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Optimal Control of a Rotary Crane 

Y. SAKAWA, 2 Y. SHINDO, 3 AND Y. HASHIMOTO 4 

Communicated by D. G. Hull 

Abstract. This paper is concerned with the optimal control of a rotary 
crane, which makes two kinds of motion (rotation and hoisting) at the 
same time. The optimal control which transfers a load to a desired 
place as fast as possible and minimizes the swing of the load during 
the transfer, as well as the swing at the end of transfer, is calculated 
on the basis of a dynamic model. A new computational technique is 
employed for computing the optimal control, and several numerical 
results are presented. 

Key Words. Optimal control, rotary crane, nonlinear systems, compu- 
tational algorithms. 

1. Introduction 

Cranes may be classified into two types, according to their fundamental 
motion: one is the overhead traveling cranes, and the other is the rotary 
cranes. Optimal control of the overhead traveling cranes has been studied 
by many authors. For example, Martensson computed the optimal control, 
based on a torque control model as well as an acceleration control model 
(Ref. 1). However, although the rotary cranes are widely used, the optimal 
control has not yet been discussed so far to our knowledge. 

The fundamental motion of rotary cranes is rotation, load hoisting, 
and boom hoisting. In this paper, we first derive the equations of coupled 
motion of rotation and load hoisting for the rotary cranes whose boom 
angle is kept constant. On the basis of the dynamical model derived, we 
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calculate the optimal control which transfers a toad to a desired place as 
fast as possible and at the same time minimizes the swing of the load during 
the transfer as well as the swing at the end of transfer. For the numerical 
computation, we employ a new computational method. Several numerical 
results indicate that the algorithm that we employ works out our problem 
very well and that the algorithm can be applied to solving a wide range of 
optimal control problems. 

2. Dynamical Model of a Rotary Crane 

For simplicity, we make the following assumptions. 

(A1) The body of a crane and a load can be regarded as a rigid body 
and a material point, respectively. 

(A2) Frictional torques which may exist in torque-transfer mechan- 
isms can be neglected. 

(A3) Boom angle and boom length are constant. 

Strictly speaking, a rotary crane with load is not a rigid body, but an 
elastic body. In the case of installed rotary cranes, most of which are 
electrically driven, they are usually so designed that they have enough 
strength to be regarded as a rigid body. In the case of mobile cranes, since 
they are so designed that the body is not so heavy, they are more elastic 
than the installed cranes. Even in the case of the mobile cranes, according 
to experimental results given by Ito (Ref. 2), the elastic deformation of 
the boom of the crane is at most 1/100 of the length of the boom. In this 
paper, we consider the installed rotary cranes. Therefore,  Assumption (A1) 
is reasonable for our control problem. 

The following notations, which are shown in Fig. 1, are used in what 
follows: 

(~, rl, () = coordinate of a load. 
P1 = lower end of a boom. 
P2 = upper end of a boom. 
P3 = projection of Pz on the (~:, , /)-plane. 
P4 = projection of the load on the (s e, r/)-plane. 
L = length of rope which is controlled by a hoisting motor. 
H = constant height of point P2. 
R = constant radius of rotation. 
0 = angle between OPa and the ~-axis, which is controlled by a rotation 

motor. 
a = angle between OP3 and P3P4. 
/3 = angle between rope and vertical line. 
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rn = mass of the load. 
F = tension of the rope. 
D = distance between points P3 and P4, that is, swing of the load. 
J1 = momen t  of inertia of a hoisting drum as well as hoisting motor.  
J 2 - - m o m e n t  of inertia of the rotary crane with respect to the (-axis. 
~b = angle of rotation of the hoisting drum, which is equal to the angle 

of rotation of the hoisting motor.  
b -- radius of the drum. 
T1 = driving torque generated by the hoisting motor.  
T2 = driving torque generated by the rotation motor.  
g = acceleration of gravity (9.81 m/sec2). 
~- = time. 

( b )  mg 

Fig. I. Notations for a rotary crane. 

We see f rom Fig. 1 that  

f = R cos 8 + L  sin/3 cos(0 + a) ,  

= R sin 0 + L  sin fl sin(0 + a ) ,  

( = H - L  cos B. 

(la) 

(ib) 

(2) 
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The equations of motion of the load are given by 

rn (dZ~/dr 2) = - F  sin/3 cos(0 + a),  

m (d2rl/d~ "2) = - F  sin/3 sin(0 + a),  

m(  d2 ~/ dr  2) = - r a g  + F cos/3. 

(3) 

(4) 

(5) 

The equations of motion for the rotation of the drum and the rotation of 
the crane are respectively given by 

Jl(d2 &/ dr  2) = b F -  7"1, (6) 

J2(d20/dr  2) = I"2 + R F  sin a sin ft. (7) 

We assume that the angle/3 is so small that the approximations 

cos/3 ---- 1, sin/3 ~/3 

hold. Then, from (2) we see that 

( = H - L  (8) 

Moreover, using (5), (8), and the relation 

b (d2¢/dq "2) = d Z L / d r  2 , 

we obtain 

mb(dZ&/ dz  2) = m g -  F. (9) 

Eliminating d 2 ¢ / d z  2 from (6) and (9) gives 

F = [mgJ1/(J1 + mb2)](1 + bT1/gJ1). (10) 

By using (1), (2), (10), the equations of motion (3), (4), (5), (7) can be 
rewritten as 

d2~/dr  2 = [gJ1/(J1 + mb2)](1 + bTa/gJ~)[(R cos 0 - ~)/L],  

d2r l /dr  2 = [gJ1/(J1 + mb2)](1 + bTJgY~)[ (R  sin 0 - ~7)/L], 
(11) 

d 2 ( / d r  2 = - d Z L / d 7  2 = [gJ1/(J1 + mb2)](bT1/gJ1 - mb2/ j1) ,  

dio/d~ -2 = r d &  + (mR/&)[gJ~/(& + mb2)](1 + bT1/gJO 

× [(r/cos 0 - ( sin O)/L]. 

Now, we define the dimensionless variables 

X = ~/R,  Y = n / R ,  Z = ( / R ,  l = L / R  (12) 

and the parameters 

h = H / R ,  or = mbZ/J1, p = m R 2 / j 2 .  (13) 
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In addition, we define the dimensionless time t by 

t = x / -g  7-, 

where 

Furthermore,  let 
follows: 

K = g J 1 / R  (Ja + m b  2) = g / R  (1 + or). (14) 

us define the state variables and control variables as 

x l  = x ,  x2  = x ,  x3  = v ,  x4  = f ' ,  

x 5 = Z ~  x 6 = Z ,  x 7 =  0, x 8 =  0r 

ul = (b/gJ1)T1,  u2 = (1 /KJ2 )T2 ,  

(15) 

where the dot denotes the derivative with respect to t. Then, (11) can be 
rewritten as 

X1 = X2~ 

X a = (1 q- Ul)(COS X 7 - - x 1 ) / ( h  -x5), 

X3 = X4~ 

x4 = (1 + ul)(sin XT-X3)/(h -x5) ,  
(16) 

X5 = X6, 

X6 ~-.-~ Ul --  Or, 

X7 ~ X8, 

x8 = u2+p(1 + ut)[(x3 cos x 7 - x i  sin x7 ) / (h  -xs ) ] .  

Defining the state vector 

x = ( x l  . . . . .  x s )  T 

and the control vector 

u = (u~, u2)L 

where T denotes the transpose, we write (16) simply as 

i (t) = f ( x  (t), u (t)). (17) 

3. Control Problem 

We now consider the following problem: Transfer a load which is 
initially on the surface of the Earth (0 = 0, ( =  0) to the desired position 
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in time tl, so that the load is in complete rest at the end of transfer. Let  
the desired position be expressed by the angle of rotation 01 and the height 
H1. Then, the initial condition 

I x (0) = x 

and the final condition 

are respectively given by 

where 

F 
x(h)  = x  

x '  = (1, o, o, o, o, o, o, o) ~, 

x F -- (cos 01' O, sin 01, O, hi, O, 0~, O) r 
(18) 

where 

where 

H 1  m a x  = (b/gJ1)T1 . . . .  u2 m a x  ~--- (1/KJ2)T2 . . . .  (21) 

and Tt  max and T2 max are the maximum torques, respectively. In the same 
way, the hoisting velocity is limited by its maximum value Va . . . .  and the 
angular velocity of rotation is also limited by its maximum value V2 . . . .  
Consequently, we assume that 

l X 6 ( t ) ]  ~ V l  . . . .  (22) 

[Xs(t)l- v2 max, (23) 

Let  Lo be the minimum rope length. Then, xs(t) must satisfy 

0 <- x5(t) <- x5 m a x ,  (24) 

hi = ( H 1 / R ) .  

By defining a vector function 

O(x)=x-xF ~R 8, 

the terminal constraint is given by 

O(x(tl)) = 0. (19) 

Since the torques of the driving motors are limited, it is natural to 
assume that 

O<-ul(t)<-ut . . . .  [u2(t)l<--.U2max, (20) 
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where 

X 5  m a x  = ( H - L o ) / R .  ( 2 5 )  

Since it is difficult to include directly the state-variable constraints (22) 
to (24) in any computational scheme, we take the constraint (23) into 
consideration in the form of a penalty function in the cost functional, which 
will be stated later. As for (22) and (24), we apply the constraining 
hyperplane technique proposed by Martensson (Ref. 3). The basic idea in 
the constraining hyperplane technique is to approximate the state-variable 
constraint of the form 

S(x (t)) -< 0 

by a mixed state-control-variable constraint of the form 

g(x(t), u(t))<-O. 

In our case, let 0/i, i = 1, 2, 3, be arbitrary positive numbers such that 
0/2 ~ 0/3, and let 

b/1 - -  Ov "I'- 0 / 1 ( X 6  - / ) 1  m a x )  

-ut + o ' -  0/l(x6 + v1 m~x) 

/'/1 - -  O" "[- (O~ 2 "b 0 / 3 ) X 6  -}" 0 / 2 0 / 3 ( X 5  - -  X5  max  

- - U l  q" 0 v - -  ( 0 /2  "t" 0 / 3 ) X  6 - -  0 / 2 0 / 3 X  5 
g(x, u)=  (26) 

U 1 - -  U 1 max  

- - / -g l  

/ / 2  - - / / 2  m a x  

- - ' / g 2 -  b /2  m a x  

Then, under suitable initial conditions which are usually satisfied, the 
condition 

g(x(t), u(t)) <- 0 (27) 

gives a sufficient condition for the state constraints (22) and (24) and the 
control constraint (20) to hold. The last four components in (27) represent 
the control constraint (20). If all the values of the positive parameters 
0/1, a2, 0/3 tend to infinity, then the first four components in (27) tend to 
represent the state constraints (22) and (24). Therefore, we replace 
hereafter the conditions (20), (22), (24) by the condition (27), and we 
consider the optimal control under (27), so that computation is feasible. 
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It is clear that the condition (27) is rewritten as 

max{O, ~ - a 1 ( x 6 ( t )  + v 1 max ), Or - -  (0~2 -}- Ot 3 ) x 6 ( t )  - -  O ~ 2 a 3 x s ( t ) }  --< U l ( t )  

--< min{u 1 m~, Cr - OLl(X6(t) - v 1 max) ,  Or - -  ( a 2  + a 3 ) x 6 ( t )  

-a2a3(xs(t)-x5 re.x)}, 

lu2( t ) l<-u2  . . . .  

and that the control region is given by a variable rectangular region as 
shown in Fig. 2. We denote by U(x) the rectangular control region, namely, 

U(x) ={u: g(x, u ) - - 0 } C R  2. 

U 2 

U lax 

-U2max 

Ulmax Ul 

Fig. 2. Con t ro l  region.  

If we apply the constraining hyperplane technique (Ref. 3) to (23), then 
the control region cannot be a rectangle. That is why we consider the 
constraint (23) in the form of a penalty function in the cost functional. 

Let us now consider the controllability of the system (17). Since (17) 
is nonlinear, we only consider local controllability at the end point x F. The 
control 

F 
u = u ( t l )  
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which keeps the system at a standstill must satisfy 

f(x F, u F) = O. 

Using (16) and (18), we obtain 

F 
u = (o-, 0) .  

Let us define the 8 x 8 matrix A and the 8 x 2 matrix B by 

a =f~(x ~, u F) = [Ofi(x F, bIF)/3Xi], 

B = L ( x  u s ) = [ofi(x u )/ouj]. 

It can be easily seen that 

rank[B, AB . . . . .  ATB] = 6. (28) 

Therefore,  the system (17) does not satisfy a sufficient condition for local 
controllability at the endpoint  (Ref. 4). This fact tells us that it will not be 
easy to find the control which transfers a load to the desired final state x F. 

4. Optimal Control Problem and Necessary Conditions for Optimality 

The problem now is to find the optimal control which transfers the 
initial state x z of the system to the desired terminal state x F as fast as 
possible and, at the same time, minimizes the swing of the load during the 
transfer. We define the swing of the load by 

D (x) = [(cos x7 - xl) 2 + (sin x7 - x3) 211/2 (29) 

Let  h[S] be the step function such that 

h [S] = 1, if S >- 0, 

h[S] = 0, if S < 0. 

Corresponding to the state constraint (23), let us define 

S(x)  = Ix81-  max(1 -- y), 

where y, 0 <-y < 1, is a constant to be adjusted so that the constraint (23) 
holds. Now, the cost functional to be minimized is given by 

Y(u) = fotl ½[D2(x(t))+ wh[S(x ( t ) ) ] S 2 ( x ( t ) ) ]  dr, (30) 

where the state constraint (23) is incorporated as a penalty term and w > 0 
is a penalty constant. Here ,  the terminal t ime tl is fixed, so that it is possible 
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to reach the terminal state 

~O(x(h)) = 0 

in time tl under the constraint (27). 
Let  us define 

= ~ll~,(x)llo = O(x)  1 2 1 ~" 3¢ (x)O~(x),  

where O is a positive-definite diagonal matrix of scaling factors and 
denotes the transpose of a matrix. Then, the terminal constraint 

4~(x(t~))  = o 

can be written as 

T 

O(X(tl)) = O. (31) 

Since the minimization of 

Io tl O(x(tl))+ JL(x(t), u(t)) dt 

is equivalent to the minimization of 

fo q u)+ O~(x)f(x, u)] dt, El (x ,  

where 

o~= (oO/Ox~ . . . . .  aO/Ox.), 

we include the terminal constraint (31) in the cost, and we consider the 
cost functional 

where 

J(u) = L(x(t), u(t)) dt, (32)  

u ) = ~ [ D  (x)+whES(x)]S2(x)]+~'r(x)Qf(x, u). (33) L(x, 1 2 

By letting tl be as small as possible in the course of iteration of computation, 
we can obtain a satisfactory solution to the original optimal control problem. 

Let  u*(t) be the optimal control, and let x*(t) be the corresponding 
optimal trajectory satisfying (17), (19), (27). Then, it is necessary that there 
exist a continuous row-vector function 

A*(t) = (A 1" (t) . . . . .  A* (t)), 
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a piecewise continuous row-vector function 

Ix*(t) = (Ix* (t) . . . . .  /z*(t)), 

where m is the dimension of the constraint vector g, and a constant 
n-dimensional row-vector b, such that the following conditions are fulfilled 
(Refs. 5 and 6): 

(i) d)t *(t)/dt = -H~(x*(t) ,  u*(t), A*(t))-Ix*(t)g~(x*(t), u*(t)), (34) 

A *(tl) = bqt~(x*(tl)), (35) 

where 

H (x, u, A) = L(x, u, A) +Af(x, u). 

(ii) H.(x*(t) ,  u*(t), A*(t))+ix*(t)g.(x*(t), u*(t)) = 0. 

(iii) gi(x*(t), u*(t))<-O, Ix*(t)>-O, j = l  . . . . .  m, 

Ix* (t)gj(x*(t), u*(t)) = 0, j = 1 . . . . .  m. 

(36) 

(37) 

(38) 

(39) 

(iv) For all t~ [0, q], the function H(x*(t),  u, h*(t)) of the variable 
u ~ U(x*(t)) attains its minimum at the point 

u = u * ( t ) ;  

namely, for any v ~ U(x*(t)), 

H(x*  (t), u* (t),)t * (t)) <- H(x*  (t), v, ;t * (t)). (40) 

(v) Let ~ denote the vector formed from g by taking all the active 
components of g. Thus, 

~,(x*(t), u*(t)) = 0. 

For any two-dimensional vector p satisfying 

g,(x (t), u*(t))p = O, 

it follows that 

pT[H,~,(x*(t), u*(t), A*(t))+ix*(t)gu~(x*(t), u*(t))]p >--0. (41) 

Let d be the dimension of the active constraint vector ~(x, u). Then, 
d --- 2, and the d x 2 matrix ~ (x, u) has a full rank d. Since the d × d matrix 
A A T *  gug, is nonsingular, we can define a 2 × d matrix G by 

G(x, u) A~, =g.~x ,  u) [G(x ,  Ar u)g.  (x, u)] -1. (42) 

Let/2*(t) be a d-dimensional row-vector formed from Ix*(t) by taking the 
components corresponding to if(x, u). Then, from (37), we obtain 

12"(0 = - H , ( x * ( t ) ,  u*(t), • *(t))G(x*(t), u*(t)). (43) 
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By using (43), we see that (34) can be rewritten as 

dA *(t)/  dt  = -H~(x* ,  u *, A*) +H,(x*,  u*, A *)G(x*,  u*)~,~(x*, u *). (44) 

5. Method of Computation 

For the numerical computation, we employ a new algorithm (Ref. 7) 
which is similar to first-order differential dynamic programming (Ref. 8). 
To overcome the convergence difficulties, the convergence control para- 
meters (CCP) technique proposed by Jiirmark (Ref. 9) and the method of 
multipliers originally proposed by Hestenes (Refs. 10 and 11) are combined 
with our algorithm. We seek the optimal control which minimizes the cost 
functional and at the same time satisfies the terminal condition 

e , (X( t l ) )  = o. 

Thus, we have to solve two problems simultaneously; that is, one is the 
minimization problem, and the other is the two-point boundary-value 
problem. The CCP technique stabilizes the minimization process, and the 
method of multipliers works for satisfying the terminal condition. 

Let us define the function 

K ( x ,  u, h ; v, C) = H(x ,  u, A ) + }(u - v)'rC(u - v), (45) 

where C is a nonnegative diagonal matrix, which is called the CCP matrix. 
For seeking the optimal pair (x*(t), u*(t)) satisfying the necessary condi- 
tions in the preceding section, we propose the following algorithm. 

Step O. Select a nominal control u°(t) and a corresponding nominal 
trajectory x°(t) that satisfy 

g(x°(t),  u°(t))<-O 

and 

dx°( t ) /d t  =f(x°( t ) ,  u°(t)), x°(0) =x  t. 

Then, solve the differential equation 

dA°( t ) /d t  = -Hx(x °, u °, A ° ) + H , ( x  ° , u °, A °)G(x °, u°)~,x(x °, u°), (46) 

with the terminal condition 

h °(h) = c~ r(x°(h))OOx (x°(h)), (47) 

where c is a positive constant. Set b° = 0 and i = 1. 
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Step 1. Determine x~(t) and  ui(t)  that satisfy both 

K(xi(t),  ui(t), hi-l(t) ;  u i-t, C i) = rain K(xi(t),  u, hi-t(t) ;  u i-1, C ) ,  
ueU(x~(t)) 

(48) 
and the differential equations 

dxi( t ) /dt=f(xi( t ) ,  ui(t)), x~(O) =x I. (49) 

This can be done by integrating (49) from t = 0 to t = ti, while seeking ui(t) 
that minimizes K. 

Step 2. Calculate 

I0 '1 
J(u ~) = L(xi(t), ui(t)) dt. (50) 

If 

set 

J (u i )>J(u  i-1) and C<Cmax ,  

C ~ := min{aC i, Cmax}, 

where a > 1 and Cm~x is the specified maximum value of the CCP matrix, 
and go to Step 1. If 

j ( u l ) > j ( u  i 1) and C~>-Cm,x, 

set 

and go to Step 3. If 

set 

C i+1 ~ Cmax~ 

y(ui)<_J(ui-~), 

C i+l =/3C i, 

where 0 </3 < 1, and go to Step 3. 

Step 3. If both the conditions 

II~(xi(tl))l[~,< e~, (51) 

fo q t[u - u ez (52) i(t) i-l(t)l I dt < 

are satisfied, where el > 0 and e2~> 0 are given small numbers, then stop 
the computation. Otherwise, go to Step 4. 
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Step 4. If both the conditions 

~J(u~)>j(ui-1) ,  

[10(x '(tl))[l~ > IlO(x i-1 (tl))[l~ 

hold, then set 
i i - - 1  i . i - - 1  

U : = U  , X , = X  , 

and go to Step 5. Otherwise, go to Step 5. 

Step 5. Set 

b i - 1  = O,  

^ i  i i i t~ = - H . ( x  , u ,  ~.~)G(x ~, u ), 

and solve the differential equation 

_ d A i ( t ) / d t = H x ( x i ,  i i , i .  i i u , ; t  )+U gx(X,U ), 

under the terminal condition 

hi(tl) = bi~bx(Xi(tl)), 

where 

(53) 

(54) 

(55) 

(56) 

(57) 

b ! = b i-1 -b c~r ( x i (q ) )Q .  (58) 

Set i := i + 1, and go to Step 1. 
In Step 0 of the algorithm, (46) is the same as (44), and (47) is the 

terminal condition when the cost functional is given as 

1 2 fot' J(u) - -  ~cl144x(t1))[lo+ Z(x(t) ,  u(t)) dt, (59) 

where the first term is added as a penalty function for the terminal condition 

O(x (h)) = O. 

In Step 1, 

K ( x  i, i-1 i-1 i-1 +1 u - u  i-1) u,A ;u  , C  i ) = H ( x  i ,u ,A ) ~( - u i - 1 ) r C i ( u  (60) 

is considered twice. Namely, it is included as a penalty term in the integral 
This idea is due to Jfirmark (Ref. 9). If the nonnegative matrix C ~ is large, 
because of the quadratic penalty term in (60), the variation 

~ U  i -~- U i - - U  i - 1  

of the control is kept small, and the stability of the algorithm is ensured. 
In Step 2, if the cost (50) increases compared with the foregoing value, 

then the matrix C i is made larger and the computation is iterated until the 
cost decreases or the matrix C ~ reaches the specified maximum value Cmax. 
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If the cost decreases compared with the foregoing value, then the next 
matrix C ~+t is set smaller. 

In Step 5, (55) is formally the same as (43), and (56) is formally the 
same as (44). The terminal conditions (57) and (58) are due to the method 
of multipliers of Hestenes (Ref. 10) and also due to the balance function 
method (Ref. 11). The validity of (57) and (58) can be explained as follows. 
Suppose that the cost functional in the ith iteration is given by 

fo t~ J(u)=½cHt~(x(tl))llEo+b~-16(x(t~))+ [L(x(t), u(t)) 

1 + ~(u(t)-  Ui-l(t))rci(u (t)-- Ui-l(t))] dt, (61) 

where b '-1 is the Lagrange multiplier row-vector for the constraint 

~(x  (t~)) = 0. 

Then, the terminal condition for ,~ (t) is given by 

h (tl) = [b ~-1 + c$r(x(tl))O]d& (x(h)), (62) 

which gives (57). By modifying the multiplier vector b properly at each 
step of the iteration, as in (58), it is expected that the rate of convergence 
of ~(x(tl)) to zero will be improved. 

In the algorithm, the terminal condition 

¢,(x (tl)) = 0 

is considered twice. Namely, it is included as a penalty term in the integral 
cost functional (32). It is once again included in (61) as a terminal cost, 
which gives the terminal condition (62) for A (t). 

In Step 4, if both the conditions (53) and (54) hold and the computation 
comes to a deadlock, we regard the last control and trajectory as a new 
nominal solution and start the computation again by setting 

b i -1  ~. O. 

6. Numerical Results 

We assume a monotower  crane, which is often used for construction 
of buildings. We assume the parameter  values as follows: 

R = 30 m, H = 50 m, Lo = 5 m, m = 10 tons, 

VI max = 0.9165 m/sec,  V2 max = 1.46 rpm = 0.153 rad/sec. 
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We assume that the hoisting motor plus the drum is equivalently of cylin- 
drical shape with radius b and mass m0. Then, the moment of inertia J1 is 
given by 

J1 = mob2~2.  

Assuming that 

from (13) we obtain 

The symbol 

m0 = 8 tons, 

o" = m b  2 / j1  = 2 m / m o  = 2.5. 

p = m R 2 / J 2  

represents the ratio of the moment  of inertia of the load to that of the 
crane with respect to the (-axis. We assume that p = 0.2. Since 

K = 0.0933 

from (14), vl max and V2max can be calculated as follows: 

121 max ~- V1  m a x / ~ / ~ ' R  = 0 . 1 ,  v2  max = V 2  m a x / ~ / K  = 0 .5 .  

Let 

T1 max = Mgb ,  

where M is the maximum weight of the load. Then, assuming that 

M = 20 tons, 

from (21) we obtain 

b / 1  m a x  = bT1 ~ax/gJ1 = 2 M / m o  = 5. 

We assume that 

u2 max = T2 max/K J2 = V2  ~ax /KT ,  

where T is the time for acceleration from standstill to the maximum speed 
V2 . . . .  Assuming that 

we obtain 

T = 6.55 sec, 

u2 max = 0.25. 
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The paramete r  values used in the computat ion are as follows: 

or1 = c~2 = 10, c~2 = 12, 

0 = diag(lO, 50, 10, 50, 10, 50, 10, 50), 

c = 0.1, w = 10, 3' = 0.2, 

= 2, /3 = 2 -°'2 = 0.87, 

Cmax = 2 0 , 0 0 0  I, 

where I denotes the identity matrix. If the cost value decreases consecu- 
tively five times with an initial CCP matrix C, then the CCP matrix at the 
fifth iteration is equal to C/2, because 

/3 = 2 -°"2. 

Fur thermore ,  if the cost value increases in the next (sixth) iteration, then 
the CCP matrix jumps to the initial value C again, because 

O ~ = 2 .  

The convergence of the algorithm depends strongly on the fitness of 
the nominal  trajectory initially chosen. We selected a pair of nominal 
controls, such that 

ul ( t ) -or  = (rr/ h) min{vl . . . .  rrhl/2tl} cos('rrt/tl), 
(63) 

uz(t) = (crib) min{v2 . . . .  rrO1/2h} cos(Trt/ h). 

It  is clear f rom (16) and (18) that the nominal trajectory satisfies 

[x6(t)l--< Vl . . . .  x6( t l )  = 0. 

Moreover ,  

xs(h) = hi, if u 1 m a x  ~ ~rhl/2t> 

If p = 0, the nominal trajectory satisfies the same conditions as above, i.e., 

lxg(t)  I ~-~ U2 . . . .  Xs( t l )  = 0. 

Numerical  solutions were obtained for three cases. Figure 3 indicates 
the nominal controls and the corresponding nominal solution in the case 
where 

01 = ~ ,  H1 = 30 m, tl = 14 

(actual t ime r l - - 4 5 . 8  sec), and Fig. 4 indicates the optimal controls and 
the optimal solution obtained by the computation.  In Figs. 3 to 8, the 
quantities ul -o-, u2, Z,  2 ,  O, O, X,  fz are plotted against the dimensionless 
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Fig. 3. Nominal trajectory (01 = 180 °, hi = 1). 
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Fig. 4. Optimal solution (01 = 180 °, hi = 1). 
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time t, and the locus of the load in the (X, Y)-plane is shown. In Fig. 3, 
the terminal conditions for X(5),  Y(tl), Z(tl), O(tl) are not satisfied. 
However, in Fig. 4 all terminal conditions are satisfied, and the swing of 
the load during the transfer is satisfactorily small. 

Figure 5 indicates the nominal controls and the nominal solution in 
the case where 

01 = ~r, HI = 15 m, tl = 14 

(actual time r~ = 45.8 sec); and Fig. 6 indicates the optimal solution obtained 
by the computation. Figures 7 and 8 respectively indicate the nominal 
trajectory and the optimal solution, in the case where 

01 = rr/2, /-/1 = 15 m, tl = 7 

(actual time ~1 = 22.9 sec). Figures 6 and 8 also give satisfactory results, 
respectively. In Figures 4 and 8, the hoisting velocity reaches its maximum, 
and in Fig. 8 the torque of the rotation motor reaches its maximum. 

In these computations, the differential equations (49) and (56) were 
solved by using the method of Heun (Ref. 13) with a uniform steplength 
A = tl/N, where N was taken as N = 200. In particular, 

ui(k)=-ui(kA) and xi(k)--xi(kA) 

in Step 1 of the algorithm were determined as follows. 

(i) Set k = 0. 
(ii) Given if(k), determine ui(k) via (48). 
(iii) Using the approximation 

~i(k + 1) = xi(k) +f(x~(k), u~(k))A (64) 

to x~(k + 1), calculate x~(k + 1) by 

xi(k+l)=xi(k)+½h[f(x~(k),  u~(k))+f(~(k +1), ui(k))]. (65) 

(iv) Set k := k + 1, and go to (ii). 

All computations were done by using the ACOS System 900 of Osaka 
University. The CPU time needed to obtain the optimal solution was about 
70 sec to 150 sec, and the number of iterations was 120 to 250. The values 
of the CCP matrix ranged from about 1,000I to 20,000/. In general, in 
the case where some state-dependent control constraint is active, a much 
larger number of iteration was needed. If the time tl is set larger, then the 
computation is easier, and the swing of the load during the transfer becomes 
smaller. 
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Fig. 5. N o m i n a l  t ra jec tory  (01 = 180 °, h i  = 0.5). 
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Fig. 6. Op t ima l  solut ion (0i = 180 °, h i  = 0.5). 
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Fig. 7. Nominal trajectory (0i = 90 °, hi = 0.5). 

0 0 5 t 

o . : f ~ t  

0 77/2 
o 

0 ~' ' ~ 0  

--£ ~ "''"" '' 0 X 
Fig. 8. Optimal solution (01 = 90 °, hi = 0.5). 
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7. Concluding Remarks 

We applied a new algorithm, combined with the CCP technique and 
the method of multipliers, to the numerical solution of the optimal control 
of a rotary crane. The numerical results obtained indicate that the algorithm 
is suitable for our problem; also, this algorithm can be applied widely to 
various problems of optimization. 

In order that the load be in complete rest at the end of the transfer 
and that the swinging of the load during the transfer be minimized, the 
torque of the motors should be controlled in the entire course of the transfer 
of the load. Thus, the computed optimal control scheme becomes inevitably 
complicated, as shown in Figs. 4, 6, and 8, respectively. Since the algorithm 
used is simple, compared with the second-order DDP method (Ref. 1), it 
might be possible to install a microcomputer in the crane, compute the 
optimal control between two successive transfers of loads, and control the 
crane following the computed optimal scheme. At present, most rotary 
cranes are controlled by crane operators manually. If the optimal control 
pattern is calculated beforehand, the operating load of the crane operator 
can be reduced considerably. 
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