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Compromise Solutions, Domination Structures, 
and Salukvadze's Solution 1 

P. L. Yv 2 AND G. LEITMANN a 

Abstract. We outline the concepts of compromise solutions and 
domination structures in such a way that the underlying assumptions 
and their implications concerning the solution concept suggested by 
Salukvadze may be clearer. An example is solved to illustrate our 
discussion. 
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1. Introduction 

In daily decision making, we deal quite often with problems 
involving not only a single criterion. Rather, we may have multiple 
objective decision problems or decision problems involving more than 
one decision maker. For these types of decision problems, there is not 
as yet a universally accepted solution concept, even though there exist 
quite a few (see Refs. 1-38). Although we may use a recently derived 
concept of domination structures (Refs. 25, 27) to study the assumptions 
which underly each solution concept, there is no apparent reason to 
believe that a certain solution concept is superior to others. Although 
we, as researchers, consultants, or decision makers, can use the concept 
of domination structures to suggest a limitation of decisions to the 
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set of nondominated solutions (which may contain more than one alter- 
native), the final decision must depend on the judgment and/or the 
relative strength in negotiation or bargaining of the decision makers. 

In the search for solution concepts, one often starts with static 
decision problems (one-stage decision problems) rather than with the 
much more complicated cases of dynamic decision problems. As a 
consequence, there is a natural gap among different researchers. Those 
dealing with static problems may be unaware of the implications of 
solution concepts in dynamic cases. On the other hand, those interested 
in dynamic problems may be unaware of current developments in 
solution concepts. 

Recently, there appeared two interesting papers (Refs. 32-33) by 
Salukvadze, in which he considers dynamic decision problems with 
multiple objective functionals. He proposes a solution concept and 
works out the computational details. However, the discussion of the 
solution concept is not complete. The underlying assumptions as well 
as their implications are not entirely clear. The solution concept proposed 
by Salukvadze has been discussed independently in Ref. 24 and 34; 
in fact, it is a special case of the compromise solutions in Ref. 24. 

In this note, we outline some underlying assumptions and their 
implications concerning the solution concept suggested by Salukvadze in 
order that its applicability may be clearer. In particular, in Section 2 
we define the decision space and criteria space for both static and 
dynamic decision problems. We then focus on the concept of compromise 
solutions and list their known properties. Since Salukvadze's solution is a 
special case of compromise solutions, all properties described are 
applicable to his solution. In Section 3, we introduce the concept of 
domination structure and show how strong the assumption is that under- 
lies compromise solutions (and hence Salukvadze's solution). Finally, 
in Section 4 we treat the example of Ref. 32 to illustrate the points made 
in Sections 2 and 3 so that the merits as well as the weaknesses of 
Salukvadze's solution may be more apparent. 

2. C o m p r o m i s e  Solu t ions  

Suppose that we have to make a choice from a set of alternatives 
X C R n and that we can associate each alternative x e X with a set of 
criteria (f1(x),..., fl(x)). Let f ( x )  = (fl(x),..., f~(x)). We shall call X the 
decision space, while Y = {f(x)] x e X} is the criteria space. An element 
y ~ Y is often called the outcome of a decision. 
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R e m a r k  2.1. Observe that  the above definitions of decision and 
criteria spaces can be extended to dynamic cases; thus, the solution 
concepts that we describe here in fact are applicable to such cases. For  
instance, we can denote the set of all admissible strategies or controls 
tz by X (see Refs. 2, 4, 35 for admissible strategies or controls). Then,  
if for each /x we have (fl(/Z),..., fz(/z)) as the performance indices, the 
criteria space can be specified by 

Y = {(fl0,),..., fz(/z))l all admissible strategies (or controls)/z}. 

On the other hand, since we can convert integral payoffs into terminal 
payoffs by adding extra variables (see Refs. 2, 35), we may regard X as 
the set of all attainable terminal states in the enlarged space. Then,  
Y can be defined accordingly on X. Although conceptually we have 
no difficulty in defining X and Y in dynamic cases, to actually visualize 
them is a very difficult task. We shall describe the solution concepts in 
static cases and leave it to the reader to extend them to dynamic cases. 
However, in Section 4, we shall supply an example of a dynamic case. 

Let  
Yi* = sup{f3(x)[ x e X}. 

Then,  y*  = (Yl* .... , Yz*) is called the utopia point or ideal point of our 
problem with the interpretation that, whenever y* is feasible, f - l (y , )  
simultaneously maximizes each criterion. For simplicity, we shall assume 
that Y is compact. With some slight modification, the compactness 
assumption can be relaxed. 

Given y ~ Y, we define a class of regret functions by 

[~. 11/~ R~(y) = ilY* --YLf, = (yj* --y~)'] , p / >  1. (t) 
J 

Def in i t i on  2.1. yP and f - l (y~ )  is the compromise solution with 
parameter p >~ 1 iff yP minimizes R~(y) over Y. 

For convenience, we shall call R~(y) the group regret of y with 
respect to p, while yj* - - y j  is the j th  individual regret. 

R e m a r k  2.2. The  solution concept proposed by Salukvadze is a 
compromise solution with p = 2. The  corresponding group regret is 
associated with the Euclidean norm. The  solution resulting from usual 
goal programming (Ref. 10) or simple majority rule can be regarded as 
a compromise solution with p = 1 (Ref. 28). Compromise solutions 
with p = oo correspond to a minimax criterion, because yp.=o~ solves 

rain max {yj* - - y j  I j = 1 ..., l}. 
J 
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R e m a r k  2.3. In group decision problems, we may use yj. = f~.(x) 
to denote the j th  decision maker's utility. It is reasonable to assume that 
compromise solutions cannot be acceptable to each decision maker 
unless each one has nonnegative utility. Thus, in Ref. 24, instead of X 
and Y, the decision and utility space for compromise solutions are 
defined respectively by 

X 0 = {x ~ X If(x) ~ 0} and Y0 = {f(x) [ x ~ X0}. 

The utopia point y* is then the point which has its j th component yj* 
maximizingfj(x) over X 0 . With this modification, compromise solutions 
enjoy the property of individual rationality (i.e., nobody in the group has 
negative utility). In this note, we do not make such a modification because 
the individual rationality is an unnecessary nicety for one decision maker 
with multiple criteria. Observe that, except for individual rationality, all 
properties of compromise solutions (listed below) hold no matter whether 
or not we introduce the modification. Since compromise solutions can 
be applied to group decision problems or multicriteria decision problems 
with one decision maker, yj = fj(x) in this note is called thej th  objective, 
criterion, or utility, interchangeably. Also, since minimizing fj(x) over X 
is equivalent to maximizing --fj(x) over X, iffj(x) is the level of disutility 
we may interpret --fj(x) as the level of utility, and vice versa. Thus, 
without toss of generality, we can focus on the properties of compromise 
solutions defined in Definition 2.1. The extension to other cases is 
obvious. 

Def ini t ion 2.2. Let 

A ~ = {d e R~ 1 d £ 0}. 

We say that Y is A--<-convex iff Y + A--< is convex. 
For more discussion on cone convexity, see Ref. 25. 
Compromise solutions enjoy the following properties (See Ref. 24). 

(i) Feasibility. For each p ~ 1, under the assumption that Y is 
compact, there is always a compromise solution. Observe that some 
solution concepts, such as stable set or core, may have no feasible 
solution. 

(ii) Least Group Regret. Since yP is the closest point over Y to 
the utopia point, the group regret is minimized in the sense of distance. 

(iii) No Dictatorship. That is, the group decision is not completely 
determined by any one criterion fj(x). In contrast to lexicographical 
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maximization 4 in which some fj. may not be considered in the final 
decision, each fj. is considered in the compromise solution. 

(iv) Pareto Optimality. For 1 =< p < 0% each compromise solution 
is Pareto optimal. That  is, there is no other y E Y such that y => yP 
and y =/= yP. This  property comes directly from Definition 2.1. 

(v) Uniqueness. Suppose that Y is A--<-convex. Then, each y~, 
1 < p  < 0% is unique. 

(vi) Symmetry or Principle of Equity. If Y is convex and closed 
with respect to cyclical rotation, then for each p, 1 < p  ~< 0% the 
yjP, j = 1,.., l, are identical. F o r p  = 1, there is at least one compromise 
solution y l  such that the yyl, j = 1,..., l, are identical. Thus,  the principle 
of equity is implicit in the concept of compromise solutions. 

(vii) Independence of Irrelevant Alternatives. Suppose that X C X '  
and 

m~xfj(x) = max/j(x), j = 1,..., l. 

I f  a compromise solution with respect to X '  happens to be x ° in X, then 
x ° is also a compromise solution with respect to X. Thus,  the irrelevant 
alternatives may be discarded from the consideration for compromise 
solution. For instance, for 1 G p < 0% we may discard those y of Y 
which are not Pareto optimal without affecting the final compromise 
solution. 

If  we treat p as a parameter of yP, then {yV I P > 1} enjoys the 
following properties. 

(viii) Continuity. Suppose that Y is AS-convex.  Then,  as a 
function of p, yV is continuous over 1 < p < oe. If  y l  (or y~) is unique, 
then yV is continuous at p = 1 (or p = oo) (see Ref. 36). 

(ix) Monotonicity and Bounds. If  l = 2 and Y is A=<-convex, 
under a very mild condition it can be shown that {yjP}, j = 1, 2, is 
bounded by [yjl, yjO~]; furthermore, it is a monotone function of p 
(see Ref. 24; for some generalization of this result for l > 2, see Ref. 36). 

(x) Monotonicity of the Group Utilities and the Individual Regrets. 
Under  the same assumptions as in (iX), it can be shown that both 
~syj  p and max:.{ys* --  ysp} are decreasing functions ofp .  Observe that, if 

4 Le t  X ° = X .  F o r  k = 1,..., l, define 

X ~ = {x ° • X ~-1 I f ,  dx °) >= fe(x) ,  x • Xk-1}.  

I n  lexicographical  maximiza t ion ,  the  final decision is on  the  set  X Z. O b s e r v e  that ,  if  X ~ 
conta ins  only  one  point ,  the  final decision is un ique ly  de te rmined ;  fe+1 ,... ,f~ need  n o t  
be  considered.  
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yj = f~(x) is the utility function for the j th  decision maker, then ~JY9 is 
the sum of the utilities and maxj{3~* -- yj~} is the maximum individual 
regret. We may consider y'jyjV and m a x j { y j * -  yjV} as group utility 
and individual regret, respectively, resulting from the compromise 
solution with parameter p. Our result says that, as p increases, the group 
utility decreases; however, individual regret reduces too. In this sense, 
the parameter p has a meaning for balancing group utility and individual 
regret. As a consequence, we see that simple majority rule (see Remark 
2.3) is the rule which maximizes the group utility and most neglects the 
individual regret in the entire domain of compromise solutions (see 
Ref. 28). 

The concept of compromise solutions can be generalized in several 
directions. For instance, we may replace R,(y) by 

Then, most of the above properties, with a suitable modification, remain 
the same (see Ref. 24). 

Although compromise solutions have merits, they are by no means 
perfect. Some associated assumptions are discussed in the next section. 
In addition, compromise solutions implicitly impose an intercomparison 
among the criteria or utilities through the group regret function (negative 
side of social welfare function). This imposition is not acceptable on 
some occasions. One should also observe that compromise solutions are 
not independent of a positive linear transformation of the fj(x). In 
fact, changing the scale of fj(x) has the same effect as changing the 
weight ~ in R~(% y). In applying this solution concept, one should be 
aware of this defect. 

3. Dominat ion  Structures 

In this section, we shall introduce briefly the concept of domination 
structures so that we can understand how strong an assumption has been 
imposed in compromise solutions. For more detailed discussion, we refer 
to Ref. 25; a simple summary can be found in Refs. 16, 27. An attempt 
to apply the concept to solve some practical problems can be found in 
Ref. 37. 

Given two outcomes, yl  and y2, in the criteria space Y, we can 
write y 2 =  y l +  d, with d = y 2  yl. If yl is prefered to y2, written 
yl > y 2 ,  we can think of this preference as occurring because of d. 
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Now, suppose that the nonzero d has the additional property that, if 
y = y l  + Ad and A > 0, then yX > y. Then,  d will be called a domination 
factor for yl .  Note that, by definition, given a domination factor for 
y~, any positive multiple of it is also a domination factor. It follows that, 
given y t  > y2, it is not necessarily true that d ---- y2 _ y~ is a domination 
factor for yl. 

Let  D(y) be the set of all domination factors for y together with 
the zero vector of R t. The family {D(y)] y c Y} is the domination structure 
of our decision problem. For simplicity, the structure will be denoted 
by D(.). 

One important  class of domination structures is D ( y ) =  A, A a 
convex cone, for al ly E Y. In this case, we shall call A the domination cone. 

Def in i t i on  3.1. Given Y, D(.), and two points yl,  y2 of Y, by y l  
is dominated by y2 we mean 

yl ~ y2 @ D(y=) = {y2 q_ d I d ~ D(y2)}. 

A point y0 e y is a nondominated solution iff there is no y l  e y ,  y l  ~ y0, such 
that yO e y l  + D(yl). Tha t  is, y0 is nondominated iff it is not dominated 
by any other outcomes. Likewise, in the decision space X, a point 
x°E X is a nondominated solution iff there is no x 1 in X such that 

f ( x  °) =/= f(x 1) and f ( x  °) e f ( x  ~) + h(f(xl)).  

The set of all nondominated solutions in the decision and criteria space 
will be denoted by Nx(D(.)) and Nr(D('))  , respectively. Because of its 
geometric significance, a nondominated solution with respect to a 
domination cone A is also called a A-extreme point. The  set of all 
A-extreme points is denoted by Ext [Y [ A]. 

E x a m p l e  3.1. Let  

A<= = {deR~ i d <= O}. 

We see that y is Pareto optimal i f fy  is a A Z-extreme point. Tha t  is, in the 
concept of Pareto optimality, one uses a constant domination cone A z. 
Observe that A =< is only 1/21 of the entire space. When l = 6, for instance, 
A -< is only 1/64 of R 6. 

E x a m p l e  3.2. In the additive weight method, one first finds a 
suitable weight A = (A 1 ,..., AI) and then maximizes 

A " f(x) = ~ ,~jfj(x) 
J 
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over X or A • y = ~Ajy~ over Y. Given A, the solution concept implicitly 
uses the domination cone 

{ d ~ R  ~ ] h • d <0}.  

The  concept of the additive weight method is closely related to that of 
trade-off  in ecormmic analysis. In  fact, the latter can be a way of obtaining 
the weight ;~. In  order to illustrate this, let us limit ourselves to 1 --= 2. 
The  trade-off ratio of f , (x)  with respect to f l (x )  is defined by how many 
units of f~(x) we want to sacrifice in order to increase a unit  of f l (x) .  
Thus,  the ratio gives the value of fe(x) in terms of fl(x). Although the 
ratio may be nonlinear in reality, in practice one often interprets it as a 
constant ratio. For the time being, assume that the ratio is constant and 
given by A~/A 1 , with 31 > 0. Clearly, our decision problem becomes one 
of  maximizing f l ( x ) @  ()t2/)tl)f2(x) over X, which is equivalent to 
maximizing Aly 1 + A2y ~ over Y. The  latter is essentially an additive 
weight method. To  correctly predetermine the ratio A~/A 1 is a very 
difficult task. In  practice, one may first use his experience or judgement  
to set up its bounds. Once the bounds are set, we have partial information 
on preference. For instance, suppose that 1 < A~/A1 < 3 is given. Then,  
we obtain valuable information, because it implies that, by using 

A = { ( d l ,  d2) Id 1 @ d 2 ~ 0, d I -j- 3d 3 __~-- 0} 

as our domination cone, the optimal solution is contained in Ext [Y ! A] 
(see Fig. 1 and Ref. 27). 
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E x a m p l e  3.3. For compromise solutions with 1 =< p < o% we 
can define the related domination structures by 

D(y) = {d ~ R ~ I VR~(y) • d > O} 

for y s Y, where VR~(y) is the gradient of R~(y), which is given by (1). 
This is because, in compromise solutions, the smaller R~(y) is, the 
more it is preferred. Since R~(y) is a differentiable convex function, 
D(y) forms a domination cone for y. When p = 0% we can again specify 
its domination structure; we shall not do so here in order not to distract 
from the main ideas. Observe that each D(y) contains a half space, no 
matter what the parameter p is. 

R e m a r k  3.1. The domination cone induced by Pareto optimality 
(that is, A s ) (see Example 3.1) is sometimes not large enough to encom- 
pass all information possessed by the decision makers. For instance, in 
Example 3.2, A is larger than AS; A -- A ~ is the valuable information 
missed by Pareto optimality. On the other hand, the domination structure 
induced by compromise solutions (Example 3.3) is such that each D(y) 
contains a half space. To make this possible, too strong an assumption 
may have been imposed. For instance, in Example 3.2, although A is 
much larger than A ~<, it is much less than a half space. The difference 
between A and the half space of D(y) induced by compromise solutions 
(when they are comparable) depends on how strong the assumptions 
are or how much information we have on the preference of the outcomes 
in Y. From the computational point of view, one has no difficulty in 
computing a compromise solution because the problem reduces to one 
of mathematical programming or to a control problem. However, because 
of the strong assumptions imposed or the information required, the 
compromise solutions may not be acceptable. A researcher may be able 
to find the compromise solutions, but these solutions may not be actually 
desirable for the decision maker (see the next section for further discus- 
sion). In daily decision problems, we are usually faced with problems of 
partial information. Both Pareto and compromise solutions cannot 
suitably explain the decision situation. The former does not adequately 
employ the partial information, while the latter may impose too strong an 
assumption, which is not conformable with the partial information. We 
believe that one should try to make suitable shoes (mathematical models) 
for the feet (the decision problems), rather than to cut off the feet in order 
to wear a given pair of shoes (one can use domination structures to 
attack some partial information decision problems, see Refs. 16, 
27, 37). 
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4. E x a m p l e  

In order to illustrate the discussion of the previous section, consider 
a problem treated by Salukvadze (Ref. 32): 

(i) Playing Space: {(zl, z ~ ) l ] z  1 [ ~ 3}; 

(ii) Dynamic  Sys tem:  z l  .... z2 , z2 = u, t E [0, T]; 

(iii) Control Set:  u ~ [--1, I]; 

(iv) Ini t ia l  Condition: zl(O) ..... 1, z2(O) = O; 

(v) Terminal  Condition: z l ( T  ) -~ 0, T not specified; 

(vi) Criteria: (A) minimizef~(u( .))= T, 
(B) maximize f~(u(.)) = z2(T). 

As mentioned in Remark 2.1, the decision space X and criteria 
space Y may be very difficult to visualize. However, in this example, 
letting X be the set of all admissible controls, the set of all Pareto- 
optimal solutions can be found. Note that (A) requires minimization; 
to permit use of the results in the earlier sections, we can consider 
maximizing .... f l (u( . ) ) .  Rather than doing so, we shall consider the 
problem as is; the simple modifications required in the results are 
obvious. 

It is readily established that the set of terminal points reachable 
from (1, 0) along a solution path that remains in the playing space is 
given by 

{(z 1, z2) [ z 1 = O, - - V 6  ~ z~ ~ ~/6} 

(see Fig. 2). 
Let us first consider terminal points on the subset 

{(zl, z2) / ~1 = o, - V 2  ~ z~ ~ V6} 

of the set of reachable terminal points. The control 

t--1 for t ~ [0, s], u*(t) 
1 for t ~ ( s , T ]  

renders a minimum of the transfer time T from (1, 0) to a given terminal 
point (0, z2), --~,/2 G z~ G ~/6, where the switching time s is a function 
of z 2 . Conversely, for a given switching time s, the control u*(') results 
in a transfer time T and a corresponding terminal point (0, Z2(T)). 

The solution path generated by u*(.) is given by 

z l ( t )  = - ½ t  2 + 1, z~(t)  = - t ,  t ~ [o, s], 
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~z 2 
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,£g- 

T = 2 s + ~  
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T=2s- 2 ~ )  

zl 

Fig. 2 

and  

z l ( ~ )  = ~ - s ~  + I - s~,  z ~ ( ~ )  = ~ - s ,  ~ > o ,  ( 2 )  

w h e r e  r = t - -  s. A t  t e r m i n a t i o n ,  z 1 = 0 so tha t  r = s ± ~/[2(s  2 - -  1)], 
w h e n c e  

T = 2s ± ~/[2(s 2 - -  1)1. (3) 

I n  o r d e r  t ha t  T be  def ined ,  i.e., t e r m i n a t i o n  takes  place,  s ~ 1. 
S ince ,  b y  (2), clzi/dr = 0 for  r = s, i t  fo l lows  t h a t  t h e  m i n i m u m  

va lue  o f  Zl ( r  ) is g iven  b y  1 - -  s 2. But  zl(r) >= - - 3 ,  so t ha t  s ~ 2. T h u s ,  
s e  [1, 2]. 

Since  r => 0, 

r = s - - x / [ 2 ( s  2 - 1 ) 1  = 0 ,  
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which is me t  iff s ~ ~/2. Thus ,  for s ~ [1, V'2], the  por t ion of the solution 
pa th  defined by (2) crosses the zz-axis twice, the first t ime at 

r = 2s --  ~/[2(s 2 --  1)] 

and  the second t ime at 

Thus ,  

r = 2s + ~¢/[2(s 2 --  1)]. 

f~ = 2s --  V'[2(s 2 --  I)], f~ = --  ~/[2(s z --  1)], (4) 

f~ = 2s q- ~/[2(s ~ --  1)], f2 = ~/[2( s~ --  1)]. (5) 

For  s ~ [a/2,  2], the por t ion of the solution pa th  given by (2) intercepts  
the  z~-axis once. Thus ,  

k = 2s + V[2(s z --  1)], f2 -- V[2( s~ --  1)]. (6) 

These  results are summar ized  in Table  1. 
We shall now consider Curves 1 and 2 (see Fig. 3). U p o n  use of  

df2/df~ = (df2/ds)/(dfl /ds) and 

it is readi ly established tha t  

df2/df~ > O, 

d2f2/dfl ~ = (d/ds)(df2/df~)(ds/dfl),  (7) 

a%/aA ~ < 0 (8) 

for all points on Curves 1 and 2. Note  also tha t  Curve 1 joins Curve 2 
smooth ly  at ( f l ,  f~) = (2, 0) corresponding to s = 1. 

T h e  domina t ion  cone for our  problem is 

A, = {(gl, 4 )  l al > o, 4 ~ 0). 

I t  follows direct ly f rom Corol lary 4.3 of Ref. 25 that  a point  ( f l  °, f2 °) 
Ex t [Y [ A1] (i.e., is noninfer ior)  i f f f l °  is the un ique  m i n i m u m  off1  for all 
( f l ,  fs)  ~ Y and f2 ~ f o. 

Table 1 
i i i i i i i i  i 

/1 f~ s 

Curve  1 

Curve  2 

i i  

8o9/I3/3-8 

2 s -  a/[2(s ~ - -  I)] 

2s + ~/[2(s z - -  t)] 

u i l l  

-~/[2(s~ - 1)] 

~/[2(s ~ -  1)] 
i 

1 = < s £ C 2  

1 < s < G 2  
i 
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f 2  (,/Z.,/g) 

-- i I ~  45° CURVE 2 ~  

i \ \  
.... fc ~::i::~!sii::~i~i~i~i~:: i :: :: i :: :: i ~i:: :: ~ii::i::!i~i!i~::~::!i~i 

j ~ i i i i i i i ~ i l  .... fBi2 eS0 54)::::::::::::::::::::::::::::::::::::il ii! iii iii:::::::::::::::::::::::::::::::::iiiiiiiiiiiiiii 

CURVE 1 : i i !::i::::i::!i! :: i i :: i i ~ ! ! ! ! ! i ~ i ~ i ~ ~ . . . . . . . . .  

i ~ i i iiiii!iiiiiiiii i i ii i i i l i l l  iii !i ;i 11 ii::i::!~il i :: ::~:: :: :: !iili iii i! iiiiiii ii iiiiii iliiii iiiiiii i!iili 
(V27,-~) 

(a+x/~,,/g) 

Fig. 3 

Since u*(.) renders the unique min imum of f l  = T for a given 
f2 = zz(T) ~ [--@2,  @6], and dft/ds > 0 on Curves 1 and 2, the points 
on these curves, and only these points, are noninferior among points 
( f t ,  f2) with f2 E [--  @2, @6]. 

On the other hand, consider z2(T ) ~ [ - - @ 6 , - - @ 2 ) .  Among all 
( f t ,  fz) with f ~ / >  z2(T), the unique min imum o f f t  is rendered by the 
control u*(t) ~ --1.  Thus,  the point (@2, - -@2)  dominates all ( f t ,  f2) ~ 
Y with f~ < - -@2.  Consequently, the point on Curves 1 and 2 are the 
only noninferior points for all ( f t ,  ./:2) ~ Y. 

Finally, we observe that, since d2f2/dft ~ < 0 along Curves 1 and 2, 
f2 is a strictly concave function of f t .  Since these curves represent 
Ext[Y ] 11] , Y is At-convex. In  order to see this point, we shall show 
that Y + A t is a convex set. 

Let yt,  y~ E Y + A 1 . Given ~, 0 < ~ < 1, we show that 

~yl + (1 -- ~)y2 ~ y + A1. 

By hypothesis, we can write 

yl = f l  + h i  , y~ = f2 + h2 ' 

w h e r e f l ,  f 2 ~ Ext[Y I A d  and h i ,  h a e A  t . Then,  

~yl  + (1 - ~)y" - -  ~f l  + (1 - ~)f~ + ~h~ + (1 - ~)h~. 

Since 
~hl + (1 -- ~)h~ ~ A1, 

it suffices to show that 

~ f l  + (1 -- ~)f2 ~ y + A1. 
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Let  

P = (f¢,¢h(A0) and f2  = ( f  2, f~( f  ~)), 

where f~( f l )  is specified 

o~f ~ + (1 --  oOf~ = (c~f~ 1 

= ( ~ f l  1 

= ( ~ f ~  

E Y +  

as in Table  1. Then,  

-t- (1 --  o~)f~ 2, o~f2(f~x ) + (1 -- o0f2(/xe)) 

+ (1 - ~ ) f ? , f ~ ( ~ A  ~ + (1 - ~)fl ~) - ~ )  

+ (1 -- c~)f~2,f2(c~f~ ~ + (1 -- o0f~2)) -k (0, --13) 

A1, 

where/3 >~ 0 and where the second equality is due to the fact that f~ is a 
concave function o f f 1 .  

Note  that the Al-Convexity of Y is very desirable because all the 
properties listed in Section 2 are applicable. It also allows us to visualize 
the shape of Y as depicted in Fig. 3. 

Referring to Fig. 3, let A A, A B, and A c be the normal vectors to ~Y 
at the p o i n t f A , f  s, a n d f c .  Observe that, at p o i n t f  A, the slope of the curve 
which represents Ext[Y ] A1] is one. Thus,  fA is a compromise solution 
with p = 1. A t f  s, the line from the utopia point t o f  s is orthogonal to 
Ext [Y I AI]. Thus,  f s  is a compromise solution with p = 2. A t f  c, both 
criteria suffer an equal regret, because f l  c - -  @2 = ~/6 - - f 2  c. In  fact, 

f c  is the compromise solution with p = oo. 
The  following may be worth noting. 

(i) The  solution suggested by Salukvadze is the p o i n t f  s which is 
the compromise solution with parameter p = 2 (see Remark 2.2). 

(ii) All compromise solutions as functions of p vary continuously 
and monotonically from f A to f c .  There  is no special reason to pick f s 
[see Properties (viii) and (ix) of Section 2]. 

(iii) The  compromise solutions have the property that, when p is 
increased, the sum of the resulting util i ty [i.e., ( - - f l )  + f2] decreases and 
the maximum of the individual regrets (i.e., f~ - -  ~/2 and ~/6 - - f~)  
decreases, too. H o w  to select a p so that the group utility (the sum of the 
individual utilities) and the individual regret are best balanced remains 
to be answered [see Property (x)]. 

(iv) P o i n t f  s also corresponds to the unique maximum of A s - f  = 
Alsfl + .~2sf~. For  any weight vector h ~ A s, f s  cannot correspond to 
the maximum of A • f ,  because f~ is a strictly concave function of f l  on 
Ex t [Y]  A1]. By selecting p = 2, we determine implicitly the weight 
vector A s. W h y  should one not use another h ? Is the resulting solution 
desirable ? 
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Fig. 4 

(v) Let 

A~ = {de R ~ I h "i . d ~= 0, hC" d <= 0} 

(see Fig. 4). One can show that 

Ext[Y [ Az] = curve[f a, fc].  

Thus, by restricting ourselves to compromise solutions, we assume 
implicitly that each domination cone D(y),  y E Y, contains A 2 . Is this 
assumption too strong ? 
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