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On Duality Theory 
in Multiobjective Programming' 

D. T. L u c  2 
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Abstract. In this paper, we study different vector-valued Lagrangian 
functions and we develop a duality theory based upon these functions 
for nonlinear multiobjective programming problems. The saddle-point 
theorem and the duality theorem are derived for these problems under 
appropriate convexity assumptions. We also give some relationships 
between multiobjective optimizations and scalarized problems. A duality 
theory obtained by using the concept of vector-valued conjugate func- 
tions is discussed. 

Key Words. Lagrangian functions, M-convexity, saddle points, Slater's 
constraint qualification, dual functions, conjugate functions. 

I. Introduction 

Let X be a subset o f  R ", and let f, g l , . . . ,  g,, be funct ions defined on 
X, with values in R 1. For  
fol lowing problem: 

scalar p rogramming  problem, we mean  the 

m i n f ( x ) ,  (1) 

s.t. x E X ,  (2) 

g,(x)  <~ 0, i = 1 , . . . ,  m. (3) 

Now,  if  funct ion f takes values in a mult idimensional  space,  say R k, 
then (1) has no mean ing  until some order  in R k is defined. For  this purpose ,  
assume that a cone M is given in R k, which specifies the domina t ion  
structure as follows. Let y and z be vectors in R k. We say that  z dominates  
y, and  we write y <~ z, with respect to M, if  z c y + M. For  multiobjective 
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programming problem, we mean the problem of finding a vector x in R" 
satisfying (2) and (3) and such that f ( x )  does not dominate any other vectors 
f(y), with y satisfying (2), (3), and f ( x ) ~ f ( y ) .  Further, suppose that a cone 
N is given in R m. In this paper, we shall deal with a more general problem, 
denoted by Problem P: Find a vector x in R" which satisfies 

(i) x c X ;  
(ii) g(x) ~ - N ,  
(iii) there is no y c X, such that g(y) ~ - N , f ( x )  o f (y )  + M, f ( x )  ~ f (y ) .  

In order to study this problem, we shall construct different Lagrangian 
functions, depending on the variables considered. In addition to well-known 
vector variables (Tanino and Sawaragi, Refs. 1 and 2) and matrix variables 
(Bitran, Ref. 3; Corley, Ref. 4), we also deal with homogeneous function 
variables. Some properties of Lagrangian functions are examined, in par- 
ticular their M-continuity, ensuring the existence of solutions to Problem 
P. The saddle-point theorem is established. According to Lagrangian func- 
tions, dual problems are obtained, together with the duality theorem. Weak 
solutions to Problem P, defined by Corley in Ref. 4, are also considered. 
Under adequate assumptions, to find a weak solution to Problem P, it is 
sufficient to work with a Lagrangian function of vector variables. This 
feature is important from the point view of solving practical problems. In 
Section 5, we study perturbation functions and discuss dual problems 
derived from vector-valued conjugate functions. Section 6 is devoted to the 
relationships between vector Lagrangian functions and scalar Lagrangian 
functions. These relationships describe situations where scalar programming 
can be effectively used in multiobjective optimization. 

2. Preliminaries 

Let Y and M denote, respectively, a set and a cone in R k. The following 
definitions and properties concerning cones and functions are needed. 

Definition 2.1. A point y in R g is said to be a minimal [maximal] 
point of Y with respect to M, if y e Y and there is no y '~ II, y ' ~  y such 
that y ~ y' + M[y' c y + M, respectively]. 

We shall denote by min(YI M) the set of all minimal points of Y with 
respect to M. Similarly, the set of all maximal points of Y with respect to 
M shall be denoted by max(YJM). 

Let us introduce the symbols ~M and -~M, by analogy with oo and 
-no in the one-dimensional case. The point ~ 4  dominates every point in 
R k, and the point -co M is dominated by any other point of R k The operation 
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rules for these symbols are the following: 

a + ~ M  =OOM + a  =OOM, 

a - c o  M = - ~ M  + a = --QOM, 

Of-  O0 M ~-OO M -  Of ~--OOM~ 

Of " O0 M ---= O0 M " Cg ~- --OOM~ 

for a E Rk u oOM, 

for a e R k u (--OOM), 

i f 0 < a  ~<O0, 

i f 0 >  a I>--o0, 

O- ~M =°OM" 0 = 0 = 0 "  --o0~ = - o o  M.O, 

--(--~M)=~M, 

min(~b I M)  = ~M, 

max(~b I M)  = --raM. 

Denote 

~k  .~ Rk u (OOM)U (__OOM). 

Definition 2.2. A set Y C R  k is said to be M-convex if Y + M  is a 
convex set in Rk. A vector function f, defined on a convex set X C R k, with 
values in R k, is said to be an M-convex function if the epigraph G ( f )  of f ,  

G ( f )  = {(x, y) ~ R ~ x Rk: x e X, y 6 f ( x )  + M},  

is a convex set in R ~ x R k. I f  f is a ( - M ) - c o n v e x  function, then we say 
that f is M-concave.  

Relative to Definition 2.2, we have the following lemma, which can be 
verified readily. 

Lemma 2.1. Suppose that f :  X ~ R k U (OOM) , where X is a convex set 
in R". f is an M-convex function if and only if, for all x, y ~ X and all a, 
0 < a < l ,  

Off(x) +(1 - a ) f ( y )  ~ f ( a x  +(1 - a )y)  + M. (4) 

Lemma 2.2. Let M~ and M2 be two arbitrary cones in R k. For any 
subset Y in R k, we have 

min( Y I M~ ~ M2) = min (YIMI)  n min(YIM2),  (5) 

max( Y] M1 w M2) = max( YI Mi) n max( Vl M2). (6) 

Proof. For (5), suppose that 

y ~ rain( YI MI u M:). 
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By definition, either y~  Y or y ~ Y but there i~ y ' 6  Y, y ' #  y, such that 

y~  y' +MI~d M2. 

Hence, y cannot be in min(YI M0 c~ min(Y[ M2). Conversely, if 

y ~ rain( Y[ Mr) c~ rain( Y[ M~), 

for example 

y ~ m i n  (Y[ M0,  

then either y ~ Y or there is y ' 6  Y such that 

y' # y, y ~ y'  + M1C y ' + M~ u M2. 

In both cases, y does not belong to min( YI M~ u M2). Relation (6) is proved 
similarly. [] 

Definition 2.3. We say that a function f :  X ~ R k is M-continuous at 
point x o ~ X  if, for any neighborhood U of  f(xo) in R k, there exists a 
neighborhood V of  Xo in R" such that 

f ( x ) ~  U + M ,  for all x 6  V ~ X .  

We say that f is M-continuous on X if it is M-continuous at any point 
of X. 

Some special cases are given below. 

Case (a). If M---- {0}, Definition 2.3 gives the continuity of f in the 
usual sense. 

Case (b). If k = 1 and M = Rl+ [M = RI_], then the M-continuity is 
the same as lower semicontinuity [upper semicontinuity]. 

Definitions of  semicontinuity can be found in Ref. 5. 
We shall use the following notations: 

M* = { z ~  Rk: (z, z ' ) ~ 0 ,  for every z '~ M}, 

~ / =  {z c Rk: (z, z ' )>  0, for every z '~ M, z ' ¢  0}. 

It is easy to see t ha t /~ / i s  nonempty, if M is a pointed closed convex 
cone, and in this case 

2~/= int M*. 

Lemma 2.3. Assume that M is a convex cone. A function f :  X-~ R k 
is M-convex, M-continuous on a convex set X if and only if, for any 
t.~ c M*,  Oz, f (x) )  is a lower semicontinuous convex function on X. 
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Proof. It is simple to verify that f is M-convex if and only if (Ix, f ( x ) )  
is a convex function for any Ix ~ M*. Hence, it is sufficient to show that the 
M-continuity of  f is equivalent to the lower semicontinuity of  (Ix, f ( . ) ) .  
Suppose t h a t f  is M-cont inuous on X and that {x,} is an arbitrary sequence 
of  points in X converging to Xo e X. We must show that 

(Ix, f(Xo)) <~ l iminf(  IX, f(x,,)). (7) 

By the M-continuity o f f  at xo for an e-neighborhood U(e) off (xo)  in R k, 

u ( c )  = {z e Rk: t l f ( xo ) -  zll < c}, 

there exists a number  no such that 

f ( x . )  • U(c) + M, for all n/> no. 

This means that 

f ( x n ) = f ( x o ) + z . + y . ,  for some y. e M, z . ~ R  k, ]lz,,[[ < c. 

Therefore, 

(Ix, f ( x . ) )  >! (Ix, f ( x . ) )  - (Ix, y . )  

= <Ix, f(xo)) + <Ix, z. )/> <Ix, f(xo)> - c II Ix II, 
This gives (7), for e ~ 0. 

Conversely, suppose that f is not M-continuous at some point Xo e X, 
that is, there is a neighborhood U of 0 in R k such that 

f ( x . ) - f ( x o ) Z  U + M, 

for a sequence {x,} of  points in X converging to xo as n ~ ~ .  By the 
convexity of  M, there exists a polyhedron H which satisfies the following 
conditions: 

(a) H C U + M; 
(b) B ( c o ) + M C i n t H ,  where B ( e o ) = { z • R k :  Itztl~co}, 

for some positive co. 

Since the number  of  faces of  H is finite, one can find a hyperplane, 
defined by some vector Ix ~ R k and a real number  a, 

{z~ Rk: (z, IX) = a}, 

such that 

( f ( x . )  - f(xo), Ix) < a, 

for infinitely many n, and 

(z, Ix) ~ a, for all z c H. (8) 
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From M C int H and (8), it follows that 

/x ~ M*. 

Furthermore, 

because 

B(eo)C H. 

Combining this fact with (8), we arrive at the contradiction that (/~, f ( . ) )  is 
not lower semicontinuous at Xo. The proof  is completed. [] 

A 

Corollary 2.1. Suppose that M is nonempty and t h a t f i s  an M-convex,  
M-continuous function on a convex compact  set X C R " .  Then, 
min[f(x):  x ~ X I M]  is nonempty.  

A 

Proof. Let /z  be a vector of  M. By virtue of  Lemma 2.3, the function 
( /z , f ( . ) )  is convex and lower semicontinuous on a compact  set X ;  hence, 
it has at least one minimum on X. It is obvious that the point minimizing 
( /z , f ( . ) )  on X is a minimal point of  {f(x): x ~  X} with respect to M, and 
the corollary is proved. [] 

Definition 2.4. A set A C R  k is said to be M-bounded if there exists 
a bounded set Ao so that A C Ao + M. The set A is said to be M-compact  
if it is M-bounded and A + M is closed. 

Note that, if int M is nonempty, for example M = R k, then this defini- 
tion is equivalent to the one in Ref. 2. 

Lemma 2.4. Assume that M is a pointed closed convex cone and that 
A is a M-compac t  set. Then, 

A C min(A ] M)  + M. 

Proof. The proof  of  this lemma is similar to the one of  Lemma 2.2 
in Ref. 2; so, we omit it. []  

Lemma 2.5. Assume that M is a closed convex cone. I f  X is compact  
and f is M-continuous,  then f ( X )  is M-compact .  

ProoL For every y ~ f ( X ) ,  let Uy be a compact  neighborhood of y in 
R k. By the M-continuity o f f ,  there exists a neighborhood Vx of  x in R n, 
where 

xeX, f(x)=y, 
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such that 

f ( V x n X ) C  Uy+M. 

By the compactness of  X, there are points x ~ , . . . ,  Xq in X, with 
q 

xcUv~,. 
i .=!  

So, f ( X )  is M-bounded,  as 

q 

f(x)c U Cy,+M, 
i=l 

where 

y~ =f(x , ) ,  i =  1 , . . . ,  q. 

We now prove the closedness o f f ( X ) +  M. Let {xi} be a sequence of points 
in X which converges to x0 ~ X ;  and let {f(xi) + ai} be a sequence of points 
in f ( X )  + M which converges to Zo ~ R k, al ~ M. Does z0 belong t o f ( X )  + M ? 
By virtue of the M-continuity o f f ,  one can write 

f(x~) + as = f(Xo) +y, + b, + a,, 

where b ~  M and the sequence {y~}, y~ ~ R k, converges to O. Hence, the 
sequence {b~ +a~} is converging and its limit belongs to M, as M is convex 
and closed. Thus, 

zoe f ( X )  + M, 

and the proof  is completed. [] 

The multiobjective programming problem (Problem P) introduced in 
Section 1 can be written as follows: Find x0 ~ X such that 

f(xo) c min[f(x):  x c X,  g(x) c - N I M]. 

By Lemma 2.2, we may assume, without loss of  generality, that M is 
a pointed cone, that is, M contains no nontrivial subspace. Throughout  this 
paper, we will also assume that M and N are closed convex cones, X is a 
nonempty compact set, f is an M-convex, M-continuous function, g is an 
N-convex, N-continuous function on X, although many results are valid 
without the convexity and continuity assumptions. We shall write simply 
min[f(x):  x e X], instead of min[f(x):  x E X I M],  if there is no confusion. 

3. Lagrangian Functions 

Let Y be the space of  all continuous positively homogeneous functions 
from R "  into Rk; let Y~ be the space of  all linear functions from R "  into 
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R k, and let Ye be the space of  functions s from R m into R k which are 
defined as follows: 

s(z) = e(~, z), for z c R m ; 

here, ~ is a vector in R = determining s, and e is a fixed vector of  M. Define 

Y+ = {s ~ Y: s is M-convex and monotonic,  in the sense that x e y + N 
implies s(x) ~ s(y) + M}, 

Y~ = {s ~ Yl: s (N)  C_ M}, 

Ye + = {s E Ire: g c  N*}. 

It is obvious that Y, Y~, Ye are linear spaces and that Y+, Y~, Y~ are 
convex cones. Moreover,  

Y e C Y ,  C Y ,  Y + C Y ' ~ C Y  +. 

According to these spaces, we define Lagrangian functions L, L,, L~ by the 
relations below. The function 

L: R" × Y ~  ~k 

is defined by 

I f ( x )  + sg(x), if  x ~ X, s c Y÷, 

L(x, s) = ~ - ~ M ,  i f x  ~ X, s ~  Y+, 
1 
L +OOM, if X ~ X. 

The functions 

LI:R"  × Y I ~  R k, L~:R ~ × y ~  ~k  

are defined similarly. Note that L~ coincides with the restriction of  Ll on 
Y~ and that Lt coincides with the restriction of  L on YI. 

Proposition 3.1. The function L(x, s) is M-convex in x for every fixed 
s ~ Y and is M-concave in s for every fixed x c R ~. 

Proof. First, we prove that, for any fixed s e Y, L(x, s) is M-convex 
in x. By definition, we must verify the convexity of  the epigraph 

G = { ( x ,  z)~ R ~ × Rk: z ~ L(x, s ) + M } ,  

in R ~ × R  k. Suppose that 

(x,, z,) ~ G, i = 1,2. 

We shall prove that, for all a, 0 < a < 1, 

a (x , ,  z,) +(1 - a)(x2, z2)6 (3. (9) 
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I f  s e Y+, xi c X, i = 1, 2, then we have 

L(xi, s) = f(x,)  + sg(xi), i = 1, 2. (10) 

F rom the convexity o f  f and Lemma 2.1, it follows that 

af(x 0 +(1 - a)f(x2) e f (ax l  +(1 - a)x2) + M. (11) 

Since s e Y+ and g is N-convex ,  we also have 

asg(xl) +(1 - a)sg(xz)-  sg(ax, +(1 - a)xz) s M. (12) 

Combin ing  (10)-~ (12), we obtain 

aL(Xl, s) +(1 - ~)L(x2, s) e L(axl +(1 - a)x2, s) + M. 

This shows that (9) is satisfied. I f  s c Y+ and xl ~ X (or x2 ~ X) ,  then 

L(Xl, S)=+eOM and(xl ,  z)~G, f o r n o  z e R  k. 

Now, suppose  that s ~ Y+. We have two cases to consider. 

Case (a). xl and x2 are in X. 

Case (b). xl ¢~ X or  x2~ X. 

Case  (h) is impossible,  as we have just  noted.  For  case (a), (x, z ) e  G, 
for  every x e X and  z ~ R k. Therefore,  (9) is always satisfied. Thus,  G is a 
convex set, and the first par t  o f  the propos i t ion  is proved.  For  the second 
part, let 

G ' =  {(s, z)e Y x Rk: z ~ L(x, s ) -  M}. 

I f  x~!X, it is obvious that  L is M-concave  in s. I f  x c X  and (s~, z~)e G' ,  
i = 1, 2, then two cases must  be examined.  

Case (a). sl and sz are in Y+. 

Case (b). sl~ Y+ or s2~ Y+. 

In both  cases, we have 

a(sl, zO+(1-a)(sz ,  zz)~G' , for  all a, O < a < l .  

This completes  the proof.  [ ]  

Definition 3.1. A point  (xo, So)~ R" x Y is said to be a saddle point  
for  the funct ion L(x, s) if: 

(i) L(xo, So)~ min[L(x,  So): x ~ R " ] ;  
(ii) L(xo, So) c max[L(xo, s): s E Y]. 

The definitions o f  saddle points for the functions L~ and L~ are similar. 
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Theorem 3.1. A point (xo, so) is a saddle point for the function L if 
and only if: 

(a) L(x0, So)~min[L(x, So): x ~  Rn]; 
(b) g(Xo) ~ - N ;  
(c) sog(Xo) = O. 

Proof. First, suppose that (xo, so) is a saddle point for L. From Defini- 
tion 3. I, it follows that (a) holds and there is no s e Y which satisfies 

L(xo, s) e L(xo, So) + M, L(xo, s) ~ L(xo, So). (13) 

It is clear that 

x o ~ X  and so~Y+;  

otherwise, 

L(xo, So)= --OOM or +ooM. 

Hence, 

L(xo, So) =f(xo)  + sog(Xo). 

For s ~ Y÷, relation (13) is impossible, so we need only to consider the case 
s c Y÷, which gives 

L(xo, s) =f(xo)  + sg(xo); 

and (ii) in Definition 3.1 is equivalent to the fact that there is no s ~ Y÷ 
such that 

(s - so)g(xo) e M\O. 

Suppose, to the contrary, that 

g(xo)~ - N .  

Applying a separation theorem (Ref. 5) to - N  and the compact  set {g(xo)} 
yields the existence of  a vector y ~ N *  such that 

(y,g(xo))>O>~(y,z), for all z c - N .  

Let e be a vector of  M, e ~ 0. We construct a function s ~ Y÷ by the following 
relation: 

s(z) = e(y, z) + So(Z). 

It is obvious that 

(s - so)g(xo) ~ O, (s - so)g(xo) e M. 
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This contradiction shows that (b) holds. From (b), it is easy to see that 

sog(Xo) = 0; 

otherwise, 

sog(Xo) ~ - M ; 

and, setting s = sol2, we arrive at a contradiction to (ii). 
Now, suppose that (Xo, So) satisfies (a), (b), (c). Condition (a) is the 

same as (i). From (b) and (c), one has 

f ( xo )+sg(xo)e f (xo )+Sog(Xo) -M,  for all s c  Y+. 

Thus ,  

L(xo, so) c max[L(xo, s): s c Y], 

and the proof  is completed. [] 

Corollary 3.1. If (Xo, So)6 R" x Y is a saddle point for the function 
L(x, y), then Xo is a solution to Problem P. 

Proof. We have shown in Theorem 3.1 that 

x o ~ X  and g ( x o ) c - N .  

Suppose that x0 is not a solution to Problem P; that is, there exists a vector 
x c X, with 

g(x)  e - N, f ( x )  ~ f(xo), f(xo) e f ( x )  + M. 

Since 

Soe Y+, s0g(x) e - M ,  

we have 

f (xo) + sog(Xo) c f ( x )  + sog(X) + M, 

where 

f(xo) # f ( x )  + sog(x). 

This contradicts the relation 

L(xo, so) ~ min[L(x, So): x e R"], 

and the proof  is completed. [] 

Corollary 3.2. Every saddle point of the functions Le and Lt is a 
saddle point of the functions Lt and L, respectively. 
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Proof. It is obvious from the equivalence between (ii) in Definition 
3.1 and (b), (c) in Theorem 3.1. [] 

Let S denote the set of all solutions to Problem P; let SY,  SY , ,  SYe 
denote the sets of all x ~ X, such that (x, s), (x, sO, (x, se) are saddle points 
of L, L,, Le, respectively, for some vectors s c Y, s, e YI, se ~ Y~. 

Corollary 3.3. The following inclusions hold: 

SY~ c_SY, c_SY C_S. 

Proof. The proof  of this corollary is obvious. [] 

Definition 3.2, (Ref. I). A point Xo e X, with g(xo)~ - N ,  is said to be 
a proper  solution to Problem P if the closure of  the set { f ( x ) - f ( x o )  + M:  x 
X,  g ( x ) ~ - N }  and the cone ( - M )  intersect each other only at {0}. 

Definition 3.3. We say that Slater's constraint qualification is satisfied 
if N is a closed convex cone with nonempty interior and there exists x ~ X 
such that g(x)~  - i n t  N. 

Theorem 3.2. Suppose that x0 is a proper solution to Problem P and 
that Slater's constraint qualification is satisfied. Then, there exists ~o ~ N* 
such that (Xo, so) is a saddle point of  L~. 

Proof. By Lemma 2.4 in Ref. 1, there exists a vector 

/x c int M*, 

which is nonempty, by the assumption on M, such that 

(/z,f(xo)> = min{(#,f(x)>: x ~ X, g(x) c - N}.  

Since 

/~ e in t  M*, e ~ M , e ~ O ,  

we have 

</~, e>>0, 

and hence, 

(/z,f(x0)> = min{Qx, f(x)>: x c X, (~, e>g(x) c - N}.  

By a 'standard Lagrange multiplier theorem in Ref. 6, there exists ~o ~ N* 
such that 

<~o, g(xo)> = o 
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and 
(Ix, f(xo)) +(Ix, e) . (No, g(Xo)) 

<~ (ix, f(xo)) +(ix, e) .  @70, g(x)), 

We claim that 

for all x •  X. (14) 

f(xo) • min[f(x)  + e(:~o, g(x)): x • X]. 

Indeed, if this is not true, there exists x e X, with 

f(xo) • f (x )  + e(~o, g(x)), 

f(xo) - f ( x )  - e(so, g(x)) • M. 
Hence, 

(Ix, f(xo)) > (Ix, f (x))  +(Ix, e)(g(x), So), 

contradicting (14). Now, the theorem follows from Theorem 3.1. [] 

Definition 3.4. (Ref. 4). Let A be a subset of R k. A vector x • A is 
said to be a weak minimal vector of  A with respect to M, and we write 
x •  Wmin  A, if there is no y • A ,  y # x ,  such that x • y  +int  M. 

Note that it is assumed that int M is nonempty. 
The definitions of  weak maximal vectors, weak solutions to Problem 

P, and weak saddle point are similar. 

Theorem 3.3. Suppose that e • i n t  M and that Slater's constraint 
qualification is satisfied. Then, a vector x o • X  is a weak solution to 
Problem P if and only if there is so • N* such that (Xo, So) is a weak saddle 
point of  Le. 

Proof. Theorem 2 in Ref. 4 assures the existence of So such that (Xo, So) 
is a weak saddle point of  Le if x0 is a weak solution to Problem P. Now, 
let (xo, so) be a weak saddle point of Le, for some No • N*. By definition, 

L~(xo, So) • W max[Le(xo, s): s • Y~]. 

This means that there exists no ~e N* such that 

e ( ~ -  So, g(Xo)) • int M, 

or equivalently, 

( ~ -  ~o, g(xo)) ~< 0, for all ~ • N*. 

From this, it follows that g(xo)• - N ;  otherwise, one can find He N* such 
that 

(s, g(xo)) > (s0, g(xo)); 
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it also follows that 

(~o, g(xo)) = o. 

Suppose, to the contrary, that Xo is not a weak solution to Problem P. There 
is x E X such that 

g(x)e - N ,  f (xo)cf(x)+int  M. 

We have 

f(xo) =f(xo)  + e(so, g(xo)) 

e f (x)  +int  m C f ( x )  + e(So, g(x)) - e(so, g(x)) +int  m 

Cf (x )  + e(~o, g(x)) +int  m. 

This contradicts 

Le(xo, So) E W min[Le(x, So): x e R"]. 

Thus, the proof  is completed. [] 

We complete this section by proving the M-continuity of  L. For this 
purpose, we introduce the following definition of  norm in the space Y: 

[[sll=max[[s(z)[[, f o r s ~  Y. 
z ~ R  m 

IlzlJ~z 

It is clear that this definition of  norm is correct and, in this way, Y is a 
normed space. 

Proposition 3.2. L(x, s) is an M-continuous function on X x Y+. 

Proof. Let (Xo, So) e X × Y+; and let U be an arbitrary neighborhood 
of L(xo, So) in R k. Our aim is to find neighborhoods V of  Xo in R" and W 
of So in Y such that 

L ( x , s ) ~ U + M ,  f o r ( x , s ) c ( V x W ) c ~ ( X × Y + ) .  

First, we note that there exist neighborhoods U~ off(x0)  and U2 of sog(Xo) 
in R k, so that 

U1+ U2CM + U. 

By the continuity of  So, one can find a neighborhood Q of g(xo) in R "  such 
that 

So(Z) ~ U2, for all z ~ Q. 
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Moreover,  there exists a neighborhood W of So in Y, with 

s(Q) C U2, for all s ~ W. 

The M-continuity of  f and the N-continuity of  g yield the existence of 
neighborhoods VI and 1t2 of  x0 in R ~ such that 

f (x)  ~ U~ + M, for every x ~ Vl, 

g(x) ~ Q + N, for every x c !12. 

Set 

V= Vln V2 

to obtain 

V x W c R " x Y ,  

which is to be found. Indeed, if 

(x, s) ~ ( v  x W) n (X x y+), 

then 

L(x, s) = f (x)  + sg(x)c Ul + M + s(z + N), 

where z is in Q. Since s e Y+, we have 

s(z + N) Cs(z)+ M. 

Consequently,  

s( z + N) C U 2 + M ;  

therefore, 

L(x, s)c Ui +M + U2+MC U +M +M + M C  U +M. 

The proposit ion is proved. [] 

4. Primal and Dual Functions 

According to the Lagrangian functions defined in Section 3, we get the 
following functions called primal and dual: 

P(x) = max[L(x, s): s ~ Y], 

D(s) = min[L(x, s): x ~ Rn]. 

The functions Pl(x) and Pe(x) as well as Dl(X) and De(x) are defined 
similarly. 
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The primal problem (Problem P) can be expressed as follows: Find Xo 
in R" such that 

P(xo) c~ min[P(x): x ~ R"] # Q. 

The dual problem (Problem D) can be expressed as follows: Find So 
in Y such that 

D(so) n max[D(s): s ~ Y] ¢ 0 .  

Before giving some features relative to dual and primal problems, 
observe that the primal problems P, P1, Pe are the same as the problem 
introduced in Section 2. Indeed, by the definition of L, we see that 

max[L(x, s): s ~ Y] = +00M, i f x ~  X, 

max[L(x,s): s~ Y ] = m a x [ f ( x ) + s g ( x ) :  s e  Y+], if  x e X .  

Moreover, if g(x) does not belong to - N ,  then there is s e Y+ such that 

sg(x) e M, sg(x) # O. 

Hence, 

asg(x) -~ ooM, as a ~ oo, 

max[f(x)  +sg(x): s ~ Y+] = +COM. 

If g(x) is in - N ,  then 

sg(x) c - M ,  for s e Y+, 

max[f(x)  +sg(x): s ~ Y+] =f (x) .  

In this way, 

p(x )=~f (x ) ,  i f x ~ X  a n d g ( x ) c - N ,  

(00M, otherwise. 

By analogy, 

P(x)  = P,(x) = Pe(X). 

Proposition 4.1. For D(s) defined as above, the following statements 
hold: 

(i) D(s) is an M-convex set in R k, for every s e Y; 
(ii) D( - )  is an M-concave set-valued function, namely, 

D(asl +(1 - a)s2) C aD(sl)  +(1 -- c¢)D(s2) + M, 

for a l ls l ,  s 2 ~ Y a n d a l l a ,  0 < a < l .  
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Proof. Statement (i) is obvious. For (ii), we mention that, if A, B, C 
are arbitrary M-compac t  sets in R k, with A C  B + C, then 

min  A C B + C C min B + m i n  C + M. 

We apply Lemma 2.4 and Lemma 2.5 to obtain 

D(c~sl +(1 - or)s2) 

= min[L(x, as1 +(1 - a)s2): x ~ R"]  

= min[t~L(x, s o +(1 - a)L(x ,  s2): x c R"]  

C a min[L(x, sl): x ~ R "] +(1 - ~) min[L(x, s2): x ~ R"]  + M 

= a D ( s O  +(1 - a)D(s2)  + M. 

The proof  is completed. [] 

Proposition 4.2. Weak  Duality. For any function s ~ Y and any vector 
X C R n, w e  have 

z - P ( x )  ~ MIO, for all z ~ D(s) .  

Proof. Suppose, to the contrary, that there are x, s, z, with 

z - P ( x ) 6  M, z ~  P(x ) ,  z ~  D(s) .  (15) 

It is obvious from (15) that 

x e X,  g (x)  ~ - N, s e Y+. 

In this case, 

P ( x )  = f ( x ) ,  sg(x)  e - M .  

Therefore, 

z ~ f ( x )  + M C f ( x )  + sg(x)  - sg(x) + M 

C f ( x )  + sg(x)  + M. (16) 

Since z ¢ f ( x ) ,  it follows that 

z ¢ f ( x )  +sg(x) .  

Relation (16) contradicts the assumption z ~ D(s) .  

Definition 4.1. We say that (Xo, So) is a pair of  dual solutions to 
Problems P and D, if Xo solves Problem P and 

f (xo)  ~ D(so) c~ max[D(s) :  s ~ Y]. 

The last relation shows that So solves Problem D. 
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Theorem 4.1. For ()Co, So) to be a saddle point of  L, it is sufficient and 
necessary that it be a pair of  dual solutions to Problems P and D. 

Proof. Suppose that (Xo, So) is a saddle point for L. From Corollary 
3.1, we see that Xo is a solution to Problem P. To prove that (xo, so) is a pair 
of  dual solutions, we must show that 

f(xo) e D(so) n max[D(s) :  s e Y]. (17) 

For this purpose, notice that 

D(so)=min[L(x,  So): x e R"], Soe Y+; 

hence, 

f(xo) c D(so). 

I f  

f (xo)~ max[D(s):  s e Y], 

then there exists s e Y such that, for some z e D(s), 

z # f ( x o ) ,  z e f ( x o ) + M .  (18) 

It is obvious that s e Y+ and 

D(s) = min[f (x)  +sg(x): x e R"]. 

Hence, 

z = f ( x )  + sg(x), for some x e X, 

and (18) yields 

f ( x )  + sg(x) ~ f(xo) + M. (19) 

Since 

sg(xo) e - M ,  

(19) can be rewritten as follows: 

f ( x )  + sg(x) e f(xo) + sg(xo)-  sg(xo) + M 

C f(xo) + sg(xo) + M. (20) 

As M is a pointed convex cone, it is easy to see that 

f ( x )  + sg(x) ~ f(xo) + sg(xo). 

This, together with (20), shows that 

z = f ( x )  + sg(x) 
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cannot be in D(s). Thus, 

f (xo)e  max[D(s): s • Y], 

and (17) follows. Now, assume that Xo solve Problem P and that (17) holds. 
We have to show that (xo, So) is a saddle point of L. Suppose that 

sog(Xo)  = o. 

Then, 

L(xo, so) =f(xo) =f(xo) + sog(xo) • D(so) = min[L(x, So): x • R"], 

and clearly, 

g( xo) • - N. 

From this, it follows that (Xo, So) is a saddle point of L (Theorem 3.1). To 
complete the proof, we have only to show that 

sog( Xo) = O. 

If this does not hold, i.e., 

sog( Xo) ~ O, 

obviously So• Y+; hence, 

sog(Xo) • -M\O.  

Therefore, 

f(xo) ~ f(xo) + sog(xo), 

f(xo) • f(xo) + Sog(Xo) + M, 

contradicting (17), and the theorem is proved. [] 

Remark 4.1. All the results presented above are valid if, instead of D 
and L, we consider Dl and Lt or De and Le. 

Corollary 4.1. Suppose that Xo is a proper solution to Problem P and 
that Slater's constraint qualification is satisfied. Then, 

f(xo) • max[De(s): s • Ye]. 

Proof. Theorem 3.2 assures that there exists So e N* such that (Xo, so) 
is a saddle point of Le. Now, the corollary follows directly from Theorem 4.1. 

r-3 
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5. Perturbation Function 

Let us define an M-convex  funct ion F ( x )  on R" by means o f  the relation 

~f(x), if x ~ X and g(x)  ~ - N, 
F ( x )  I 

l+oou,  otherwise. 

As we have not iced in Section 4, 

F ( x )  = P(x) ,  

and Problem P can be written equivalently as the following unconst ra ined 
minimizat ion problem for the funct ion F :  Find x0e R ~ such that  

F(xo) e min[F(x) :  x e R"].  

Let us denote the per turbat ion vector  u, u e R m. We can generalize 
F(x) to F(x, u), 

~(x) ,  if x e X and g(x)  ~ - u  - N, 
F(x ,  U) I 

L+oo~, otherwise. 

Lemma 5.1. F(x,  u) is an M-convex  function on R" × R  m. 

Proof.  We have to prove the convexity o f  the epigraph 

G = {(x, u, z) ~ R"  x R m x Rk: z ~ F(x ,  u) + M} ,  

in R" x R "  x R  k. For  this purpose,  let 

(x~,ui, z i ) ~ G ,  i =  t ,2 ,  O < a ' <  1. 

It is easy to see that  

x ~ X ,  g ( x O ~ - u ~ - N  , i =  1,2. 

Hence,  

axl  +(1 - a)x2 e X, 

by the convexity o f  X, and 

g(ax l  +(1 - a)x2) ~ ag(x l )  +(1 - a)g(xz)  - N C - aul - (1 - a)u2 - N, 

by the N-convex i t y  of  g. Therefore,  

F ( a x  1 +(1 - a)x2, O f U  1 +(1 - er)u2) = f ( a x l  +(1 - a)x2); 

consequently,  

cez I +(1 - a ) z  2 ~ a F ( x l ,  u 0 + (1 -- a )F(x2,  u2) + M 

C a f ( x  0 + ( t  - a) f (x2)  + M Cf (ax~  +(1 - a)x2) + M, 

by the M-convexi ty  o f f  Thus,  G is convex,  and the lemma is proved.  [ ]  
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Theorem 5.1. Let the functions Le and F be as above. These functions 
are conjugate, in the sense made precise by the following relations: 

(i) Le(x, s) = min[F(x, u ) -  e(~, u): u ~ Rm], 
(ii) F(x, u)=  max[Le(x, s )+  e(~, u): ~ ~ Rm]. 

Proof. If x is not in X, then (i) holds trivially. Suppose that x belongs 
to X. We have 

min[F(x, u) - e(~, u}: u ~ R m ] 

= min[{F(x, u ) -  e(~, u): - u  ~ g(x) + N}  

u {F(x, u) - e(~, u): - u ~  g(x) + N}] 

= min[{F(x, u) - e(~, u}: - u  ~ g(x) + N} t~ OOM] 

I f (x)  + e(~, g(x)), if ~ ~ N*, 
| 
t--OOM, otherwise, 

= Le (x ,  s) .  

Similarly, if x is not in X, then (ii) holds trivially. Suppose that x ~ X. 
We have 

max[Le(x, s)+e(~, u): ~e R m] 

= max[{L~(x, s)+e(~, u): ~c N*} 

u {L~(x, s) + e(~, u): ~ N*}] 

= max[{Le(X, s) + e(~, u): g ~ N*} u {--00M} ] 

= max[f(x) + e(g, g(x)) + e(~, u): g e N*] 

Sf(x), if g(x) e - u  - N, 
| 
L +oo M, otherwise, 

= F(x ,  u). 

This completes the proof. [] 

Remark 5.1. By writing L~(x, s) = rain[...] and F(x, u) = max[.. .] ,  we 
say that the sets min[. . . ]  and max[. . .]  are points and they coincide with 
LZx  , s) and F(x, u), respectively. 

Let Z be the space of all continuous positively homogeneous functions 
from R ~ into Rk; let Z1 and Ze be defined by analogy with Y1 and Ye. The 
conjugate functions F*, F*, F* of F, with vector variable, matrix variable, 
and function variable are respectively the following: 

F * : Z e X Y e - > R  k, F * : Z l x Y I - > R  k, F * : Z x Y - ~ R  k. 
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The function F* is defined as follows: 

F*(t ,  s ) = m a x [ t x  + s u -  F(x ,  u): (x, u )~  R"  × Rm]. 

The functions F* and F* are defined similarly. 
Note that the notion max in the definition of F* is not very correct. 

We shall interpret it as max of the closure of  the set 

{tx + su - F ( x ,  u): (x, u )e  R" x Rm}. 

Proposition 5.1. F*,  F*,  F* are set-valued M-convex functions, 
namely, 

F*(at l  +(I - a)t2, as1 +(1 - a)s2) C aF( t l ,  sl) +(1 - a ) F (  t2, s2) - m. 

Proof. To prove this proposition, it is sufficient to remark that for 
arbitrary ( - M ) - c o m p a c t  sets A, B, C in R k, with A C B + C, one has 

max A C  B + C Cmax B +max C - M. [] 

The dual problem (Problem D') is: Find Soe Y such that 

( -F* (0 ,  So))n max[ -F*(0 ,  s): s e Y] ~ ~ .  

Problems D" and D't are defined similarly. 

Proposition 5.2. Problems D'e and Dr coincide. 

Proof. By definition of Fe*, we have 

- F * ( 0 ,  s) = -max[e(g,  u) - F(x,  u): (x, u) e R" x R " ]  

= min[F(x, u ) -  e(g, u}: (x, u) e R" x R r~] 

= min[f(x)  - e(g, u): x e X ,  u e - g ( x )  - N ]  

~min[f(x) + e(g, g(x)): x e X], if .~ e N*, 
/ 

I.--eOM, otherwise, 

= min[Le(X, s): x c R n] 

= De(s). 

The proof  is completed. [] 

It is interesting to note that Problems D' and D~ are different from 
Problems D and D~, respectively. However, if we define the Lagrangian 
functions relative to perturbation functions, then we can ensure the required 
coincidence. Indeed, let 

L(x, u, s): R" x R  m × Y-> R k 
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be defined as follows: 

f , ( x , u , s ) = ~ f ( x ) + s u  , i f x ~ X , u ~ g ( x ) + N ,  
I. +ooM, otherwise. 

The primal and dual functions will be: 

/5(x) = max[[,(x, u, s): s ~ Y], 

/3(s) = min[L,(x, u, s): (x, u)~ R" xRm]. 

It must be noted that 

P(x)  = +ooM, when u ,~ g(x) + N, 

and P(x)  does not depend on u, if 

u ~ g ( x )  + N.  

The more precise statement will be clear in Proposition 5.3. 
The primal problem (Problem P) can be expressed as follows: Find 

)Co ~ R" such that 

P(x0) c~ min[P(x): x c R"] # 0 .  

The dual problem (Problem IS)) can be expressed as follows: Find so E Y 
such that 

/3(So) ~ max[/3(s): s c Y] # Q. 

Proposition 5.3. Problems D and D' coincide. The same result is valid 
for Problems P and P. 

Proof. Let us calculate -F* (0 ,  s) as follows: 

- F * ( 0 ,  s )=  -max[su  - F ( x ,  u): (x, u)~ R" x R  m] 

: min[F(x, u ) - s u :  (x, u)~ R" x R  m] 

= m i n [ f ( x ) -  su: x ~ X, u ~ - g ( x ) -  N]  

= min[f(x)  + su: x ~ X, u ~ g(x) + N]  

: min[/Z(x, u, s): (x, u) ~ R" x R " ]  

:/3(s). 
For Problems 15 and P, we see that, if 

u ~ g ( x ) + N ,  u#O,  

then there are si ~ Y such that 

siu ~ c~M, a s  i ~ c o .  
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This means that 

ff(x), if x e X and 0 e g(x) + N, P(x) I 
L+ooM, otherwise. 

This completes the proof. 

Let 17 + denote the set of  all s e Y, such that 

s ( -N)  n M = {0}. 

We say that (Xo, s0)e R" × Y is a saddle point of/7, if: 

L(xo, g(xo), So) e min[L(x, u, So): (x, u) e R n × Rm], 

L(xo, g(xo), so) ~ max[L(xo, g(xo), s): s c Y+]. 

It can be proved that many results in Sections 3 and 4 are valid for I7.. 

[] 

6. Scalar Lagrangian Function 

Let I' be a fixed nonzero vector of  M. Corresponding to this vector, 
we define a scalar Lagrangian function for Problem P as follows: 

~(l',f(x))+(~,g(x)), i f x e X , ~ e N * ,  
l(x, ~) =~-oo ,  i f x  e X, g~ N*,  

/ 

L+oo, if x ~ X. 

It is easy to see that l(x, ~) is convex in x, for any fixed g, and is concave 
in g, for any fixed x. Furthermore, it is a lower semicontinuous function on 
X × N * .  

Let us recall some relationships between the solutions of  Problem P 
and the solutions of  the scalarized problem. Denote 

S(2t)={xoeX:xo minimizes (A,f(x)) on X, under the constraint 
g(x) e -N} .  

Lemma 6.1. The following inclusions hold: 

{s(A): A c M, IIAII-- 1} c_ S_c{S(A): a c M*, IIAII = 1}. 

Proof. The proof  of  this lemma was presented in Ref. 7. It can be 
verified directly, without any difficulty. [3 

Proposition 6.1o Assume that Xo is a solution to Problem P and that 
Slater's constraint qualification is satisfied. Then, there exist a vector l' e M*, 
l' ~ 0, and a vector So E N* such that (Xo, So) is a saddle point of  l(x, ~). 
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Proof. Apply Lemma 6.1 and the proof of Theorem 3.2 to get l' 
and 70. [] 

Corollary 6.1. If (Xo, So) is a saddle point of l(x, ~) for some 1' ~ int M*, 
then Xo is a solution to Problem P. 

Proof. The proof of this corollary is evident. [] 

Proposition 6.2. If  (Xo, So) is a saddle point of Le(x, s), defined in 
Section 3, then there exists a vector l' in M* such that either (Xo, s0) or 
(Xo, O) is a saddle point of l(x, ~). 

Proof. This proposition follows at once from Theorem 3.1 and 
Lemma 6.1. [] 

Corollary 6.2. If, in addition to the assumptions concerning M, we 
assume that int M is nonempty, then (Xo, go) in Proposition 6.2 will be a 
saddle point of l(x, 7). 

Proof. This is the case when 

(A, e)#O.  

Therefore, (Xo, ,to) is a saddle point of l(x, ;a), with 

l '=  A/(A, e). [] 

Proposition 6.3. If  (Xo, 70) is a saddle point of l(x, ~), for some 1' 
int M*, then ()Co, So) is a saddle point of the Lagrangian function Le(x, s), 
with the vector e/(l', e) replacing the vector e. 

Proof. This proposition follows at once from Theorem 3.1 and 
Lemma 6.1. [] 

According to the Lagrangian l(x, s), we define a primal problem 
(Problem p) and a dual problem (Problem d) as follows: 

rain p(x), 

s.t. x ~ R", where p(x)= max{/(x, g): g ~ R"};  

max d(7), 

s.t. 7~ R m, where d(s')=min{t(x, ~): x~  R"}. 

We say that (Xo, 70) is a pair of dual solutions to Problems p and d, if 
Xo solves Problem p, 7o solves Problem d, and of course 

a(~o) = p(xo). 
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It is clear that p(x)  is a convex function and d(~) is a concave function. It 
is also known from the general theory (see Ref. 5) that, for (Xo, So) to be a 
pair of  dual solutions, it is sufficient and necessary that (Xo, go) be a saddle 
point of l(x, g). 

Proposition 6.4. Suppose that (Xo, So) is a pair of dual solutions to 
Problems Pe and De, defined in Section 4. Then, there exists a vector l' ~ M*, 
such that either (Xo, So) or (Xo, 0) is a pair of dual solutions to Problems p 
and d, 

Proof. This proposition follows directly from Theorem 4.1, Proposi- 
tion 6.2, and the remarks made above. [] 

Proposition 6.5. Suppose that (Xo, so) is a pair of  dual solutions to 
Problems p and d, for some l '~int  M*. Then, (Xo, So) is a pair of dual 
solutions to Problems Pe and De, with e/(l ' ,  e) replacing e. 

Proof. This is an immediate consequence of  Theorem 4.1 and 
Proposition 6.3. [] 
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