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Theorems of the Alternative and 
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Abstract. A theorem of the alternative is stated for generalized sys- 
tems. It is shown how to deduce, from such a theorem, known optimality 
conditions like saddle-point conditions, regularity conditions, known 
theorems of the alternative, and new ones. Exterior and interior penalty 
approaches, weak and strong duality are viewed as weak and strong 
alternative, respectively. 
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1. General Setting for a Theorem of the Alternative 

Assume that we are given the positive integers n and u, the nonempty 
sets ~ :  R ~, X ~ R " ,  Z c  R, and the real-valued function F : X - ~ R  ~. 

Definition 1.1. w: R ~  R is called the weak separation function, itI 

~w a--{h ~ a~: w(h)~ Z}_~ ~ ;  ( la)  

S: R~o  R is called the strong separation function, itt 

~ S ~ { h ~ R ~ :  s(h)~Z}c_ ~. ( lb)  

We want to study conditions for the generalized system 

F(x) ~ Yg, x ~ X, (2) 

to have (or not to have) solutions. We can prove the foUowing theorem. 
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Theorem 1.1. Let the sets ~,  X, Z and the function F be given. 

(i) The systems (2) and (3a), 

w(F(x)) ~ Z, V ~ X, (3a) 

are not simultaneously possible, whatever the weak separation function w 
might be. 

(ii) The systems (2) and (3b), 

s(F(x)) ~ Z, Vx ~ X, (3b) 

are not simultaneously impossible, whatever the strong separation function 
s might be. 

Proof. (i) If (2) is possible, i.e., if 35 e X such that 

then ( la)  implies 

w(F($)) = w(h) ~ Z, 

so that (3a) is false. 
(ii) If (2) is impossible, i.e., if 

h A F ( x ) ~ - ~ ,  V x ~ X ,  

then(lb)  implies 

s(F(x)) = s(h) ~ Z, Vx E X, 

so that (3b) is true. This completes the proof. [] 

Denote by X* the set of solutions of (2), and introduce the sets 

X w = {x ~ X:  w(F(x)) ~ Z}, 

X S = { x  ~ X:  s (F(x) )e  Z}. 

In Theorem 1.1, (i) can be written as 

X *  n X  w = ~  

and (ii) as 

X * u X  ~ =X. 

These two cases show weak alternative between (2) and (3a) and strong 
alternative between (2) and (3b), respectively. If, within a family of weak 
(strong) separation functions, it is possible to guarantee also 

X W = X, when X* = 0 ,  
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so that 

X * u  XW = X 

holds (or 

X*  = ~ ,  when X ' = X, 

so that 

X * n X ~ = O  

holds), then we say that alternative holds between (2) and (3a), or (3b). To 
deepen this crucial aspect, it is useful to introduce the set 

~-a-{h e R~: h = F(x) ;  x e X } ,  

and note that (2) is impossible iff 

In this order  of ideas, an important question consists in finding conditions 
on F and X under which a weak (strong) separation function guarantees 
alternative besides the weak (strong) one. In Section 3, this question will 
be analyzed for a wide class of systems. Now, let us show, by means of an 
important instance, how Theorem 1.1 can be used as a source for deriving 
theorems of the alternative or separation (even if they are not in the usual 
form); this is also a case where a weak separation function guarantees 
alternative. 

Corollary 1.1. Let  
p, p i> 1, of which are open. We have 

p+q 

Ac ,=~  
i = I  

iff z there exist 

~iE Di--a {hiERn: 8*(hi; C~) < +oo}, i=1 . . . . .  p+q, 

such that, for at least an index i = 1 . . . . .  p + q, we have 

Xi #o ,  <Ttl, hi)<8*(~.i; Ci), Vhi e Ci, 

C~ _c R", i = 1, . . . .  p+ q, be convex sets, the first 

(4) 

(5a) 

z Throughout the paper, < . , .  ) denotes scalar product; lev~,,f denote the various level sets 
of f ;  6*(A; C ) ~  supy,c(X, y) is the support function of C at )t; C*-a {z: (y, z)>-0, Vye C} 
is the polar of the convex cone C; and cl A, int A, ri A, frt A, - A ,  dim A denote closure, 
interior, relative interior, frontier, complement, dimension of the set A, respectively. 0 
denotes both the origin of a space and the null vector; × marks Cartesian product. 
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and such that 

p+q P+q 
] ' = 0 ,  E 8*(X'; C , )~0 .  (5b) 

i ~ l  i = 1  

Proof. Set 

v = ( p + q ) n ,  

z = ] -~ ,  0], 

= C1 x . . .  x Cp+q, X = Rn, 

F ( x )  = ( x l  . . . . .  x . . . . . .  x~ ,  . . . .  x , , ) .  

Y/" is now a particular linear manifold 3. In place of w of Theorem 1.1, 
consider the function 

p+q 
w,(h; A)= E [ - (  Ai, hl)+8*(A~; Ci)], 

i = 1  

where 

h = ( h  I . . . . .  hP+q), X =(•1 ,  . . . .  )Lp+q). 

Here, ~w is an open halfspace, which contains ~ iff 

A/~ Di, i = 1  . . . . .  p+q, 

and moreover,  f o r a t  least an index i = 1 . . . . .  p+q, we have 

) t i~0 ,  ()t i, hi) < 8*(Ai; C~) ,  Vhi~Cl; 

in the particular case where q = 1, the last condition can be replaced with 
;t ~ 0 only; in fact, such a condition is implied by )t = 0 and 

Hence, wl fulfills ( la) ,  and (i) of Theorem 1.1 can be applied. The convexity 
of ~ and 5( ensures alternative besides the weak one. Thus, (4), which is 
equivalent to the impossibility of (2) in the present case, holds iff there exist 

)J e D~, i = 1  . . . . .  p+q, 

which fulfill (5) and such that 

P+q 
E [-(x', x)+8*(~'; c~)]-<0, Vxea".  

i = 1  

This inequality holds iff condition (5b) is consistent. This completes the 
proof. [] 

3 Thus, the separation of ~ and X falls into the Hahn-Banach theorem. 
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In the particular case where every C~ is a cone with vertex at the origin, 
in Corollary 1.1 Di can be replaced by - C *  (as D~=-C*) and the 
inequality in (5b) is redundant. Corollary 1.1, with q = 1, is due to Dubovit- 
skii and Milyutin (Ref. 1) and has been used to prove a general necessary 
condition for both finite and infinite-dimensional extremum problems. 

Note that the separation of several sets, in the sense of Ref. 2, can be 
reduced to the separation of only two sets, by means of the device, which 
has been adopted in the proof of Corollary 1.1. In fact, the sets C~ are 
separated (Ref. 2), iff there exist linear functionals It and scalars as, satisfying 
the condition 

Y. li=0, Xai-<0, 
i i 

which is condition (5b), X ~ being the gradient of l~, and such that 

G ~ { x ~ R " :  h(x)~- ,~,}. 

Hence, Corollary 1.1 expresses a condition for separation of several sets. 
Now, let us view as weak separation functions some well-known func- 

tions introduced in various contexts to handle optimization problems. With 
this aim, consider the following particular case: 

r,=l+m, ~={(u,v) ERt×Rm:u>O;v>__b}, 
f: X ~ R  t, g: X ~ R  m, F(x) =(f(x),g(x)-b),  

z=]-oo,0], 
h=(u, v-b), 

(6) 

where the positive integers l and m, the m-vector b, and the functions f 
and g are given. Consider the function 

w2(u,v;O;~)a=(O,u)+'y2(v;to)-y2(b;to), OER~+,toE~, 

where y2 is a nondecreasing function of v, Vto e f~, ft being the domain of 
the parameter oJ. If either 0 = 0  and 3'2 is increasing or 0 ¢ 0, then w2 
satisfies (la), and hence guarantees the weak alternative. The particular 
case of "/2 aftine is of special interest: 

~,2(v, oJ) = (to, v), to z f~ =R+'.  

We will see that most of the functions used in an optimization context are 
of the w2-kind (Ref. 3). 

Finally, let us note that Theorem 1.1 generalizes Theorem 1 of Ref. 4. 
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2. Regularity 

In order to deepen the analysis, we have to introduce some further 
concepts. This will be done in the case where 4 

is a convex cone with vertex at the origin 0 ~ ~ (7) 

Consider the sets 

~(x) a__{hER~:F(x)_hEclYg},xEX; ~ga= [..j ~(x). 
x E X  

The former is the convex cone with vertex at F(x), obtained by translating 
-c l  Yf; the latter is called the conic extension of Yf in respect of -c l  ~ 
is a key set in further analysis, and fience its properties are important. First 
of all, note that ~ is not necessarily closed, as simple examples show. It is 
useful to introduce the tangent cone, s say T(/~), of ~ at/~E cl ~, and set 

~o =a (cl ~) n (cl ~) .  

Now, we can get further insight about the weak alternative. When (2) is 
impossible, (3a) is not necessarily possible; however, something can be 
stated. An instance is offered by the following property. 

Lemma 2.1. Let C be a face 6 of cl ~. If (2) is impossible and ~fo # O, 
then we have 

T ( h ) m i n t ~ = O ,  V h e ~  °, 

0 E ~° ~ cl ~w, 

~°c~ri C # O ~ C _ _ _  T(0), 

T(0) m ri C # O O  C __q T(0). 

(8a) 

(8b) 

(8c) 

(8d) 

Proof. Assume that the cardinality of T(h) is >1, otherwise (8a) is 
trivial. Ab absurdo, suppose that (8a) is false, so that 3/~E ~° such that 

T(ff) hint  ~ #  0 .  

4 Most  applications, even if not all, can be reduced to (7). 

s The tangent  cone is defined as the set of /7+ h for which there exist a sequence { h r} __q ~ such that 

lira h '  =/~, 
r ~ ÷ O o  

and a positive sequence {%} c R, such that 

lira % ( h r - / ~ )  = h 
r ~ - 6 o o  

When  the tangent cone reduces to a singleton, condition (8a) becomes meaningless. A more  
general  definition of tangent  cone can be achieved by replacing lira with a more  general 
concept. 

6 Defined as the intersection between cl ~ and a supporting hyperplane for it. 
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Let 

/~ E T(h) n in t  Yt'. 

r C Then, there exist a sequence {h } _ ~ and a positive sequence {at} c R, such 
that 

lim h'  =/~, lira O~r(h r - h) = h -  h-. (9) 
r - ~ + o o  t - ~  + o 0  

Set 

ht ~=h+ot,(h - h ) .  

The second part of (9) implies 

lim /~r =/~, 
r--~-,Poo 

so that 3 r' such that 

/~t Eint N, Vr>-'r'. 

From (9), we get now 

lim [(1/at)( /~t- /~)]  = lim ( h r - / ~ ) = 0 ;  
r - ~ + o ~  t - >  -FoP 

hence, as 

lim (/~t-/~) = / T - / ~  0, 
r ~ + o o  

as the impossibility of (2) implies ~ n ~g = Q and 

~ n  Y / = Q ~  ~ ° n i n t  N = O ,  

we deduce that 

lira a t -  +oo, 
t-.t~ +OO 

so that 3 r" such that 

h~E]h, hr[, Vr>_r ". 

Then, for all 

r -> max {r', r"}, 

the convexity of Y(, ff~ cl ~,  and/~tE int Y( imply 

h t E int ~ ,  

and hence 

~ n i n t  Y(~0. 
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This contradicts the impossibility of (2), and (8a) follows. To prove the 
first _part of (8b), it is enough to show that 0e  cl ~ (as obviously 0e  cl ~). 
Let h ~ ~o, so t h a t / ~  frt ~, as the impossibility of (2) implies 

~o = (frt ~) c~ (frt Yg). 

Then, there exists a sequence {h'}~ ~ which ~/~. Hence, there exists a 
sequence {x r} ~ X such that 

h' ~ ~(xg. 

We have 7 

d(F(x~) ,  frt ~)  ~ 0; 

thus, 

d ( F ( x ' )  - O, cl ~ )  ~ 0 ~  d(~(x~), 0) ~ 0 ~  0 e cl ~. 

To prove the second part of (8b), let /~ecl ~, so that, V~> 0, 3/~e ~ such 
that 

Ilk- hll < 
Then, (la) implies 

TM. 

As e is arbitrary, 

/ ~ c l  ~ ' .  

Hence, 

cl ~ ~ cl ~w 

and, as obviously 

~° __ cl ~, 

the second part of (8b) follows. Now, let 

/ ~  ~f° c~ ri C, 

and consider the translation of - C  with vertex at/~, namely, 

We have that 

t ~ c l  

7 d( •,  • ) denotes the Euclidean distance. 
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and that/~ e ri C implies 

{flh: h e C n C; j8 > O}= C. 

The proof of (8c) is now trivial. Finally, let 

/~ e T(0) c~ ri C. 

Then, there exist a sequence {h/`)~ $ and a positive sequence {a,}c•,  
such that 

lim hr=O, lim ot/`h r= h. 
r ->  -b(~ r--> -boo 

Set 

/~/`= h/`- (1/a,)/~, 

so that the sequence 

{/?} ~_ cl ~, 

and we have 

lira /~/̀  = O, lira otrh" = O. 
r--~-bO~ /`--~ -I-00 

Consider the set 

which is a translation of -C ,  and 

Sa--CnC, srA---({hr}+C) n({h/`}-C).  

Note that 

lim S/` ={0}, lim a,S r= S, 
/'-->-boO r---> -bOO 

and that 

/~eri C~{13h:hc S; f l>O}=C. 

The fact that 

C ~_ r (o)  

S ' c_ cl ~, 

is now obvious. This completes the proof. [] 

Theorem 2.1. Let ~ be convex, (2) be impossible, and C be a face 
of cl ~. We have C c P, for every hyperplane P which separates ~ and ~, 
i lt  

C c T(O). (10) 
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Proof. Sufficiency. Ab absurdo, suppose that a hyperplane, say/5 [it 
exists as ~ and Yg are convex and (2) is impossible], which separates ~ and 
~, does not contain C, so that there exists a ray p___ C ~ c l  ~ with pEP  
[ (8b)~0c /5 ] .  As ~ is convex,/5 supports T(0) at h =0;  hence, as p\{0} 
and T(0) belong to opposite and disjoint halfspaces (defined by /5), we 
have p ~  T(0), which contradicts (10). 

Necessity. Ab absurdo, suppose that C ~  T(0); hence, 

C ' ~ C n T ( O )  

is a subcone of C, such that 

C\C'v~f~ and (C\C')c~T(O)=O. 

Hence, by applying (8d), we have that C' must be a face of C. 
Consider the set, say {P}, of hyperplanes, which separate the closed 

and convex cones cl Y( and T(0), and hence ~. Set 

Tp= P n T(O); 

obviously, 

Te=_ C'. 

For no sequence {h'} c T(0), converging to an element h ~ Te, and for no 
sequence {at} of positive scalars, the sequence {ar(h r -  h)} can converge to 
an element of C\C'; otherwise, such an element would belong to the tangent 
cone of T(0), and hence to T(0). It follows that there exists a P' in the 
above set, such that 

(C\C') n P' = 0 ,  

and then the assumption is contradicted. This completes the proof. [] 

The preceding lemma suggests a definition. Let C be a face of cl ~, 
and let P denote a separating hyperplane for Y( and ~. 

Definition 2.1. When ~ is convex and (2) is impossible, we say that 
(2) is k-irregular, iff 

{C_ P, for every P } ~ d i m  C -< k. 

When k = 0, we say that (2) is regular (or qualified). 
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3. Cone Functions 

Now, we will consider the following important particular case of (7): 

u=l+m,  Y g = { ( u , v ) e R t × R m : u ~ i n t U ; v ~ V } ,  Z = ] - a c ,  0], 

f :X--)R t, g : X - ) R  'n, F(x )=( f (x ) ,g (x ) ) ,  h = ( u ,  v), 

(11) 

where the positive integers I and m, the closed convex cones U c R t, V c R m, 
with int U ~ 0 (otherwise ~ = Q), and the functions f, g are given. In this 
case, it is easy to show that 

w3(u,v;O,•)a--(O,u)+(;t,v), OcU*, X~V*,  

is a weak separation function. We may show that it guarantees alternative 
(besides the weak one). First of all, let us prove the following lemma. 

Lemma 3.1. If X is convex and F is a (cl Yg)-function, 8 then fg is 
convex. 

Proo[. If the cardinality of ~ is - 1 ,  the thesis is trivial. Consider 

h i ~ ,  i = 1 , 2 ,  

so that there exist 

xi e X, i = 1 , 2 ,  

such that 

h i ~ g'(Xi), i = 1, 2, 

or 

F(x i) - h i ~ cl ~,  i = 1, 2. 

Now, Va c [0, 1], set 

~ ( 1 - a ) x 1 + a x 2 E X ,  f l = ( 1 - a ) h l + a h  2, 

/34  (1 - a)F(xl)+ aF(x2). 

s L e t  C be  a convex  cone  wi th  ve r t ex  a t  the  origin.  F is said to  be  a C- func t ion  on  a convex  

set X, iff 

F((t-a)xl+c~xZ)-(1-ot)F(xl)-aF(x2)EC, Vxl, x2~X, Vot~]O,I[. 

Note  tha t  a ( ~ _ ) - f u n c t i o n  is a concave  funct ion and  a (R"_)-function is a convex  funct ion.  
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The convexity of ~ implies 

/~-/~ ~ el ~ ;  

this condition and 
A A 

F ( x ) - F e c l  Y¢ 

[as F is a (el ~)-function] imply 

F ( ~ ) - / ~ e  el X". 

Hence, Wx ~ [0, 1], 

and the convexity of ~ follows. This completes the proof. 

We are now ready to prove the announced result. 

[] 

Theorem 3.1. Let X be convex, f be a U-function, and g be a 
V-function. The system 

f(x) ~int U, g(x)~ V, x~X,  (12) 

is impossible, iff there exist ff~ U* and ~ ~ V*, with (~ ]) # 0, such that 

(ff, f(x))+(),,g(x))<-O, V x c X ,  (13) 

and moreover 

{x ~ X: f(x) ~ int U; g(x) c V; (~t, g(x)) = 0} = 0 ,  if 0 = 0. 

Proof.  First of all, let us prove that (12) is impossible iff 

The sufficiency is a straightforward consequence of 

~f___~. 

To prove the necessity, assume that (12) is impossible and that 

Then, 3x' ~ X such that 

Hence, 3u',  v' such that 

g(x')-v'cV, 
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Taking into account the second part of (11), this implies 

u' ~ int U, v' ~ V; 

hence, 

f(x') ~ int U, g(x') ~ V, 

which contradicts the impossibility of (12). Now, we have to show that 

iff condition (13) holds. According to Lemma 3.1, ~ is convex; hence, cl 
is the intersection of all its closed supporting halfspaces. It is easy to see 
that these coincide with the halfspaces of the kind 

(O,u)+(X,v)<-k, with OEU*,h~ V*, (O,X)#O. (14) 

Because of the full dimensionality of U, the interior of the complement of 
such a halfspace contains Yg, iff either k = 0 and 0 # 0 or k < 0. If 

30, ), satisfying (14) such that ~ is contained in the halfspace 

(~, u)+(L v)-O; 
if 

0 # 0 ,  

is included in the complement of such half space, and then (13 ) is evidently 
fulfilled; if 

~=0, 
the above inclusion of ~g does not happen; hence, we have to exclude the 
subset of ~ not contained in the above complement, i.e., 

~n{(u, v): (L v)= 0}. 

Viceversa, if 

condition (13) is easily contradicted. This completes the proof. [] 

When U=Rt+, Theorem 3.1 becomes Theorem 1 of Ref. 5; if, in 
addition, f and g are concave in the ordinary sense and V =R~,  then 
Theorem 3.1 becomes Theorem 3 of Ref. 4. In the latter case, (i) of Theorem 
1.1, at w = wl, is a well-known statement (Ref. 6). When a =0,  i.e., when 
(12) does not contain g(x) ~ V, Theorem 3.1 becomes Theorem 3 of Ref. 
7. A further instance of how theorems of the alternative can be derived 
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from Theorem 3.1 is the following corollary usually derived from Corollary 
1.1 (Ref. 8). 

Corollary 3.1. Assume that the real m x n matrix A, the real n-vector 
c, and the closed convex cone X with vertex at the origin are given; let x 
denote a real n-vector. The system (15), 

(c, x )>0 ,  A x ~ O ,  x ~ X ,  (15) 

is impossible, iff 9 

c ~ - c l (X*+con  A). (16) 

Proof. In (11), set 

l =  1, U = [0,+o0[, V=~'~, f (x)  =(c, x), g(x) = a x ,  

and identify (15) with (12). Theorem 3.1 can be applied; and, if if= 1, (13) 
becomes: 

(c+;kA, x)<-O, V x ~ X ,  

o r  

- (  c + TtA ) e X*,  

so that (16) follows. If 0=0 ,  (13) leads to the statement: 

x e X and Ax  >- O 

imply 

(c, x)~0, 

o r  

o r  

( -c ,  x)->O, Vx ~ X n con A, 

- c  ~ (X n con A)* = cl(X* +con A), 

so that (16) follows. This completes the proof. 

In Theorem 3.1, the existence or nonexistence of ff~ 0 introduces a 
partitioning of the set of systems (12) into two classes, which can be called, 
according to Definition 2.1, regular or irregular, respectively; irregularity 
can be further deepened into k-irregularity. A regularity condition for 
system (12) will now be studied. 

9 con A denotes here the convex hull of the cone generated by the rows of A. 
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Theorem 3.2. Assume that ~o#  Q. Condition (13) can be fulfilled 
with 0 #  0, iff 

(int U) c~ T(u, v) = Q, V(u, v) ~ ~°. (17) 

Proof. Denote by H the halfspace defined by 

(~, u)+(L v)~0. 

Necessity. Ab absurdo, suppose that (17) is false, so that 3(t~, ~) ~ ~° 
such that 

(int U) c~ T(a, ~) # O. 

Let (t~, ~) belong to such an intersection; of course, ~ = 0. We have 

(a, ~)e~, 

as 

~ i n t U  and 0 = ~ V ;  

and hence, 

(a, ~) e - H ,  

as 

0 # 0 ~ c  - H .  

On the other hand, H is a supporting halfspace of ~ at (a, ~) as, from 
Lemma 3.1, ~ is convex; hence, 

T(~,O)c_H. 

Then, 

(a, ~3)e T(ti, ~3) ___ H, 

and the contradiction is achieved. 
Sufficiency. Ab absurdo, suppose that if= 0 necessarily [namely, that 

every w3 which fulfills (13) must have 0=0].  Then, considering (8b), 
Theorem 2.1 implies that 

U ~_ T(O, 0), 

which contradicts (17). This completes the proof. [] 

A sufficient condition (due to Karlin, Ref. 6) for (17) to hold is that 

d/~{)t  c V*: (X,g(x))<-O, VxeX}=Q.  

In fact, ~ being convex, ~ # Q is necessary, but not sufficient, to have 0 = 0 
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necessarily in condition (13). Other sufficient conditions can be obtained 
as straightforward generalizations of known ones established for the 
ordinary convex case (Ref. 6). For instance, one consists in assuming, besides 
the hypothesis of Theorem 3.1, the existence of £ e X, such that 

g(£) cint V. 

In this case, the halfspace defined by H (in the proof of Theorem 3.2), 
which contains ~g, could not contain ( a = f ( £ ) ,  $=g(£))  if 0=0.  More 
generally, starting with condition (10), deriving necessary and sufficient 
conditions for regularity (k-irregularity) of the system (12) in terms of its 
data is conceivable and useful. 

Theorem 3.1 and Corollary 1.1 provide sufficient conditions for w3 
and wl to ensure alternative, respectively. In Ref. 4, there are two other 
conditions, whose extension to the generalized (in the sense of Theorem 
3.1) concavity is conceivable. The question of other weak separation func- 
tions giving alternative (besides the weak one) and of strong, separation 
functions giving alternative (besides the strong one) is open. 

4. Asymptotic Weak Alternative 

When a weak separation function is adopted, (i) of Theorem 1.1 does 
not enable one to claim anything about (2), if (3a) is impossible. However, 
in some cases, a claim is still possible, if the concept of the weak alternative 
is enlarged. This will be shown in the particular case where Z = ]-oo, 0]. 
With his aim, consider a family of weak separation functions, depending 
on a parameterS°: 

w(h; to), to ~ l'l, (18) 

and assume that a sequence, say {~o~, r =  1, 2 . . . .  }, can be drawn out from 
fl, such that ~ :'~ 

w(h; to r) is continuous in respect of h, r =  1, 2 , . . .  ; 

~w(tor) = ~w(tor÷l), r = 1, 2 , . . .  ; 

f~ ~w(tor) = ~¢; 
r = l  

(19a) 

(19b) 

(19c) 

lo An instance is offered by w3, where ~o = (0, h). 
11 Of course, ~w(tor) denotes the set ~w corresponding to the particular w(h; tot). 
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Vh c Y(, 3 k ( h ) > 0 ,  such that w(h; tor)>-k(h), Vr= 1, 2 . . . . .  (19d) 

Note that conditions (19) do not imply that ~ is closed. 

Theorem 4.1. Let the weak separation function w fulfill condition (19). 
Then, (2) is impossible, iff 

inf sup w(F( x); to r) <- O. (20) 
r x e X  

Proof. If (2) is possible, i.e., if 3~ ~ X such that 

/~ ~ F ( i )  ~ ~, 

then (19d) implies 

w(F(Y~);a,')=w(g;o~r)>-k(h)>O, V r = l , 2  . . . . .  

so that (20) is impossible. To show that (20) holds when (2) is impossible, 
i.e., when 

h ~= F(x) ~ Y(, Vx ~ X, 

it is enough to prove that, Ve > 0, 3F such that 

w(F(x): oJ ~) < e, Vx ~ X. (21) 

Because of (19a), (19b), (19c), given 8 > 0 ,  3~ such that, Vh ~ Ygw(to~)\Y(, 
3h'(h),  with w(h'(h), to ~) =0,  such that 

IIh-h'(h)tl<8. 

Hence, because of (19a), given any e > 0, by making a suitable choice of 
8, we obtain 

w(h;tof )=w(h; toe)-w(h ' (h); toF)<E,  Vh E Ygw(toe)\Y(, 

and thus (21) follows. This completes the proof. [] 

Theorem 4.1 can be interpreted in terms of a sequence of weak 
separation functions, whose level sets approximate ~, so that the weak 
alternative is obtained asymptotically. More precisely, because of (19), 
alternative is achieved. In the particular case where 3r* such that w(h; oY) 
guarantees weak alternative, then at r=  r* the "if" part of Theorem 4.1 
becomes (i) of Theorem 1.1. 

If the class of functions (18) is enlarged by deleting (19c), then the 
"only if" part of Theorem 4.1 is obviously lost. By a suitable replacement 
of conditions (19), asymptotic alternative is conceivable in the strong case 
too. 
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5. Extremum Problems: Sufficient Conditions 

Consider again the set X c__ R n, the real-valued function g,:X--> R, and 
the following extremum problem: 

min q~(x), s.t. xeRA{xeX:g(x)>.O}.  (22) 

We can see immediately that $ e R is an optimal solution of (22), iff system 

f(x) a--g,($)-¢(x)>O, g(x)>--O, xeX ,  (23) 

is impossible. By considering (11) in the more particular case 

l = 1, U = [0, +co[, V= R~', (24) 

the system (23) can be identified with (2), so that Theorem 1.1 can be used 
to establish an optimality condition for (22). With this aim, consider the 
set of functions: 

w4(u, v; O,~o)~ Ou+3"4(v; ~o), 0>.0, o~f l ,  

where f~ is the domain of parameter o~, such that 

lev~o 3'4_DRT, (-] tev_>oY4(v; oJ) =R~',  (25a) 

3'4(z7; o3) > 0 0  Bo3 e l'l such that 3'4(~J; o3) < 3'a(~; o5). (25b) 

If 0 > 0, w4 fulfills ( la) ,  and hence guarantees weak alternative. This may 
not happen if 0 = 0; however, instead of deleting the kind of functions (this 
would restrict the above set too much), we simply note that in the latter 
case weak alternative is still ensured under a further condition. 

Lemma 5.1. (i) When 0 > 0 or 0 = 0 and lev>o 3'4- R~', the function 
w4 guarantees weak alternative between (2) and (3a). 

(ii) When 0 = 0  and lev>o 3"4~R~', w4 guarantees weak alternative 
between (2) and (3a) under the condition (26), 

X ° A X n (lev>o f )  c~ (lev~o g) n (lev=o 3'4) = 0 .  (26) 

Proof. (i) ( la)  becomes 

lev>o w4 _~ ]0, +oo[x RT 

o r  

(u, v) ~ ]0, +oo[xW2~Ou+3"4(v; a,) > O. 
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This relationship holds as now we have either 

0 > 0  and lev_>oy4__R+ ~,  
o r  

0 = 0  and lev>oY4_R+. 

Thus, the thesis follows from (i) of Theorem 1.1. 
(ii) In the present case (11)-(24),  because of condition X ° = Q, which 

ensures that no element of X is sent into int U, we can replace Z = ] -  co, 0] 
with Z = ] - o o ,  0[. Then, ( la)  becomes 

lev_>ow4 ~ [0, +eO[X R+, 
o r  

(U, V ) e  ~+ X ~ + ~  0U-l-~4(/,5 ; (/)) ~- 0, 

Now, 0- -0 ;  hence, this relationship holds as it is the first part of (25a). 
Again, weak alternative follows from (i) of Theorem 1.1. This completes the 
proof. [] 

Note  that, over lev>0f, the possibility of (3a) is crucial to show the 
impossibiiity of (2), while it is redundant over lev~o f. 

Taking into account Lemma 5.1, it is easy to interpret (i) of Theorem 
1.1 as a sufficient optimality condition for (22); this is contained in the 
following corollary. 

Corollary 5.1. Assume that 2 E ~n fulfills these conditions: (i) 2 c R;  
(ii) there exist gE R+ and o5 E ~ ,  such that 

ff[q~(~)-~(x)]+y4(g(x); ~)<-0, VxEX, (27) 

and moreover  

{x ~ X:  ~(x) < ~(X); g(x) >- 0; ~,4(g(x); o5) = 0} = O, 

if 
0 = 0  and lev>0Ya~R+. 

Then, :~ is a global minimum point of (22). 

Now, introduce the function 

~ ( X ;  O, (1)) ~ O~(X) -- ~/4(g(x);  (.O), 

and let us prove the following theorem. 

Theorem 5.1. Conditions (i) and (ii) of Corollary 5.1 are equivalent 
to the following one: there exist ~E X, Oe R+, and o5 c II, such that 

5¢(~; 6, oJ)_< ~e(Jz; ~ ~)_<Le(x; ~ ~), Vx ~ x, VoJ e a,  (28) 
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alt(l m o r e o v e r  

if 

{x E X: ~(x) < ~0(~); g(x) >_ 0; 3,4(g(x); o5) = 0} = ~ ,  

= 0 and lev>o ~ R 2. 

Proof. Let us prove that (i)-(ii) of Corollary 5 .10(28) .  o5 ~f~ and 
£ ~ R imply that 

3,4(g(£); o5)->o, 
as 

lev_~o 3,4 -~ R+'; 

at x = ~, (27) implies 

3,4(g(x); o5)-<o; 

it follows that 

3,4(g(£); o5)=0. 

Hence, (27) is equivalent to the second part of (28). Now, note that 

g(~Z) _> 0 

is equivalent to 

3,4(g(X); oJ)---0, Vo~ c ~ ,  
as 

f~ lev~o _ m. 3,4-R+, 
oJE~ 

it follows that 

3,4(g(Jc); o3)~ 3,4(g(~'); w),  VW ~f~, (29) 

which is equivalent to the first part of (28). In order to prove that ( 2 8 ) 0  
(i)-(ii) of Corollary 5.1, note that the first part of (28) is equivalent to (29), 
and this implies 

g(X) >-- 0; 

note that g (£ )~0~3O3 e ~ such that 3,4(g(£), o3)< 0 and, hence, as Wo3,4 
fulfills (25), VtOo> 0, if 3'4 does, y4(g(Y); to) is not bounded from below 
and (29) is contradicted; and hence, because of (25a), 

y4(g(£); o~)_> 0. 

Condition (i) of Corollary 5.1 is proven. Assume that 

3,4(g(x); . , )>  0. 
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Then, because of (25b), the first part of (28) is contradicted. Thus, 

3/4(g(Jz); ,z)  = 0 

is achieved. Account taken of this equality, it is easy to show that the second 
part of (28) implies (27). This completes the proof. [] 

Note that, when (27) or (28) holds, from the proof of Theorem 5.1, 
we have that (£  o3) fulfills the generalized complementarity condition 

3/4(g(x); 0))~'~-0, 

which collapses to the well-known ordinary one, when 3/4 is linear and hence 
l~ = R•. Even if the two conditions are obviously equivalent, the former 
can be useful. To show this, set 

,~ = ( a ,  . . . . .  x , . ) ,  g = ( g ,  . . . . .  g i n ) ,  

o~ = ( a , ~ ) ,  sq = ~ ' x ~ "  u'aq. u~q. , 

and assume that 

3/4(/); O)) = ~ hiTi(/)i; i[~i), 
i=1 

where 

T~(vi; ~ )  ~ 0, V~->0 ,  

according to 

vi ~ 0, 

respectively. In this case, if we set T = (7"1 . . . .  , Tin), from Theorem 5.1 we 
get the generalized complementarity system 

T(g(x); tz)>.O, X >-0,  (T(g(x); #z), X)=0,  

which collapses to the well-known one, when 

T(v; tz)= v. 

Now, consider the particular case where 

T/(/)i; b~i) = vi exp(-/zivi); 

T~ represents an exponential transformation of vs. It is immediate to show 
that the function 

ws(u,v;O,~t,#x)=Ou+(h,e(v;tz)), 0 ~ ,  h,#zcR+, 

where 

e(v; tz) = (v~ exp(-/zivi), i = 1 . . . . .  m), 
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and which contains the linear function a t /z  = 0, is a particular case of w4. 
By means of transformation T in the complementarity system, T(g(x); Ix) 
may have a certain property, for instance concavity, differentiability, which 
does not hold for g. 

Another particular case is obtained by requiring 74 to be nondecreasing 
with respect to v, i.e., the case of w2 of Section 1, if in (22) we replace 
g(x) >- 0 with 12 g(x) >- b; an instance is given by 

"/4(v; h,/x) = ~ h[1 -exp(-/~/)~)], 
i = I  

already studied, even if from a different point of view (Ref. 9). A further 
particular case of the weak separation function is 

~? = sup [y6(v) + [76(v)1]/2. 
V--~0 

W 6 ( U  , /))  ~--- U - -  76( / . ) )  - -  "y, 

where 

7 6 ( / ) )  ~ sup (u), 
(u,v)~Y~ 

It turns out that 

76(/)) = sup [~($)--q~(X)]=¢(~)--~(/)),  
g(x)=v 

x E X  

where 

ginfo 
x ~ X  

is the so-called perturbation function (Refs. 10-12). w 6 has the disadvantage 
of depending on YL 

Now, note that (28) can be regarded as a generalized saddle-point 
condition, and 5f as a generalized Lagrangian function. When we adopt w5 
at ~ = 0, (28) becomes the well-known John saddle-point condition and La 
the classic Lagrangian function (Ref. 6). When we adopt ws, (28) can be 
viewed also as an ordinary saddle-point condition for an exponential trans- 
formation of the constraining functions. 

When X is convex and ~p, gare concave, (27) and (28) become necessary 
too. This is an obvious consequence of the fact that now any w4 guarantees 
alternative, according to Theorem 3.1, at 

u=R+, v = ~ ,  f(x)=~,(~)-~,(x). 

12 In this case, with the notation of Section 1, (27) becomes obviously 

O[~p($)-~p(x)]+y2(g(x);~o)-T2(b;~o)<-O, V x e X .  
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In this case, it is of course convenient to adopt the linear function (w5 at 
tz =0) ;  thus, Theorem 5.1 becomes the well-known John saddle-point 
(necessary and sufficient) condition for convex programs (Ref. 6). Iff condi- 
tion (17), or at least if ~t = O, is satisfied, then in (27) and (28) we can set 

= 1, and problem (22) is called regular. 

6. Necessary Conditions 

In the preceding section, it has been shown that a sufficient optimality 
condition for (22) can be derived from a separation function which guaran- 
tees weak alternative. Now, it is obvious to expect a necessary condition 
from a strong separation function. With this aim, consider again problem 
(22), and let 5~c_ R l+m be such that 13 ~f___ Y?, namely, 

(~(~)-,p(x),g(x))~, VxcX. (30) 

Y{ trivially exists, as (30) is satisfied by at least ~ = R x W ~. If there exists 
a positive real p, such that 

II~(x)ll<_p/2;llg(x)ll<-p, x~X, 

then, we can set 

.~ = [--p, p] '  +". 

Consider the following set of functions14: 

s~(u,v;~o)=u-S~(v;~o), ~o~f~, 

where lq is the domain of parameter o~, such that 

n l ev>o  siC_ g(; cl [d Y{c~lev>o Sl(U, v; ~o) =c l (y{n  yg). (31) 
toe~ 

When Y{ has a particular form, for instance, 

Y? = R '+m or Y?= E-p, p]l+,~, 

then (31) can be expressed in terms of 31, as it happens in (25); remembering 
this, a lemma like lemma 5.1 is quite obvious, since the first part of (31) 
says that sl fulfills ( lb)  on Y?, and hence it is a strong separation function 
on this domain. We are now able to derive a necessary condition from 
Theorem 1.1. 

13 Recall that we are in case (24). 
14 u might be multiplied by O; here, we assume 0 = 1; in general, the case 0 = 0 has no interest. 
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Corollary 6.1. Let ~0, g fulfill condition (30), and let s 1 be defined by 
(31). If $ e R ~ is a global minimum point of (22), then, 

~()7)-~(x)-adg(x);to)<-o, VxeX, (32) 

whatever o) e f! might be. 

Proof. The optimality of )7 implies the impossibility of (23). As 
assumption (31) makes sl a strong separation function, the thesis follows 
from (ii) of Theorem 1.1. [] 

Two instances of functions of type sl are the following ones: 

S2(U, L~; A, ~) = U-- ~ Ai exp(-/x~v~), A~,/zi ~ R+, At--p, 
i--I 

s3(u,v;~)=u-p ~ (1-v~/p) 2~,, jz>0, 
i=1 

where 

The classic necessary conditions of the Lagrange-Karush-Kuhn-Tucker 
type do not come from the strong alternative, as might seem. On the 
contrary, they are a consequence of a further analysis of the weak alternative, 
like Lemma 2.1, and are based on local arguments. In this sense, they are 
not in a symmetric logical position with respect to saddle-point conditions. 
This is shown by the following property, which generalizes the above 
conditions. 

Corollary 6.2. Let w4 be the weak separation function of Section 5. 
If $ ~ R n is a global minimum point of (22), then there exists 0 and to such 
that )7 is a stationary point of problem 

m a x  w4(~(.l~ ) - ~ ( x ) ,  g ( x ) ;  0, (./1). (33) 
x ~ X  

Proof. The thesis consists in proving that there exist 0-> 0 and 03 ~ lq, 
such that, for a suitable neighborhood N of $, we have 

w4(f(x), g(x); 0, 03)- w4(f(£), g(X); ~ 03) 
lim sup ~ 0, x ~ X n N. 

x ~  IIx-~ll 
(34) 
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Ab absurdo, suppose that (34) does not hold. Hence, there exists a 
neighborhood N'  of $, such that, for x ¢ $, we have15: 

W4(f (X) ,  g ( x ) ;  O, (0) -- ~"4(0, g($); 0, to) > 0, 

IIx-~ll 

'¢xEN' nX,  VO>_O, VtoEfL 
Taking into account the fact that 

g(X) >_ O, 

and then 

W4(0, g ( x ) ;  0, to) ~ 0, V0 ~ 0, Vto E ~'~, 

it follows that 

w4( f (x ) ,  g(x); O, to) > w4(O , g ( x ) ;  O, to) ~ 0 ,  

Vx E N'  n X\{~}, VO ~ O, Vto e (2, 

and hence 16 

(f(x),g(x))E~w(O, to),  VxEN' n(X\{2}),VO>-O, VtoEI2. 

Now, remembering (25a), it follows that 

(f(x), g(x)) e int ~, VxEN'n(X\{2}),  

which contradicts (8a). This completes the proof. [] 

When ¢ and g are ditIerentiable, X = R", and w4 is linear (that is, w4 
becomes w5 at/z = 0), then (33) is equivalent to 

min [O~(x)-(h,  g(x))], XER n 

and the thesis of Corollary 6.2 [that is, (34)] becomes the well-known 
equation 

VxEO¢(x)-(,t, g(x))]  = 0, 

which represents the so-called weak Lagrangian principle. If ~0 and g are 
differentiable on X, then (34) takes the still well-known form of directional 
derivative. 

Note that, as the thesis of Corollary 6.2 holds whatever the weak 
separation function w4 might be, it is obvious to think of the simplest one, 

15 Recall that f(x)= ~(~ ) -  q,(x), so that f (~)= 0. 
16 Now, Ww(0, to) denotes the set ~w corresponding to w4(u, v; O, to). 
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namely, the linear one. However, it may be useful to adopt a nonlinear w4, 
so that (33) has some suitable property. For instance, problem (33) can 
turn out to be differentiable, even if (22) is not. With this aim, consider 
the following example, where, for the sake of simplicity, we assume that 
the constraints in (22) are of type g(x)=0; we need only to define 

Set 

~=((u ,  v) ~ R×R": u>0;  v=0}. 

n = l ,  r e = l ,  X=g~,  q~(x) = x 2 , g(x)=xsin(1/x). 

If we consider the separation function 

W4(U, t,); O,o))~-'U--03O 2, 0 ) > 0 ,  

(33) is equivalent to 

rain [x z + ~ox 2 sinS(l/x)], 
x~R 

which is differentiable, notwithstanding that (22) is not. 
Note that the thesis of Corollary 6.2 generalizes only a part of the 

well-known stationary conditions; in fact, it does not contain the so-called 
complementarity condition 

(o3, g(£)) = 0, 

which follows by noting that, if 

/~=~ (• = f (£ ) ,  ~7 = g(£)) ~ R+ × R~'\(0}, 

then 

(03, g($)) > 0 

contradicts (8a). 
Lastly, note that sufficient conditions, based on the Hessian matrix, 

are a further local analysis; hence, even if they appear in the context of 
weak separation function, they must not be considered as coming from 
weak separation function, like saddle-point ones. 

7. Lagrangian Penalty Approaches 

Penalty approaches are a natural extension of the original Lagrangian 
method and aim at reaching an optimal solution of a constrained extremum 
problem by solving a sequence of unconstrained ones. It will be shown how 
these approaches can be viewed in terms of weak and strong separation 
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functions. With this aim, consider again problem (22), with X = R  ", and 
the continuous functions p~: R'~-~ R, r = 1, 2 . . . .  , such that 

p~(v)=O, if v>O, p~(v)>O, if v~O, 
(35) 

pr+l(v)>pr(v), lim pr(v) = + ~ ,  v;a0. 
r ~ - I - o o  

Consider the particular case (11)-(24). It is easily seen that the function 

w7(u, v; r) = u-p~(v) (36) 

is of the w4-kind and fulfills condition (19). In fact, now ~o' = r, and ~W(r) 
is the positivity level set of (36). Moreover,  (36) is a weak separation 
function. Hence, (i) of Theorem 1.1 can be applied and (3a) becomes 

~o(~) - ~(x) -p~(g(x)) <- O, Vx ~ R n, (37) 

and is a sufficient condition for the feasible :~ to be optimal. Such a condition 
can be weakened by applying Theorem 4.1; (20) becomes 

r~m i n f  [~(x) +pr(g(x))]--- q~($) (38) 

and is a sufficient condition which is weaker than (37). Denote by d9~ the 
infimum in (38). From (35), we deduce that 

q~l-<q52--- "" ' -<q b=a inf ~(x). (39) X E R  n 

Assume that 3~ such that ~ >  - ~ ,  and that there is a proper x '~  R ~ such 
that 

~(xr) =q~,, Vr_>f. 

If ~ is any limit point of sequence {xr}, then condition (38) is fulfilled and 
Theorem 4.1 gives the optimality of $. The construction of sequence {x ~} 
by solving the infimum problems in (38) is the well-known exterior penalty 
method (Ref. 12) and p~ is called a penalty function; if the above convergence 
can be ensured after a finite number of steps, i.e., if 3~ such that (37) is 
fulfilled at r = ?, then p~ is called exact penalty function (Ref. 13). Hence, 
the conditions for a penalty function to be exact can be regarded as 
conditions which ensure (37) instead of (38). 

A particular case of (36), corresponding to a well-known penalty 
function, is 

W s ( U , v ; r , a ) = u - r  ~ (-min{0, vi}) ~, a>_l .  
i = 1  

A more general class of functions satisfying (19) is contained in Ref. 13, 
where the case of both equality and inequality constraints is considered. 



358 JOTA: VOL. 42, NO. 3, MARCH 1984 

The latter requires only formal changes in the above reasoning. In fact, if 
the constraints of (22) are g(x)= 0, it is enough to replace V = ~ '  with 
V = {0} in (24), so that now 

~r= {(u, v) ~ R x R " :  u > 0 ;  v=0}.  

In such a case, a weak separation function is, for instance, the following one: 

w9(u,v;A,r)=u+(A,v)-r(v,v), with X ~ R~', r eR+,  

which corresponds to the so-called augmented Lagrangian approach (Ref. 
12). At A = 0, w9 corresponds to one of the first penalty functions which 
have been considered. 

It follows that the exterior penalty approach can be formulated in terms 
of weak separation. Among other things, this enables one to extend the 
penalty approach to solve systems, as shown by Theorem 2.1. 

Now, it is easy to say that the interior penalty approach (Ref. 14) can 
be formulated in terms of strong separation. For instance, it is easy to show 
that a strong separation function for (22) is 

s4(u, v; r) = u-p(v;  r), with r >  0, 

and where 

p(v;r)=r ~ (1/vi), i f v > 0 ,  
i = I  

p(v; r) = +co, if v ~  0, 

is a well-known interior penalty function. 

8. Duality 

When X is convex and -~p, g are concave, so that problem (22) is 
convex, a new problem, called dual, is associated to it (Ref. 6). Here,  it is 
shown that the dual problem naturally arises when optimality is studied 
through alternative. In this way, some generalizations are easily achieved. 

Assume that problem (22) is regular, so that in (27) we can set 0 = 1. 
Note  that (27) holds iff 303 ~ l~ such that 

~(03) _ ~,(~), 

w h e r e  17 

d#(oJ) a_ mixn [~(x) - y4(g(x); w) ~- A(x; w)]. (40) 

17 The symbols min and max must be replaced by inf and sup, respectively, if necessary. Note 
that 

A(x; to) =.~(x; 1, to). 
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Thus, the fulfillment of (27) leads one to consider the following problem: 

max qb(to), (41) 
~sEN 

which is called the weak dual problem of (22). The fact that (41) comes 
from a weak separation function shows that its extremum is less than or 
equal to the minimum of (22). This is a straightforward consequence of a 
recent result (Ref. 15). 

Theorem 8.1. Weak duality. We have 

max ~(to) --- min ~(x).  
~ x ~ R  

(42) 

Proof. 
so that both systems, 

~ ( ~ ) - ~ ( x ) >  0, xeR, 

and 

cannot be possible simultaneously. As this statement does not depend on 
the value of , ( £ ) ,  it remains true if ~(£) is replaced with any real a. Hence, 
from Lemma 1 of Ref. 15, (42) holds. This completes the proof. [] 

When we can ensure that a stationary point of the problem in (40) is 
also a global minimum point (this happens, for instance, when X and A 
are convex), then problem (41) can be equivalently written as 

max A(x; to), (43a) 

subject to 

lira inf A(Y; t o ) -  A(x; to) >_ 0, yeXc~N, to El2, (43b) 
,~x Ily-xll 

As 3'4 fulfills (25), u + 3'4(v; to) is a weak separation function, 

where N is a neighborhood of x. 
When X = R  n, - ~  and g are concave and differentiable, so that we 

can set 

to=x, 3,4(v; to) =(;~, v), 

i.e., we can adopt w5 at 0 = 1, /~ = 0, (43) takes the more familiar form 
(Ref. 6) 

max L(x; ;t), s.t. VxL(x; A) =0 ,  A - 0 ,  (44) 
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where 

L(x; x) ~ ~(x) - (~ ,  g(x)) 

is the ordinary Lagrangian function. 
If w4 is the second exponential function of Section 5, or 

w4(v; A,/~) = u +  ~ A~[1- exp(-/~v~)], 
i=1 

then a crucial point is to ensure the convexity (with respect to x) of the 
exponentially transformed constraining function exp[-p~igi(x)]. If this 
happens, (43) can be set up, even if (22) is not convex (note that it is not 
restrictive to assume ~ to be linear). 

Another interesting case is the one where -q~, g are concave over a cone. 
Now, consider the case where, in (22), 

g(x) >- 0 

is replaced by 

g(x) >- b; 

namely, (22) is replaced by 

min ~o(x), s. t .x~Rba={x~X:g(x)>-b}.  (45) 

It has been noted that w2 of Section 1 is a weak separation function. Now, 
assume that problem (45) is regular, so that we can set 0 = 1. As (45) is of 
type (22) and as, at 0 = 1, w2 is a particular case of the weak separation 
function considered in (40), Theorem 8.1 obviously holds here too. 18 Now, 
note that the existence of qb(w), which here becomes 

• (o~) = ~2(b; ~o) + m s  [~o(x)- ~2(g(x); o,)], 

implies the existence of a constant, say k, such that 

~ ( x ) -  ~2(g(x); o~) _> k, Vx ~ X, 

or 

~(x)>-k+y2(g(x);oJ), V x c X .  

As k can be embedded into Yz itself (as ~/2 remains nondecreasing, or we 
can assume k = 0), to ensure the existence of such a minimum we have to 

18 As  a matter  of fact, w 2 guarantees  alternative (besides the weak one), so that (42) is verified 
as equality. 
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restrict ourselves to those 3'2 (i.e., to those to) such that 

T2(g(x); o9) --< tp(X), VX E X. (46a) 

When this inequality has been fulfilled, (41) becomes 

m a x  3'2(b; to), (46b) 

subject to (46a). Problems (45) and (46) obviously satisfy Ineq. (42). The 
dual (46) generalizes some forms recently introduced (Ref. 10, 11, 16), 
and it is studied in Ref. 3. 

The difference between the right-hand side and the left-hand side in 
(42) is called the weak duality gap. When weak alternative ensures alterna- 
tive, it is zero, as happens in the convex case. Two classes of nonconvex 
problems are shown in Ref. 4 for which the gap equals zero. 

Now, consider condition (32), which can be equivalently written as 

• (to)~minx[~O(x)+61(g(x); to)]>- ~0(~), Vto ~ ~. (47) 

Thus, the fulfillment of (32) leads one to consider the following problem: 

min ~(o9), (48) 

which will be called the strong dual problem of (22). The fact that (48) 
comes from a strong separation function leads one to expect that its 
extremum might be greater than or equal to the minimum of (22). 

Theorem 8.2. Strong Duality. We have 

min ~(to) -> min ~(x). (49) 
o J ~  x ~ R  

Proof. The proof is a straightforward consequence of Corollary 6.1. 
[] 

An obvious consequence of (49) is Lemma 3 of Ref. 15, which now 
states the equivalence between these conditions: 

(i) 3to ~ £1, such that ~(to) - min ~(x); (50a) 
x E R  

(ii) both systems (50b), 

q~(~) - ~(x) > 0, x c R, and ~(to) -> ~o(~), to c f~, (50b) 

cannot be impossible simultaneously. 

Now, assume that (41) comes from a weak separation function which 
guarantees alternative too. Then both systems, which appear in the proof 
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of Theorem 8.1, cannot be possible simultaneously (because of the weak 
alternative), so that (42) holds, and both cannot be impossible simul- 
taneously (because of alternative) so that (because of Lemma 2 of Ref. 15) 
we get the equality in (42). 

The difference between the left-hand side and the right-hand side in 
(49) is called the strong duality gap. When it is zero, there is a sequence of 
minimization problems, namely, the ones in (47) at some to's, whose extrema 
converge to the one of (22). This corresponds to the interior penalty 
approach of Section 7, just as the sequence of problems extracted from 
(40) corresponds to exterior penalty approach. 

If a weak separation function w is adopted in (40), which is not of the 
form w = u + 3'(v; to), the definition of the dual problem should require an 
implicit function approach. When 

3'(v; a,)= E 3',(vl; 
i=1 

i.e., if 3' is separable, then 3'~ receives an interpretation as multiplier function. 
Similar questions arise in the strong case. 

9. Concluding Remarks 

Theorems of the alternative can be considered as a general framework 
within which optimality conditions and related topics can be studied. 

More precisely, it is shown that saddle-point sufficient conditions, weak 
duality, and exterior penalty schemes correspond to generalized weak 
alternative or separation. For symmetry reasons, strong alternative is con- 
sidered, and it is shown that it produces necessary conditions (not of the 
stationary type; these, on the contrary, turn out to be a further deepening 
of weak analysis), strong duality (embedding the known strong duality 
theorem), and interior penalty schemes. 

In what is developed in the preceding sections, the underlying concept 
is the image of a constrained extremum problem. Taking into account the 
notation of Section 2, problem (22) can be equivalently 19 formulated as 
follows: 

¢ ( ~ ) -  max (u). (51) 
( u , v ) ~  ° 

Note that problem (51), which can be called the image of problem (22), 
is a real-valued problem, even if X is a subset of a suitable functional space 

19 In the sense that the minimum of (22) equals (51), when they exist. 
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to which many of the preceding results can be generalized. The approach 
to some optimization topics, which is understood in the preceding sections, 
consists in introducing the image problem (51), in studying a certain question 
on it, and then, when a result has been obtained on the image problem, to 
obtain its counterimage, namely the corresponding result in the space where 
x runs. For instance, in the case of regularity, the former part is represented 
by Theorem 3.2. The development of the latter part, as well as the analysis 
of other topics, like uniqueness and stability of optimal solutions, converse 
duality, Fenchel duality, should produce useful results. For instance, unique- 
ness of optimal solutions to (22) can be reduced to the scheme of Section 
1 in the following way: g c R is a unique optimal solution to (22) iff, V7 ~ R", 
the system 

(% x-JZ)>0, ~(~)-~(x)>-0, g(x)>-O, 

is impossible. 
Another instance is represented by Fenchel duality, which can be 

deduced by the general approach contained in Sections 5 and 8, without 
any enlargement of the space where x runs, as happens in recent results 
(Ref. 18). Further investigation in this direction should produce results in 
the knowledge of the so-called perturbation (or optimal value) function, 
and hence in some related topics, like reciprocal problems. 

A special important application of the above scheme might be to 
combinatorial problems (an instance, related to the integer Farkas theorem, 
is contained in Ref. 4) and to discrete optimization problems, namely, the 
case where X is a subset of the discrete space Z". In (22), assume that 

X = X ~ 7 / ~ - ,  zET/nz=>~(X) E 7/, g(x) E 7/m, (52) 

where .,Y C R" is compact. In this case, it is not restrictive to set 

~=[1,+ooExR+, 

so that strict separation of Y( and Y( can be achieved, when they are disjoint, 
i.e., when (23) is impossible. In this case, a function of type w4, in particular 
w5, enables one to get weak dual and, with the addition of a suitable 
constant, also a strong dual, so as to get lower and upper bounds, respec- 
tively. 

Problem (22), case (52), can be reduced to the above scheme in another 
way. For instance, the constraint xj ~ Z can be equivalently replaced by 

qi(x j )  __a sin2(~rxj) = 0 

o r  
Lj 

qj(x j )  a p I-[ (xj - s) 2 = 0, 
s=0 
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where p is a large enough positive real number and Lj an upper bound for 
xj. As a consequence, the discrete problem becomes a continuous one, as 
Z" can be replaced by R ". 

Another  kind of problem, which can be reduced to the above scheme, 
is a variational inequality. Consider a real-valued function F: X--> R", a 
convex cone V, and the problem which consists in finding 

X ~ R  ~={x~X: g(x)~  V}, 

such that 

(F(~) ,x-X)>-O,  q x ~ R .  (53) 

This is a general setting for a finite-dimensional variational inequality. In 
Ref. 4, (53) has been reduced to the alternative scheme by means of the 
obvious remark that $ ~ R is a solution of (53) iff the system 

f ( x ) & ( F ( $ ) , $ - x ) > O ,  g(x)~ V, x ~ X ,  

is impossible. If g is a V-function and X convex, then Theorem 3.1 offers 
a necessary and sufficient condition for :~ to be a solution of (53). It is useful 
to know conditions on g, X under which the condition of Theorem 3.1 
holds even if it is not true that g is a V-function and X is convex; one of 
them can be derived from Corollary 1 of Ref. 4. 
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