi), (17) 

o r  

Ai >- -2ce{f'(x,), h,)/(h,, Hih,). (18) 

From Rule (G), Assumption (A4), and (2), we have 

f (x l ) - f (x i  +Aih) - -e~ai(f'(xi), hi) 

-> 2o~2(f'(xi), hi)Z/(hi, Hihi) >- (2a2p2/M)tf'(xi)l 2. (19) 

Using Lemma 3.1, one has 

q = ,,t[1 - (2o~pm/M)2]. 

(iii) From (12) and (6), we have 

-(Ai/~)(f '(x,),  h , ) - (A 2/2/32)(hi, Hih,) <- -(Ai/~8)ot(f'(x,), h,), (20) 
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o r  

Ai-> -2(1  -a)CJ(f '(x,) ,  h~)/(hi, Hih,). (21) 

From (4), one has 

f(Xi)-- f(xi + A / h )  > --Olai(f'(xi), hi) 

-> 2a(1 - a)~(f'(xi), hi)Z/(h~, Hihi) 

-> (2a (1 - a )~SpZ/M)]f'(x,)] 2. (22) 

Using Lemma 3.1, we have 

q = ~/[1 - a (1 - a)fl (2pro~M)2]. 

(iv) Noting that either A~ = d or (6) is satisfied, then using (21) we have 
that either A,- = d or 

Ai >--2(1 -o~)B(f'(xi),  F~f'(x~))/(f'(xi), F~H~Fif'(x,)). 

Therefore,  from (5), 

f(xi) -- f(xl  + &h) -> aAi(f'(xi), Fif'(xi)) 

>- min{ad(f'(xi), Fif'(xi)), 

2~ ( 1 -  a)~(f'(xi), F,f'(x,))2/(f'(xi), FiHiF,f'(xi))}, 
where 

y = min(adg, 2a (1 - cr)~g2/G2M). 

Using Lemma 3.1, we have 

q = x/(1 - 2ymZ/M). 

Note that q < 1, since 

a<½,  /3<1 ,  g / G < l ,  m / M < t .  

Notice the relations between the rates for the three rules (M), (G), (A'). 
When a approaches ½, the rate of the descent algorithm with Rule (G) 

1 
approaches the rate when Rule (M) is used.  Similarly, when a =~ in Rule 
(A') and/3 approaches 1, the rate of Rule (A') approaches that of Rules (M) 
and (G). 

D e f l e c t e d  G r a d i e n t  M e t h o d .  We shall now consider algorithms of the 
form (3). Note that 

hi = - r i f ' ( x i )  
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satisfies (2) with 

p = g/G. 

We are, however, interested in obtaining tighter bounds on rate of con- 
vergence. 

Assumption (A5). For these results, we require that f satisfy 
Assumptions (A3) and (A4) and that the eigenvalues of Fif"(x,) lie in the 
interval It, R], where r > 0 and R < co. This requirement on the eigenvalues 
of Fif"(xi) is equivalent to requiring either 

0 < r <- (y, r~ /2 f ' ( x~)r~ /~y) / (y ,  y)_< g 

o r  

for all y ~ R n. 

tr 1 / 2  tr 1 / 2  O < r - ( y , [ [  (xi)] r ; [ f  (x,)] y)/(y,  y)<-R, 

Convergence Rate with Predetermined Stepsize. The following 
theorem, which derives rate of convergence for algorithms of the form (3) 
with stepsize in a predetermined interval, is well known; however, to the 
author's knowledge, the proof does not appear in the literature. 

Theorem 3.2. Suppose that f satisfies Assumption (A1) and that f" is 
positive definite for all x. Let {x,} be a sequence defined by (3) converging to 
a root of f ' ,  where Fi is positive definite and F~f"(x) has eigenvalues between 
r > 0  and R <co, for all x ~ R  n and for all i. Then, for any E > 0  and 
AislE, 2 ~ R - e ] ,  {xi} converges with linear rate. In particular, if A, = 2 /  
(R + r), for all i, then {x,} converges with linear rate at least (R - r ) / ( R  + r). 

Proof. One has 

xi+l-  x* = x i -  x * -  AiFcf'(xi)= xi - x * -  AiFiH,(x, - x*), 

where 
1 t '  

Hi = | f"(xi +t(x* - x i ) )  dt. 
Jo 

So, we have 

Ix,+a -x*l ~ II -x,r,Hi[ Ix,-x*l ~ [max(ll -X:l,  l1 -A,R I)]. Ix,-x*]. 

Thus, x~ converges linearly with rate at least 

(23) 

(24) 

q = lira {max(ll -A;r[, l1 - A,Rt)}, 
i-~oO 
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if q < 1. Clearly, q < 1, if hi e [E, 2 / R  - e], for all i, where e > 0, and 

hi = 2 / (R  + r) 

minimizes 

to obtain 

max(l 1 - Air I, tl - AiR 1) 

q = (R - r ) / (R  + r). 

Tighter Convergence Rate Bounds. In this subsection, we will obtain 
new bounds On the rate of convergence of descent methods and deflected 
gradient methods using the revised Kantarovitch ratio. We must first 
introduce a lemma which is useful in proving the remaining convergence 
results. 

Lemma 3.2. Suppose that f satisfies Assumptions (A1), (A2), (A3), 
(A4). Let xi be a sequence converging to x*, where f ' (x*)  = 0, defined by 
either 

(a) Equation (1), where hi satisfies (2), 

or 

(b) Equation (3), where Fi satisfies Assumption (A5). 

Furthermore, suppose that xt satisfies 

&,(&) =f(x ,+l ) - f (x j )<-  - [ ( ~  (0))2/24~;' (0)] (1 +s,)+o(tf'(xi)la), (25) 

where 

~bl (A) = f ( x i  + A hi)  - f ( x i  ). 

Then, there exists constants K and S > 0, such that {x~} converges at least 
linearly, if ]&] < S for i --- K. Also, if & -~ 0, then {xi} converges with linear rate 
at least 

o r  

(a) dl ~ ( M - m ) + ( M  + m)~/ (1-p2)  
( M + r n ) + ( M - m ) ~ / ( 1 - P ~ i '  if Eq. (1)is used, 

(b) d2 a= (R - r ) / (R  + r), if Eq. (3) is used. 

The proof of Lemma 3.2 appears in the Appendix. 
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Convergence Rate Using Newton Step or Stepsize Rule (M). The 
convergence rate 

q = ( R - r ) / ( R  +r) 

is the best bound on rate of convergence known for methods of the form of 
(3). However, it is not practical to try to use the stepsize 

Ai = 2 / ( R  + r), 

since r and R are typically unknown. We shall now show that method (3), 
where Ai is picked according to either Newton's method or Rule (M), 
converges with linear rate at least (R  - r ) / ( R  + r). We shall also give a tight 
convergence rate bound for descent method (1) with the same choice of 
stepsize rules. 

Theorem 3.3. Suppose that f satisfies Assumptions (A1), (A2), (A3), 
(A4). Let {xi} converging to x* be a sequence defined by either Eq. (1), 
where h~ satisfies (2), or by Eq. (3), where F~ satisfies Assumption (A5) and & 
is chosen according to Newton's method or Rule (M). Then, {xi} converges 
with linear rate at least 

dl ( M - m ) - ( M + m ) " / ( 1 - p 2 )  

= ( M ÷ m ) + ( M - m ) x / ( i  _p2) ,  

o r  

if Eq. (1) is used, 

d2 = (R - r ) / (R  + r), if Eq. (3) is used. 

Proof. Let 

rbi (a i) = f(xl  + aihl) - f(xi).  

Then, by Taylor's theorem, 

~ i ( ~ i )  = t 1 2 tl 2 A,&,(O)+~A14,, (O) + o(Ia,h,t ). (26) 

If & is chosen by Newton's method, then 

& = -&;(O) /&7 (0) = - (h , ,  f '(x3)/(h~, f'(xi)h~) (27) 

and 

Thus, 

IA~hil ~ (1/m)lf'(xDI. (28) 

4 (A3  = ' : " -(4~, ( 0 ) ) / 2 & ,  (0) + o(f(xl)[2). (29) 
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If hi is chosen by Rule (M), then 

f(xi+l) - f ( x i )  -< f(xi+ 1) - f ( x i ) ,  (30) 

where x~+l is a Newton's step along h~ from x~, that is, 

Y~i+l = x, - [~bl (0)/6,'.' (0)]h,. (3 t) 

Thus, the right-hand side of (30) is equal to (29). Therefore, for At chosen by 
Newton's method (29) or Rule (M), 

4~(hi)=f(x~+l)-f(x~)<--[4J~(O)]2/2&f(O)+o(lf '(xi)12).  (32) 

The theorem now follows from Lemma 3.2. 

Asymptotic Properties of Rules (G) and (A'). We shall now show that 
the rate of convergence of either (1) or (3) with either Rule (G) or (A'), with 
appropriate choices of ~ and 8, can be made to approach the Kantorovitch 
ratio. To be precise, we have the following theorem. 

Theorem 3.4. Suppose that f satisfies Assumptions (A1), (A2), (A3), 
(A4). Let {xi} be a sequence converging to x* defined either by Eq. (1), 
where hi satisfies (2), or Eq. (3), where Fi satisfies Assumption (A5). Also, 

1 let h~ be chosen according to either Rule (G), with a = ~-E, or Rule (A'), 
with a 1 1 ½. = ~ -  e and/3 = ~ + ~, 0 < e < Then, {x~} converges linearly with rate 
q1(e) if Eq. (1) is used or qE(E) if Eq. (3) is used, where 

and 

lim qk ( E ) = da 
E-~0 

d l  ~-- 

(M - m) + (M + m)~/(1 _p2) 

(M + m) + ( M -  m)x/(1 _pZ), 

dE = (R - r ) / ( R  +r).  

Proof. For Rule (G), using (4) and (26), we have 
1 It t 
~ - e - <  1 +[h,6,  (O)/24~,(O)][ol(I,~,h,I)=/xd~(O)]<½+~, (33) 

where we recall that 

4~ (,~ ) = f(x~ + ,~h~) -f(x~).  

From (5), the left-hand inequality in (33) holds for Rule (A'). From (6) and 
(26), 

l+,~,4d(o)/2~4~I(o)+~odlX,h,12)/A,4~I(o)<½-E. (34) 
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Multiplying through by 

and noting that 

we get 

1 1 /3 = ( ~ - ~ ) / ( ~ + E ) ,  

/3 = 1-2ef (½+E) ,  

1 + hd~ ~' (0) /24~;  (0) 2 2 , 1 I +/3 o2(IX~hil ) /A~b , (0 )~ -e+2e / (~+e) .  (35) 

Combining (33), (34), (35), there exists a function 03, which depends on 
which stepsize is used, such that 

½-,<-l+hi,~'(O)/2~'i(O)+o3(lX~hil2)/&~l(O)<-½+3,, (36) 

when either Rule (G) or Rule (A') is used. Since, by assumption, xl 
converges to x*, hlh~ converges to zero. Therefore, 

1 _ i ( O ) / 2 q ~ i ( O ) 4 - X i P i - ½ + 4 4 ,  ~ - ~  < 1 + high" ' < 

where v~ ~ 0, which yields 

-4~[ (0)(1 + H(e) )  
h~ = (37) 

;' (0){1 + [~I (0)/~ I' (0)]~}' 
where 

rH(E)I < 8E. 

Using (26), we have 

f(x~÷l -f(xO) = -[(&~ (0))2/2# 7 (0)]([1 - H2(E)] 

- 211 + H(e)]~,i)/{1 + [4~ ~ (0)/~b,'.' (0)]~,~} 2 + o (I f'(x,)[ 2) 
= -[(4~ (0))2/24 7 (0)][1 - H2(e)](1 + v~) + o(lf(x,)12), (38) 

where ~ ~ 0 [the boundedness of Ai follows from (37)]. The theorem now 
follows from Lemma 3.2 with s; in (25) equal to z,~[1 - H 2 ( E ) ] - H 2 ( e ) .  

C o m b i n e d  S t e p s i z e  R u l e s .  It is desirable to have stepsize rules so that 
the overall minimization algorithm (i) is guaranteed to converge, (ii) has rate 
equal to the Kantorovitch ratio, and (iii) does not require extensive numbers 
of functional evaluations at each step. This can be accomplished by combin- 
ing interval stepsize rules of the form (4) with stepsizes that minimize 
polynomials interpolating 

t~i (A)  = f (Xi  4- A hi ) - f ( x i ) .  

Goldstein (Ref. 2) essentially used this idea in his quasi-Newton method; he 
noted that, if Fi in (3) converged to if(x*), where x* is the minimum of f, 
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then hi = 1 would satisfy the Goldstein stepsize rule [Rule (G)] for large 
enough i, thereby not requiring a search to satisfy (4). In this section, we shall 
present one such stepsize rule. This algorithm combines Rule (A) with a 
secant-type step to yield an algorithm which converges under very general 
assumptions, which converges with linear convergence rate equal to the 
Kantorovitch ratio, and which eventually (i.e., for large i) does not require a 
search along a line. 

The secant-type step referred to is the step that minimizes the parabola 
defined by ~bi(0), ~b~ (0), 4~i(~), where 

q~i (~)  = f ( x i  -- ~ F i f '  (Xi) ) -- f ( x t )  

and E > 0 are given. Letting b (4:) equal the step, it is easy to show that 

b (~:) = -~h; (0)~:2/2[&, (~) - ~b ~ (0)~]. 

The new algorithm is basically (3) with Rule (A), with the exception 
that, at each step of Rule (A) [i.e., each time, assuming that (5) is not 
satisfied, the prospective step length is reduced from Bid to Bi+ad], f ( x i -  
b(~)Fif'(xi)) is also calculated, where 

~=BJ+td.  

The steplength ~ or b(~) that gives the lower value o f / ,  say h, is then 
substituted into (5). If the test passes, then h is used as the steplength; if not, 
~: is again multiplied by/3, and the process repeats. The complete algorithm is 
given below. 

and 

Algorithm 
StepO. Given xo, a ~ ( 0 , ½ ) , B ~ ( 0 ,  1), d > 0 ,  i = 0 ,  j = 0 .  
Step 1. Set 

x = xi - Bidrif'(xi). 

Step 2. Calculate 

fb(BJd) = f(x  ) -  f(xi) 

Step 3. 

~'(o) = ( f  (x~), r , f  (x~)). 

bj = -4, '(O)(BJd)2/2[~ (Bid) - ~'(O)B Jd]. 

Step 4. Calculate f ( x -  bjFf(xi)) .  
Step 5. If 

f ( x  - b j F f ( x B )  < f(x) ,  

set h -- bi. If not, set h = Bid. 
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Step 6. Does ,~ satisfy Rule (A), i.e., (5)? If yes, go to  Step 7; if not, go 
to Step 8. 

Step 7. Set )t~ = A, x~+l = xl -AiFif'(xi), i = i + 1, j = 0; go to Step 1. 
Step 8. Let j = j + 1; go to Step 1. 

Theorem 3.5. Suppose that f satisfies Assumptions (A1), (A2), (A3), 
(A4). Let  {x~} be a sequence converging to x* defined by the above 
algorithms, and Suppose that F~ satisfies Assumption (A5). Then, there 
exists a K such that, for i > K, & = bo or Ai = d (i.e., for each i, the algorithm 
will pass through Step 5 only once) and {x~} converges linearly with rate 
q = (R - r ) / (R  + r). 

Proof. It is clear that {xi} converges with rate at least as large as would 
occur if only R~lle (A) were used, since the decrease at each step is, by Step 5, 
at least as large as the decrease using Rule (A). From Theorem 3.1, {xi} 
converges linearly. Let 

b = bo = -4,~ (O)d2/2(4, , (d)-  4,~ (0)d). 

Using (26), we have 

1 # 0 + 0  ' X  2 [4, , (d)-4 , ' (O)d]/d2=~4, ,  ( ) i ( I :(  i)I ), (39) 

and so 

b = -4,~ (0)/[4,,': (0) + 2oi ([f'(xi)12)]. (40) 

Again, using (26), we have 

4,, (b)/b4, ~ (0) = 1 + b4, ~' (0)/24, ~ (0) + o2(t/'(xl)12)/b4, ~ (0) 

= 1 - 4, 7 (0)/[24, 7 (0) + 401(1/'(x~)12)] 

- { [4 ," (o)+ 2ol(If'(x,)12)]/(4,~(o))2}o2(lf1(xt)12), (41) 

which converges to ½ as i ~ oo. Therefore, since a < ½, there exists a K such 
that (5) will be satisfied for i->K, and thus & = b0 or ai = d for i - K .  
Combining (40) and (41), we have 

4,,(b) = (½ + e,)b4,1(O) = -[(4, ~ (0))2/24, ," (0)](1 + 2ei) + o3(tf'(x,)12), (42) 

where e~ -, 0 as i --) oo. Suppose that i > K, so that b satisfies (5). Then, from 
Step 5 in the algorithm, 

or  

f ( X i + l )  "< f ( X  --  bFi.f'(x,)), 

4,1(A ) <-4,i(b ). 

The theorem, therefore, follows from (42) and Lemma 3.2. 
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4. Conclusions 

In this paper, we have investigated the convergence properties of 
descent methods with various rules for choosing the stepsize. We have 
shown that many such methods have linear convergence properties. The 
convergence of the methods has been compared to the convergence of the 
descent method where the stepsize is the minimum along a line [i.e., Rule 
(M)]. It has been shown that this rule can be replaced by rules of the form due 
to Goldstein-Armijo [i.e., Rules (G), (A), (A')], with a controllable 
degradation in convergence rate. Furthermore, we have exhibited a descent 
algorithm that combines a Goldstein-Armijo stepsize rule and a secant-type 
step to yield an algorithm that converges with the same rate as the descent 
method with Rule (M) and which eventually (i.e., dose to the minimum) 
does not require a search to determine an acceptable stepsize. 

5. Appendix: Proof of Lemma 3.2 

Equation (25) implies that 

f ( x i + l )  - f ( x * )  -< f (x i ) - f (x*)  - [(4~ (0))z(1 + si) /24)~'  (0)] 

+ o (If'(xe)12). (43) 

Since f ' ( x * )  = O, 

f ' ( x i )  = f " ( x * ) ( x i  - x *) + o (Ixl - x * 12). (44) 

Using Taylor's theorem repeatedly, we have 

f(x,) - f ( x * )  = ½( ( x , -  x*) ,  f " ( x * ) ( x , -  x *)) + ol(Ix, - x *t 2) 

= ½((x, - x * ) ,  f ' ( x , ) )  + o2(Ix~ - x *  12) 
= ½ ( f ( x i ) ,  ( f " ( x * ) ) - a f ' ( x , ) )  + o3(]xi - x'12). (45) 

Since f is three times continuously dilferentiable, 

i f ( x * )  = f " ( x i )  + o4(Ixi - x*]) .  (46) 

So, using Assumption (A3), we have 

f ( x i ) - - f ( x * )  = l ( f ' ( x i ) ,  ( f " ( X l ) ) - l f ' ( x i ) ) + O 5 ( I X i - - X * ] 2 ) .  (47) 

Combining (43) and (47), we have 

[ f (Xi+l)  -- f ( x * )  ] / [ f ( x i  ) -- f(x*)] 

--< 1 -- (&l (0))2(1 + sl) /d~7 (O)[ ( f ' ( x i ) ,  ( f " ( x i ) ) - l f ' ( x i ) )  + Os(lXi - x*[2)] 

+ 0 ( l f ' ( x i ) [2 ) / ( f ' ( x i ) ,  ( f " ( x i ) ) - l f ' ( x i ) )  + 05(Ix, - x*I2). (4'8) 
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Using  (44) and A s s u m p t i o n  (A3),  we see that  the last t e rm  on  the r igh t -hand  
side of  (48) goes  to zero  as i ~ m.  So, there  exists a s equence  Ex,~ + 0 and a K 
such that,  for  i > K, 

[ f (x ,+ , ) - f (x*) ] / [ f (x , ) - f (x*) ]  

-< 1 - (~b~ (0))2(1 + &)/(b~ (O)[<f'(xi), (f"(xi))-lf '(xi)) + os(Ix~ - x*12)] 

+ el,i. (49) 

If  {xi} is a sequence  f o r m e d  by (1), 

(q~ (0))2/~b7 (O)(f'(xi), (f"(xi) )- l  f'(xl)) 

= (hi, f'(xi))2/(hi, f"(xi)hi) (f '(xi), (f"(xl))-lf '(xi)) 

>- a2th~l 2 . I f ' (x ,)I2/(h, ,  f"(xl)hl)(f '(xi),  (f"(xi))-l f '(x,)) 

>- 4 m m p 2 / [ M  + m + ( m  - m)#(1 - p 2)] & Ca, (50) 

where  (2), (10), and the Schwar tz  inequal i ty  were  used. If {xi} is a sequence  
f o r m e d  by  (3), 

(~', (0))2/4,~ ' (0)(f'(x,), ( f " ( x , ) ) - l f ( x , ) )  

= ( f ' ( x 3 ,  r , f ' ( x , ) )2 / ( f ' ( x , ) ,  V , f" (x , )F, f ' (x~)) ( f ' (x , ) ,  (f"(xi))- ' f '(xi)) 

>- 4rR/ ( r  + R)2 ~ C2, (51) 

where  we used (8), with 

s = r ] / 2 f ' ( x , ) ,  A = 

There fo re ,  for  e i ther  a lgor i thm [i.e., (1) or  (3)], 

4/", ( O)((f'(xi), (f"(xi) )-l  f'(xl)) + os(lxi - x'12))/(4~ (0))2(1 + si) 

-< 1/(1 + s,)Ck + & 7 (O)os(tX, -- x*12)/(&; (o))=(1 + st) 

_< 1/(1 + si)Ck + 2Mos(Ix,  -x*12)/]f'(xi)l 2 

-< 1/(1 +si)Ck + E2,i, (52) 

where  e2,~ + O. Combin ing  (49) and (52), we have  

[f(Xi+l)--f(x*)]/[f(xi)--f(x*)]<-- l--Ck(l +si)+~3,i, (53) 

where  E3.~ -~ 0. Now,  

4 M m p  2 [M - m + ( M  + m)v/(1 - f 1 2 ) ]  2 
1 - C 1  = 1 -  

[ M  + m + ( M  - re)x/(1 - p2)] 2 - [ M  + m + ( M  - re)x/(1 - p2)]2 

= d~, (54) 

1 - C2 = 1 - 4 r R / ( r  + R)2 = [(R - r ) / (R  + r)] 2 = d 2. (55) 



204 JOTA: VOL. 33, NO. 2, FEBRUARY 1981 

Let 

qZk (Si) = d~ - CkSl, 

and let S ~ [0, ½] be small enough, so that lsi] <- S for i -> K implies 

qk(Si) <- Ok < 1 

(note that dk is always less than 1). Then, 

[f(xi+.) - f ( x * )  ]/[f(xi) - f(x*)] -< (q2 (si+.-1) + E3,i+.-1 ) ' "  (q~,(si) + E3,i) 

n 
O 2 k n  "4" •4 , i ,  ( 5 6 )  

where 

e~,i~O, as i~oo .  

From (45) and Assumptions (A3) and (A4), 

mlxi - x*t 2 <- f(xD - f(x*) <- Mix,  - x*l 2. 

Therefore,  

and so 

Ix,+. - x*12/ix,-  x*! 2 ~ (M/m)Q2k" + E~.i, 

(57) 

(58) 

1-V~EIx,+. - x * t / I x , -  x*13~ O~ 4 ( M /  m ), (59) 
i --~ oO 

where Qk< 1, and so {x~} converges at least linearly. Also, qk(S~)-~dk 
whenever s~ ~ 0; therefore, 

Y ~ [ l x , + . - x  I / I x , - x  I]--dk, (60) 
i-> eX) 

if s~ ~ 0. This proves the remainder of the lemma. 
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