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TECHNICAL NOTE 

Note on the Equivalence of Kuhn-Tucker 
Complementarity Conditions to an Equation 

A. P. W I E R Z B I C K I  1 

Communicated by O. L. Mangasarian 

Abstract. This note presents a more general and simple proof with 
geometric interpretations of the equivalence of the complementarity 
problem to an equation (or a system of equations), given by 
Mangasarian in 1976. Although this fact has been used by the author 
and others in a different context, it is believed that it should be presented 
to a more general audience of optimization specialists. 
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projection on a cone. 

1. Problem 

Consider the optimization problem 

minimize f(x), subject to g(x) ~ -D ,  (1) 

w h e r e  f :  E ~ R 1, g : E ~ F, E, F are linear topological spaces, and D is a 
closed convex cone in F. It  is well known that, under additional smoothness 
and regularity assumptions, the necessary conditions for ~ e E, ~ ~ F*  being 
the primal and dual solutions of the problem (1) can be written as 

A ~ A A 
f~(x) +gx  (x)h = 0, (2) 

g(~) e - D ,  ( i ,  g(~)) = 0, Ae D* ,  (3) 

where F *  is the dual space to F, ( . , . )  is the duality relation between F 
and F* ,  D *  is the dual cone to D, and g~*(2) is the adjoint to g~(2), the 
Gateaux  derivative of g at £. 
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In the remaining part of this note, we assume that F is a Hilbert space. 
Thus, F* can be identified with F, ( . , .  > is the scalar product, and D* is 
the polar cone to - D .  If, furthermore, F = R m (with Euclidean norm, but 
this assumption is not essential in this special case) and D = R ~, then the 
Kuhn-Tucker complementarity conditions (3) can be written as 

0, <L g(;)> = 0, 0. (4) 

For this special case, one of Mangasarian's results (Ref. 1) shows that (4) 
is equivalent to the following equation: 

(g(;) + A)+ = )t, (5) 

where (.)+ is the operation of taking the positive part of a vector in R m. 
However, the proof given by Mangasarian is algebraic and no geometric 
insight is given to this equivalence. 

The equivalence of (4) and (5) has been actually used earlier by 
RockafeUar (Ref. 2), but without specifying this as a separate result, only 
in the context of augmented Lagrangian functions, and also with algebraic 
proofs. 

The purpose of this note is to present a simpler and more general 
proof of the equivalence (4)<::> (5), based on the geometrical interpretation 
illustrated in Fig. 1. The generalization consists of the assumption that F 
is a Hilbert space and D is an arbitrary closed convex cone in F. Again, 
the result has been actually used by Wierzbicki and Kurcyusz (Ref. 3), but 
only in the context of augmented Lagrangian functions for problems with 
constraints in a Hilbert space. Since then, the author has been persuaded 2 

Fig. 1. 
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g(x] ~ ~ g(~)+~ 
Geometrical interpretation of the equivalence of the equation (g(~)+  ~.)+ = A to the 
Kuhn-Tueker complementarity condition. 

2 By many of his friends, but mostly by T. Rockafellar and O. Mangasarian, to whom the 
author would like to express his thanks for encouragement. 
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that the result has a value of its own, and should be known to a wider 
audience of optimization specialists, or even used when explaining seem- 
ingly complicated Kuhn-Tucker  conditions to students. This is the main 
reason for publishing this note. 

Theorem 1.1. Suppose that F is a Hilbert space, D C F is a dosed 
convex cone, ( . , . )  denotes the scalar product, 

D*  = {y* e F *  = F :  (y*, y)~>0, for all y ~D} - 

is the dual cone. Then, the three following statements are equivalent to 
each other: 

g(£) e - D ,  (A, g(£)) = 0, 

(g(£) + X) D* = ~, 

(g(2) + X) -D = g(2), 

~ e D * ,  (6) 

(7) 
(8) 

where (.)°* and ( . ) - °  denote the operations of projection on the cones 
D* and - D .  

Proof. The theorem is actually a corollary of the following theorem 
due to Moreau (Ref. 4). Given a closed convex cone - D  in a Hilbert space 
F and its polar cone D*, any element y ~ F can be uniquely, orthogonally 
[and norm-minimally, see Wierzbieki and Kurcyusz (Ref. 3)] decomposed 
into its projections on the cones - D  and D*. In other words, Moreau's 
theorem reads: 

--D D* 
y t = y  and y2=Y 

are the projections of y on - D  and D* if and only if 

yl + y2 = y, ya ~ - D ,  y2 ~ D*, (y~, yl) = 0. 

Denote 

(9) 

g(~)+~=y, g(~)=yl, ~--y2. 

Then, by Moreau's theorem, (6) implies (7) and (8). Suppose that (7) holds. 
Then, 

y2 = ~ = yD* 

By Moreau's theorem, 
--D Y =y_yO*=g(£)+~_~=g(2)=yl, 

and (8) also holds. Conversely, (8) implies (7) by the same argument. But 
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Fig. 2. Geometr ical  interpretat ion of the equivalence of (g(~) a - D ,  i a D*,  ( i ,  g(£)) = 0) ¢~ 
(g(,~) + i) °* = i ¢, (g(,~) + 1) -D = g(~). 

(7) and (8) together imply, by Moreau's theorem, that (6) holds. Thus, (6), 
(7), (8) are mutually equivalent. 

The theorem and its proof have clear geometrical interpretation as 
illustrated in Fig. 2. 

2. Comme~s 

There are many possible implications and further properties of the 
equations equivalent to the Kuhn-Tucker complementarity conditions. 
They will be only outlined in these comments. 

The equivalence (6)¢~(7), taken together with (2), can be used to 
simplify sensitivity analysis of optimal solutions, since an implicit function 
theorem can be used to investigate the dependence of solutions of (2), (7) 
on possible parameters in the problem (1). The optimality conditions (2), 
(7) are equivalent to saddle-point conditions for an augmented Lagrangian 
function and have been exploited in this way. The conditions (2), (7) can 
be also used for a unification and a better understanding of many nonlinear 
programming algorithms. There are also many possible applications and 
interpretations in mathematical economics for equilibria described by com- 
plementarity conditions, etc. 

Neither the condition (6) nor the equivalent conditions (7) or (8) define 
~t uniquely (first, when taken together with (2), they might result in the 
uniqueness of :e, ~, under additional regularity assumptions). In fact, take 
any scalar e > 0 and substitute ~ by e}t; this does not influence the validity 
nor the equivalence of (6), (7), (8). 
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The operat ion of projection on a cone is not necessarily differentiable. 
If F = R m and D = R+,  then it is easy to show that the differentiabitity of 

(g(~)  + ~0 °*  ___ (g(~)  + ~)+ 

say with respect to ~, is equivalent to the full complementarity: (g(:~)+ ~.)+ 
is differentiable if and only if there are no components  gi(~), ~i such that 

g~(~) = 0, i ,  = 0. 

Thus, the left-hand sides of the system of equations (2), (5) can be differenti- 
ated only under  full complementari ty assumptions. However,  if full com- 
plementarity does not hold, nondifferentiable analysis can be applied, for 
example, the implicit function theorem for non-differentiable mappings as 
given by Clarke (Ref. 5). In an infinite-dimensional case, the differenfiability 
of a projection on a cone is a more complicated problem, but still preserves 
some similarity to full complementari ty assumptions. 
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