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On the Game of Two Cars
P. BOROWKO' AND W. RZYMOWSKI
Communicated by G. Leitmann

Abstract. Necessary and sufficient conditions for the existence of the
evasion strategy in the so-called game of two cars are given.

Key Words. Differential games, pursuit-evasion games, piecewise
programming strategy, evasion strategy.

1. Introduction

Let us consider a well-known (Ref. 1) pursuit-evasion game in which
the evader and the pursuer move according to the equations

xi{t) = vg cos x5{1),

-~
[
Mg

x%3(t) = vg sin x3(1),
x3(1) = u(t),

and
yi(t) = v, cos ya(1),
ya(t) = v, sin y3(1), (2)
yi(t)=w(1),

respectively; here, ¥ and w are measurable functions,
u:{0, 0y {—a, a, f<acRk,
w:[0, 0)>[-b, b], 0<belR,

with vg, v, real, positive numbers.
Denote by U, t€[0, ), the set of all measurable functions u:[f, )~
[—a, a] and by W the set of all measurable functions w: [0, c0) = [—b, b1,
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Consider the set of all pairs of the form (e, {t,}); here, ¢ is a function
defined on the set [0, 00) X R® XR®, such that

e(t,x,y)eU,  (x,y)e[0,00)XR* xR,
and {t,} denotes an increasing sequence of nonnegative numbers satisfying
the following conditions:

0= t(), lim tn =00,

n-»00

This set is called the set of strategies of the evader and is denoted by &.
It is not hard to see that & is the so-called set of piecewise programming
strategies (see Ref. 2), in which decisions about the control are taken at
times from the sequence {1,} only.
Also, consider the set of all functions p: Uy~ W such that, if

u, a € UOa te [Os (D), ul[O,r] = l“z|[0,l]5
then
P(“)i[o,:}zp(?z)ﬁo,q-

This set is called the set of strategies of the pursuer and is denoted by .

Lemma 1.1. Assume that
x = (X, Xz, X3) R, y =1, 2, y3) R,
(e, {t,}) € &, pe P

There exists exactly one pair of trajectories

x=(Xy, %, %3),  ¥y=(¥1, V2 ¥3)

and exactly one pair of measurable functions (u, w) € U, X W, such that:
i) w=p(u); '
(ii) x is a solution of (1) with the initial condition x(0) =Xx, and y is
a solution of (2) with the initial condition y(0) = y;
(i) ulp,,,1= €(tw X(2a), Yt )11 PEN.

Proof. It proceeds by induction.
We say that the trajectories from Lemma 1.1 are determined by the
initial situation (x, y) and by the strategies (e, {1,}) and p.

Definition 1.1. The pursuer wins for the initial condition (x,y)e
R> xR?, if there exists a strategy p € P such that, for any strategy (e, {t.}) € &,
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one can find [0, co) for which
x(=yt), i=12;
here, the pair {x, y) is determined by (x, y), (e, {t,}}), p.

Definition 1.2. The evader wins for any initial condition, if there exists
a strategy (e, {¢,}) € €, such that

(1 (1), x2(1)) # (31(1), y2(1)),

for any (x, y) e R® XR>, (x;, x,) # (1, y»), any strategy pe P, and every t€
[0, c0); here, the pair (x, y) is determined by (x, y), (e, {t.}), p.

2. Main Result

Theorem 2.1. The evader wins for any situation iff

vp < Ug, bup < avg, (3a)
or

Vp = U, b<a. (3b)

Without loss of generality, we may assume that

vg =1, vp =1,

where v € R, v> 0; we will consider such a game from now on. In this case,
the condition (3) assumes the form

v<i, bv<a, (4a)
or

v=1, b<a. (4b)

3. Necessity

{a} Let us assume that v> 1,

Lemma 3.1, Assume that the function u:[0, ©0) > [—4, a]is measurable
and, for

1€0, a 2bVo? 1],
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we have

w(t) = {u(t) sin{ft u(s) ds}}/{vz—-—cosz[j! u(s) ds:}}.

Then, w projects [0, a by v*— 1]into [—b, b] and it is a measurable function.

Lemma 3.2. Assume that the functions u and w are the same as in
Lemma 3.1 and, for

te[0,a*bvv*—1],

we have

x,(1) = Jlsin [7/2%-"’8 w(T) dq'] ds,

0 0

ya(t)=v J'r sin[w—arcsin(u“) +Js w(T) dr] ds.

0 0

Then,
x (1) =y, (1),  tef0,a bV’ ~1].

Proof. Because

x,(0) = y,(0),
it is sufficient to prove that, for

te0, a2bvv’—1],
we have

x5(1) = ya(1).

Lemma 3.3. Assume that a > b, the functions u and w are the same
as in Lemma 3.1, and

to=min{a >bvv?—1,Vo—1/avv+1},

d=v*~11,—(a/2)(1 +0)t3;

assume also that, for ¢ {0, ,], we have

x,{t)= J* cos[w/?_%-r u(r) d’l‘:] ds,

¢ 0

t s

cos[w—~arcsin(v"‘)+J w(r) dT:| ds.

0

Y1(t)zd+vj

0
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Then,
yi{to) <x(to).

Proof. Let
f()y=vo*=1t—{(a/2)(1 +v)%
Then,

(>0, te(0,2v—1/avo+1).
Hence,

d=f(t,)>0.
From the inequality b < a, and since

sin[# —arcsin(v™)]=v",
it results that

y1() = x,(1) = y,(0) —x,(0) + t[y1(0) — x(0)]

+ j ” Y1)~ xi(7)] dr} ds

<d+tv cos[ 7 —arcsin(v™")]+(a/2)(a+vh)1?
=d Vo~ 1t+(a/2)(a+vb)> < d ~f(1).
Therefore, for t=i,, we have
yilte) —x1(2) <d — f(t,) =0.
(b) Letnow v<1 and a < bw.
Lemma 3.4. Assume that the function u:{0, ©0) - [—a, a]is measurable
and, for
1[0, Vb0’ —a?/avb’ = ad),

we have

w(t) = {—u(t) cos“: u(s) ds]}/\/vz —sinz[fl u(s) ds:|'.

Then, w projects [0, v b*v>— a/ av'b?— a?) into [—b, b] and it is measurable,

Lemma 3.5. Assume that the functions u and w are the same as in
Lemma 3.4 and, for

te[0,Vb*P—a’/avb’ - a7,




386 JOTA: VOL. 44, NO. 3, NOVEMBER 1984
we have

x,(t)= J‘t sin[r u{r) dv] ds,

yt)=v J! Sin[w+Js w(r) dT] ds.
0 0

Then,
() =y(t),  te[0,Vb*v’—a*/avb’—a?].

Proof. As before, it is sufficient to show that
x5(1) = yi(1).
Similarly as for the case v> 1, it is now possible to choose
d>0, f,e[0,vb*v*—a’/aVb*—a?],
such that, if

x{t)= Jt cos U’s u(7) dv} ds,
0 Q

y(t)=d+v J't cos[vr%—Jls w(7) dr} ds,

0 o

then
yi(to) < x,(1o).

Thus, it now follows that, for v =<1 and a < by, the pursuer can catch the

evader also.
(¢c) Inthe case where v=1 and b = g, it is sufficient to consider the
same initial condition and the same argument for

w(t)=—u(t), te[0,00),

as in case (b).

In cases (a), (b), (c), there exists an initial condition (x, y), (x;, x,) #
(31, ¥»), for which the pursuer wins. This can be obtained easily from Lemma
1.1 and the above considerations.

4. Sufficiency

Let us assume that v < 1 and bv =< a. It is sufficient to prove the existence
of the evasion strategy for the evader for bv = a only. If bv < g, it is enough
to use the strategy found for a™® = bu.
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Let us fix arbitrarily a, 8 €[0, 7/2]; assume that

sin a = v sin B.

Lemma 4.1. The following conditions are satisfied:
0<arcsin v <w/2, a [0, arcsin v].
We introduce the notation

T=aYm/2-a).

Lemma 4.2. The following inequality is true:

0<a '(m/2-arcsinv)< T
Lemma 4.3. We have that o <98 and, if 8> 0, then 0<a <vB.

Proof. Observe that

sin « = v sin B, vsin 8 <sin {(v8).
Therefore,

a =< pf.
If B>0, then

sin a = v sin B <sin (v8);
and, because v >0, we have

O<a<upB.
Lemma 4.4. Assume that, for =0,

x,(1) = Jl sin(a +as) ds,

[

yat)=v J‘T sin l:B +js w(T) dT] ds,

where w:[0,00)~>[-b, b] is an arbitrary measurable function. Then, for
t< (0, T], the following inequality is satisfied:

x(8) > p(1).

Proof. Let
H = b“'(ﬂ*/2—ﬁ).
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Obviously, ¢, = 0. Because of Lemma 4.3, o < 18] therefore,
a+at;<v(B+bt)=vm/2<w/2.
Thus, it can happen that
H<T
If £,> 0, then, for r€[0, t,], we obtain that
sin[ﬁ +J’l w(s) ds] <gsin(B + bt).
0

The inequality
a+at<pB+bt

is satisfied for all 1> 0. Observe that the cosine function is decreasing at
[0, w/2]. Therefore, for 1€ (0, t;], we have

[sin(e +at)] = a cos{a +at) > vb cos(B + bt)
=[vsin(B +bt)].
Thus, for t€(0, #,], we obtain that
x5(t) =sin{a +at)> v sin{B +bt)

=p sin[ﬁ +JI w(s) ds] = yi(1).

0

If we notice that
vsin{B +bt))=vsin(w/2)=1,
then, for any ¢t =0, the following must be true:

v sin[,@ +Jl w(s) ds] = p sin(B + bt,).

0

From the inequality

sin(a +at) > v sin(B + bt), te (0, 4],
it follows that

sin{a +at,) > v sin(B + bt,).

Observe that the sine function is increasing at [0, 7/2). Therefore, for
te (tla T],

sin(a + at) > sin(a +at,).
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From the above, it follows that also, for e (1,, T],

x3(t) =sin{a +at)>sin{a +at,)

¢

>vsin(B+bt))=0v sin[ﬁ +J w(s) d’s] = yh(1).

0

This ends the proof of the inequality
x:(1) > (1), te(0, T,

for ¢,>0.
In the case where 1, =0, we use the fact that, for te (0, T],

sin{a +at)>sin(a +at,) = v sin(B + bt,)

=p=yp sin[ﬁ+Jt w{s) ds]
¢

Lemma 4.5. Assume that w:[0, c0)-[—b, b] is a measurable function.
Then, for 1€[0, 5™'#/2], the following inequality is fulfilled:

sin[,B +j” w(s) ds] zsin(B - bt).

Lemma 4.6. Assume that, for =0,

(1) = fr sin{a —as) ds,

yaAt)=v jﬂ Siﬁ[ﬁ 'i“js w{7) d*r} ds,

where w:[0, co[—b, b] is an arbitrary measurable function. Then, for
te (0, b7'7r/2], the following inequality is fulfilled:

x(1) < p(1).

Proof. It is sufficient to prove that, for 1€ (0, b '7/2],
x3(6) < yi(1).
Because of Lemma 4.5, it is enough to show that
sin{a —at) <wv sin(8 — bt), 1e(0, b7 'w/2].
Let
Sty =sin{a —ar), g(t)=vsin(B— bt), =0,
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Therefore, for ¢ 0, we obtain
f1(t) = —vb cos(|a —vbt|),
g'(t) = —vb cos(|8 — bt|).

Now, assume that 8 > 0. Thus, from Lemma 4.3, we obtain that 0 <a < 98.
Let

f=a/uvh, L={(B+a)/b(l1+v), L=(B-a)/b{(1-v).
Therefore, we have t,> t,> I, and also

| —vbt)| =|B — bty], i=1,2.

(5)

We can see that
|a — vbt| <<|B - bt tel0, ;) L (ty, ), ©)
la —vbt|>|B — b, te (1, ).

Moreover,

h=(B+a)/b(1+v)<(B+uvB)/b(1+v)=b"'B<b"'uw/2.
If
b'm/2<t,,
then, from (5) and (6), it results that
ry<g(, 1€(0,n);
and, from
£(0)=g(0),
we also get
f<g(t), (0,4}
From (5) and (6), it follows that, for
te(t, b 'aw/2),
the following inequality is satisfied:
f(5)>g'(1).
In addition (see proof of Lemma 4.3),
F(b™'m/2) <sin(vB —vw/2)<wvsin(B—w/2)=g(b™'m/2).
Therefore,
f(t)<g(1), te(t, b 'm/2].
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For
t,<b 'w/2,

using an analogous argument, it is sufficient to prove that
f) <g(n);
this is obvious because
—7m/2<a-vB<0;
therefore,
f(t) =sin[(a ~vB)/(1 -v)]<vsin[(a —vB)/(1 - v)]= g(1n).

Thus, in the case where 8> 0, our lemma is proven. If =0, then a =0;
and, for

te(0, b ),
we have

f(t)y=sin{a —vbt) <wvsin(B—bt)=g(1).
Thus,

f(t)<g(t)a te(oa b—lw/z]’
and this ends the proof of Lemma 4.6,

Lemma 4.7. Let
aefa, w/2].
Assume that, for

te[0, a”'(w/2—arcsin v)/2],
we have
£
%(1) =J sin(a -+as) ds,
4]
and the function x,(f) is the same as in Lemma 4.4. Then,

(1) = x,(1).

Proof. From Lemma 4.1, it follows that, for
t€[0, a '(w/2—arcsin v)/2),
we have

xX(t) = x5(1).
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Lemma 4.8. Let
ael0, /2], sin & = v sin 8.
Assume that, for t=0,
H
%,{(1) =J sin {& +as) ds,
0
and the function y,(t) is the same as in Lemma 4.4. Then, for
te(0, a '(ar/2 —arcsin v)/2],
the following inequality is satisfied:
X,(1) > yo(t).
Proof. Take the function x,(¢), considered in Lemma 4.4. From
Lemmas 4.7, 4.4, 4.2, it follows that, for
te[0,a '(w/2—arcsin v)/2,
we have

X1y = x3(1) > po( ).
Lemma 4.9. Let
Be[-m/2,0]
For
tel0, b /4],
assume that

yo(t)=v Jl sin[,B +JS w(r) d’T] ds,

0 0

w(t)=v Jtsin[ﬁ+JS w(r) dT] ds,

0 0

where w: [0,00) > [—b, b] is an arbitrary measurable function. Then,
V2(8) < ya(2).

Proof. It can be shown that

yi()=§5()=0,  te[0, b7 7/4].
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Conclusion 4.1. Let
ael0,7/2], Bel[-m/2,m/2), sind=vsinf.

For t=0, assume that

()= J sin{a& +as) ds,

4]
y(t) =0 J sin[ﬁ+J wiT) d*r:‘ ds,
0 )
where w:[0,o0[~b, b] is an arbitrary measurable function. Then, for
te (0, min{a (w/2—arcsin v)/2, b 'mw/4}],
the following inequality is fulfilled:

%,(6) > 3o(1).

Proof. Let us consider
B* =max{8, 0}, a* = arcsin{v sin 8*).

Let us also note that values of o and B, with a, 8 €[0, 7/2], satisfying the
equality

sina =wpsin 8,
have been chosen quite freely. In particular, we can assume that
a=qa* B=p*
If =0, then
sin @ = vsin § = v sin B%;
and, from Lemma 4.8 and with
p=p*=4,
we obtain
) > (1), 1€(0, a”'(w/2—arcsin v)/2].
If § <0, then

sin @ =0=vsin 0= v sin B*.
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Therefore, from Lemma 4.8 and for 8 = 8%, and if

yi(t)=v J.i sin[ﬁ*+r w(r) d'l'} ds,

o
then
(> yE(t),  te(0,a '(w/2—arcsin v)/2}.
Because of Lemma 4.9, for 8 = 8% as well,
yi(O=3,(1),  tel0,b7'w/4]
Therefore, for
te (0, min{a '(w/2—arcsin v)/2, b~ 7/4}],
we have
%(6) > y3(0)= 5a1).
Using Lemma 4.6 instead of Lemma 4.4 and applying an argument

analogous to that presented above, we obtain the following conclusion.

Conclusion 4.2. Let
a@ef0,7/2), Bel0,7/2], sind<vsinf.
For t =0, assume that

X(t)= ft sin{a —as) ds,

0

Isin{,é%'Js w() dfr] ds,

0

yat)=v J

0

where w:[0, c©)—>[—b, b] is an arbitrary measurable function. Then, for
te (0, min{a"'(w/2—arcsin v)/2, b~ 7/4}],

the following inequality is fulfilled:
x(1) < 3,(1).
Conclusion 4.3. Let

ael0, /2], Bel[n/2,7], sind=vsinf.
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For t= 0, assume that

X(t) = J sin{a +as) ds,

V]
JAt)=1v J sin{é +J w(T) df] ds,
] 3]
where w:[0,0)>{—b, b] is an arbitrary measurable function. Then, for
te (0, min{a '(m/2~arcsin v)/2, b~ 7/4}],
the following inequality is fulfilied:

(1) > (1),

Proof. For t=0,

Pot)=1v Jr sin[w~/§ +JS (—w(r)) dr] ds;

0 Q

and, because
*=m-fel0, 7/2),
it is sufficient to use Conclusion 4.1.

Similarly, considering the remaining cases, we obtain that there is 6 >0
such that, for &, B€[0,27] and 4> 0, and for the initial situation of the
game,

((0,0, &), (d, 0, B)),

the evader can escape the pursuer at least for t€[0, 8]. Thus, there exists
a function e and a sequence 1, = né, n €N, such that the strategy (e, {1,})
allows the evader to win for any situation.

Similarly, when v=1 and b<a.

5. Remarks

(a) In Section 3, it was shown that the condition (3) is sufficient. By
analogous methods, we can prove that there exist R, T>0 such that, for
any initial condition, the evader not only wins, but also, from the time T,
he keeps his distance from the pursuer at not less than R.

(b) The known sufficient conditions for the existence of the evasion
strategy presented in Refs. 3 and 4 cannot be applied to the game described
above.
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(¢) The problem described in this paper has been partially solved in

Ref. 5.

(d) In Ref. 6, similar necessary and sufficient conditions for the

pursuer to effect capture starting from any initial state are presented. From
point (2) of Section 2 of our paper and Theorem 2 of Ref. 6, it follows that,
if vy <vp and bvp < avg, then there exist initial conditions for which the
pursuer wins and there exist initial conditions for which the evader can
avoid capture.
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