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Linear Differential Games 
with Delayed and Noisy Information 
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Abstract.  This paper deals with a tineal=quadratic-Gaussian 
zero-sum game in which one player has delayed and noisy informa- 
tion and the other has perfect information. Assuming that the 
player with perfect information can deduce his opponent's state 
estimate, the optimal closed-loop control laws are derived. Then, 
it is shown that the separation theorem is satisfied for the player 
with imperfect information and his optimal state estimate is given 
by a delay-differential equation. 
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1. I n t roduc t i on  

In control and game theories, the information structure plays an 
important role in determining the optimal decisions. Recently, the 
interplay of information and decision has been generally discussed 
in Refs. I-2. Analytical discussions have been made for linear-quadratic- 
Gaussian zero-sum games (Refs. 3-6). In Refs. 3-4, it has been shown 
that the separation theorem is satisfied for the game in which one player's 
measurement is additively corrupted by white Gaussian noise and the 
other player has perfect information or no measurement. On the other 
hand, the game in which both players have noisy measurements (Refs. 
5-6) cannot be easily solved but it possesses a certainty-coincidence 
property. 

In dynamic games of large-complex systems, an important type of 
nonclassical information pattern is the delayed information pattern, 
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which does not appear in static games. In physical situations, the 
information is usually obtained with time delay because of transmitting 
and processing the data and computing the control. In Ref. 7, a min-max 
solution to the game with delayed measurement is derived under the 
condition that one player with delayed information selects a control first 
and informs his opponent with perfect information of his control. 

The game considered here is a linear-quadratic-Gaussian zero-sum 
game in which Player I has delayed measurement additively corrupted 
by white Gaussian noise and Player II has perfect information. Assuming 
that Player II can derive the error of Player I's state estimate, it will be 
shown that the optimal closed-loop control laws are obtained and the 
separation theorem for Player I's optimal closed-loop control law is 
satisfied. 

2. S t a t e m e n t  of  the  P r o b l e m  

We consider a special but interesting problem such that Player 
I has delayed and noisy measurement and Player II has perfect informa- 
tion. The system is described by the equations 

2(t) = A( t )x ( t )  + B( t )u( t )  -t- C(t)v( t ) ,  t o <~ t ~< t~ , (I) 

X(to) = xo ,  (2) 

and the observation data available at time t are given by 

y , ( t )  = O, to <~ t <~ t o + O, (3) 

2P~(t) = H , ( t  - -  O)x(t - -  O) + Wx(t O)~b1(t - -  0), t o + 0 .<.. t <~ t~ , (4) 

y n ( t )  = x(t) ,  t o <~ t % t s . (5) 

Here, the n-vector x ( t )  is the system state; u ( t ) E  Rq and v ( t ) E  R ~ are 
the controls of Player I and Player II; y~(t)  ~ R m and y n ( t )  c R ~ are the 
observations of Player I and Player II; Wl(t ) E R~ is a standard Wiener 
process with 

E [ ( w , ( t )  - -  w , ( s ) ) ( w , ( t )  - -  w , ( s ) ) ' ]  = ] t - -  s I I 

and (4) is interpreted as the meaning of 

y , ( t )  = H + -  - -  O)x(~- - -  O) d.~ + V~(~- - -  O) d ~ , ( .  - -  0); (6) 
to+O to+O 

0 is the information delay; A ( t ) ,  B ( t ) ,  and C( t )  are n × n, n × q, and 
n × r piecewise-continuous matrices; H i ( t )  and W l ( t )  are m × n and 
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m × p differentiable matrices and Wt(t) H~}'(t) is positive definite. I t  is 
assumed that Player I knows the initial state to be Gaussian with mean 
and covariance given by 

E[x(to) ] = 20, cov[x(to), X(to)] == M 0 ; 

it is also assumed that Player II  knows these statistics of the initial state 
and that X(to) is independent  of the increment w 1 ( t ) -  wl(to), 
t o < t ~< t I - - 0 .  All random processes are defined on a measurable 
space (£2, ~) .  The  cost, which Player I wishes to minimize and Player II  
wishes to maximize, is given by 

~y 

Jto(u, v) = x'(tl)P' Px(t~) -[- f, [u'(-r) Qx(~-) u(~-) - v'(~-) Qn(~-) v(~-)] d~-, 
to 

(7) 

where Qi(t) and Qn(t) are symmetric and positive-definite piecewise- 
continuous matrices; P is an s × n matrix. 

Let  Cm[to, tf] and C~[to, tl] denote the classes of continuous 
functions defined on [to, t l] with values in R m and R ~, respectively; 
and let the past accumulative data be given by  

tyx(s), to <~ s <~ t, 
(~rty')(s) -=- {y,(t), t <~ s <~ tf , (8) 

(~yH)(s) = ~Y~(')' to <~ , <~ t, 
(yn(t), t ~ s ~ t I . (9) 

Since yi(t) ~ Cm[to, tl] and yn(t)  ~ C~[to, tl], it follows that ~rtyi 
Cm[to, tl] and ~r~yn e C~[t o , tl]. We denote by ~r .  C ~ the minimal 
cr-algebra induced by the observation {~tYl}- 

I t  is assumed that Player II  can deduce Player I 's  state estimate 
~(tl  t), that is, 

~(t [ t) = E(x(t)] ~lt). (I0) 

Let  ~ n t  C ~  be the minimal a-algebra induced by {~tYn,  &(t [ t)}. 
Note  that Player I has no observation in the interval [to, t o + 0) 
and then 

~It = @lifo ,  t 0 <~ t <~ t o + O. (11) 

The  admissible controls are defined as the closed-loop controls 

u(t) = ~(t,  ~ ,y,) ,  

v(t) = ~b(t, ~rtyn , ~(tl  t)), 

(t2) 

(13) 

8o9/I313-2 
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where the mappings 

~(', "): [to, ts] × Cm[to, tf] ~ R q, 

¢(', ", "):[ to ,  tt] x c . [ t o ,  t~] x R'~ ~ R~ 

satisfy the Lipschitz conditions 

t ~o(t, 6 )  - ~o(t, ~2) [ ~< K1 II ~ - ~2 II, 

I ¢(t, ¢1) - @ ,  ¢~)1 ~< K2 rl ¢1 - ~ II, 

~l,~2~Cm[to, t f] ,  t o ~ t ~ t l ,  (14) 

[1 ,  [2 e Cn[to , ty] × R% t o ~ t ~ ty . 
(15) 

Under these conditions, there exists a unique solution (x(t), y,(t)) to 
(1)-(4) (see Ref. 8). 

Our problem is to find the admissible controls (u*, v*) such that, 
for any admissible controls u and v, 

E{J,o(u*, v*)[ ~/'~o} ~ E{J,o(U, v*){ @/1~o} , (16) 

E{Jto(U* , v)l @(,ito } ~ E{J,o(u*, v*)[ ~mo}. (17) 

These closed-loop controls u* and v* are said to be optimal. From (16) 
and (17), we get the saddle-point condition 

E{J,o(U*, v)} ~< E(J~o(U*, v*)} ~< E{J,o(U, v*)} (lS) 

for any admissible controls u and v. 

3. E s t i m a t e  of  the  S ta te  a n d  O p t i m a l i t y  C r i t e r i o n  

The  zero-sum games have the property of equivalence and inter- 
changeability of all the solutions satisfying the saddle-point condition 
(Ref. 3). This suggests the derivation of the optimal controls as follows. 
First, guess the admissible controls (u*, v*) and solve the optimal control 
problems such that 

E{Jto(u**, v*)[ a#,to} ~ E{J,o(U , v*)[ q/*to}, (19) 

E{Jto(u*, v)l Wmo} ~ E{Jto(u*, v**)l a#m o} (20) 

for any admissible controls (u, v). Second, find the condition such that 
the following equalities are satisfied simultaneously: 

u** = u*, (21) 

v** = v*. (22) 

Then,  u* and v* are optimal. 
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Le t  ¢ and 7 / b e  the classes of  funct ions  

= {~  : [to,  t~] × R- - - - ,  R~}, 

= { ¢ :  [ to ,  ts] × R~ × n ...... ~ W} ,  

such that  

IS(t, Ax) --  (}(t, A2)i ~< K8 t ?t~ - -  '~z I, 

t¢(t, / .1) --  ¢(t, tzz)l < K 4 t ~1 - -  /a'2 t, 
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(23) 

(24) 

A1, /~2 ~ Rn, t o ~< t ~ t I , (25) 

/zl,/~2 ~ R2n, t o ~< t ~< t s . (26) 

Now,  we assume that  the  opt imal  controls  are given in q~ and 7 / b y  

u*(t) = W(t)Sc(t ] t), (27) 

v*(t)  = S( t )x( t )  47 T(t)~(t  l t), t o ~ t ~ t,  , (28) 

where  2 ( t i t )  := x( t )  - -  ~(t  l t). 
W h e n  Player  I I ' s  control  is assumed to be  given b y  (28), Player  

I 's  opt imal  state es t imate  ~(t / t) is easily der ived by  a delay-differential  
equa t ion  

d~(t i t ) /dt  = {A(t) + C(t) S(t)} ~(t I t) -t- B( t )  ~(t, %Yt )  

47 x(t) ga(t, t - -  O) G(t){2pi(t ) - -  H1(t - -  O) ~(t - -  0 1 t)}, (29) 

~(to ] to) = Xo, t o ~< t ~< t~, (30) 

Yc(t - -  O l t  ) == gi(t --  0, t) o~(t I t) --  f ~(t  --  0, r) {B(r) ~(r, %Yx) 
" J r  - - 0  

- -  C(r)  T(r)  ~(r I r)} dr,  t o 47 0 <~ t ~ ts , (31) 

where  

and 

~( t  - o l t )  = E{x( t  - 0)1 ~ ' , d ,  

G ( t )  = M ( t  - -  0 ] t)  H l ' ( t  - -  O ) ( W l ( t  - -  O) W / ( t  - -  0)) -1,  

I0, t o ~< t < t o 47 0, (32) 
K(t) = 1, to -t- O ~ t <-.. tl ; 

~ ( t ,  r )  is the  t ransi t ion matr ix  given b y  

SOb(t, r)/St = [A(t) 47 C(t) {S(t) 47 T(t)}] q~(t, r), (33) 

q}(r, r) = I; (34) 



280 JOTA: VOL. 13, NO. 3, 1974 

and the conditional covariance M ( t  - -  O[ t) on [t o + O, ts] is defined by 

M ( t  - -  0 1 t) = E{(x( t  - -  O) - -  £~(t - -  O [ t))(x(t  - -  O) - -  ~(t - -  0 t))' 1 ~ , t }  (35) 

and it is the solution to the equation 

d M ( t  - -  O I t ) / d t  

= [ A ( t -  O) q-  C( t  - -  O) { S ( t  - -  O) + T ( t  - -  0)}] M ( t  - -  0 I t) 

+ M ( t  - -  O[ t ) [A ' ( t  - -  O) -4- { S ' ( t  - -  O) + T ' ( t  - -  0)} C'( t  - -  0)] 
- a ( t )  w , ( t  - o) w , ' ( t  - o) a ' ( t ) ,  (36) 

M(to  l to + O) = M o , t o -}- 0 ~ t <~ t f  . (37) 

Since G(t )  is differentiable, it is easily shown that the solution ~(t j t) to 
(29)-(31) satisfies the Lipschitz condition in rrtyi. This  implies that the 
assumed controls (27) and (28) are admissible. In  (29), the process 
~(t - -  0) given by 

P(t -- O) = .~1(t) - -  Hl ( t  - -  O) ~(t - -  0 I t), t o + 0 ~< t <~ t¢ , (38) 

is called an innovation process, that is, ~(t) is a white Gaussian process 

E{~(t)} = 0, cov{~(t), ~(~-)} ---- W,( t )  W / ( t )  3(t -- ~), t o + 0 ~ t ~< t~. (39) 

From (36) and (37), the covariance matrix M ( t  - -  0 ] t) is independent  of 
Player I 's data ~rty I and his control u(t) .  These facts imply that ~rl t and 
k(t I t) are equivalent statistics (Ref. 9). Thus,  Player I's information is 
nested in Player II 's  information, that is, 

Y/u C ~ m ,  to ~< t ~ t I , (40) 

so that, for any Y/u-measurable function h(t), 

E{h(t)l q/m} = h(t); (41) 

and, f rom (16) and (17), we have the saddle-point condition 

E{Jt(u*,  v)I Y/u} <~ E{J,(u*,  v*)l Y/u} ~< E{J~(u, v*)1 ~z ,}  (42) 

for any t E [t o , tl] and any admissible controls (u, v). Then,  the closure 
problem (Ref. 3) is not raised, and Player I can derive E ( x ( t )  t~ / i t }  
based on only an estimator (29) which depends on the data yz ( t )  and 
the  history of the state estimate k(~- I ~-), ~" ~ (t - -  0, t). 
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Player I's state estimate 0~(t [ t) given by (29)-(31) is derived on the 
assumption that Player II  uses the optimal control (28). Suppose that 
Player II  does not use (28); ~(t [ t) obtained by (29)-(31) is different from 
(10). Then, the error of k(t t t) given by (29)-(31) is derived by a couple 
of equations, namely, 

d~(t  l t ) /d t  

= a(t)  ~(t t t) + c(t)  [¢(t, ~ y H ,  ~(t I t)) - s(t)  {x(t) - ~(t I t)}] 

- -  K(t)~( t ,  t - -  O)G(t ){Hi( t  - -  O)2(t - -  O I t )  + W i ( t  - -  O)~bl(t - -  0)}, (43) 

2(tol to) = Xo -- Xo, t o ~< t < tl, (44) 
d2(t  - -  O ] t ) /d t  

= A ( t  - -  O)$(t - -  0 i t)  + C( t  - -  0)[~b(t -- 0, ~ t - o Y n ,  ~(t  - -  0 I t - -  0)) 

- -  { S ( t  - -  O) -I- T ( t  - -  O ) } { x ( t  - -  O) - -  2 ( t  - -  0 i t ) }  + T ( t  - -  O ) { x ( t  - -  O) 

-- 2(t -- 0 ] t -- 0)}] -- G(t){H1( t  - -  O)2(t - -  0 ] t) -[- W , ( t  - -  O)~i( t  - -  0)}, 
(45) 

x(to I to + O) =: x o - -  Xo, t o + 0 ~ t ~ t I , (46)  

where 
2 ( t  - -  O [ t )  - =  x ( t  - -  0 )  - -  ~ ( t  - -  O l t  ) .  

Consider two optimal control problems such that Player I and 
II  select their controls satisfying (19) and (20), respectively, where their 
controls are restricted to be in the classes q~ and W, that is, 

u(t)  = ~( t ,  ~(t  l t)) , (47) 

v( t )  = •(t, x(t), ~(t I t)). (48) 

Here, each player chooses his optimal control under the assumption that 
his opponent is using the optimal control. Hence, the estimate k(t[ t) 
which the players use in their closed-loop controls (47) and (48) is the 
solution to (29)-(31). Let the functionals V , ( t ,  ~(t[ t)) and V n ( t ,  x ( t ) ,  
2(tt t)) be defined by 

V1(t, fe(t I t))  = rain E[x ' ( t l )  P ' P x ( t s )  

+ ff* ~'(r, ~(r  1 r))  Q , ( r )  ~(r ,  ~(r  1 r))  - -  {S(r) x(r) q- T ( r )  2(r  I r)}' 

• Q n ( r )  {S ( r ) x ( r )  + r ( r ) ~ ( r  I r)} dr  1 q/it], t o <~ t <~ t~,  (49) 

Vn( t ,  x ( t ) ,  ~(t  I t)) = m a x  E [ x ' ( t l )  P ' P x ( t l )  

+ f) '  {~'(~ t ~) w'(~) 9,(7) w(~) ~(~ t ~) - ~'(~, x(~), ~(~ t ~)) 

• Q. (~ )  ~(~, x(~), ~(~ I ~))} a~ l *¢.,1, to <~ t ~< t , .  (50) 
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By the principle of optimality and I to-Dynkin ' s  formula (Ref. 10), 
the functional equations are obtained by 

min [~'(t, ,~(t I t)) Qi(t) c~(t, ~(t l t)) - L(t, fc(t I t)) 

-J- Vlt(t  , ~¢(t I t))  -~ ~-(P~Vi(t , x ( t  I t))] = 0, t 0 < t ~ t$,  (51) 

[(x(t) -- 2(t / t))' W'(t)Ql(t)  W(t) (x(t) - N(t i t)) max 

--  ¢'(t, x(t), 2(t I t)) QH(t) ¢(t, x(t), 2(t ] t)) 

"@ Vllt(t  , x(t), f~(t t t)) -j- ~ V i l ( t ,  x(t),  ~(t  I t))] = 0, t o ~ t ~ t f .  (52) 

Here, Vlt , i = I,  H ,  denotes 8Vi /S t ;  also, 

L(t, ~(t I t)) = k'(t [ t) S'(t) Qrr(t) S(t) ~(t I t) 

-1- tr[M(t l t){S(t ) -1- T(t)}'Qn(t){S(t) -l- T(t)}], (53) 

~ v , ( t ,  ~(t i t)) = {A(t)  ~(t I t) + B(t) ~(t, ~(t i t)) + C(t) S(t) ~(t I t)}' 
• [8Vx(t, ~ ( t [ t ) ) /~ ( t [ t ) ]  

-]- ½ x(t) tr{[82V,(t, Sc(t [ t))/8~2(t[ t)] ~(t, t -- O) 

• G( t )  Wz( t  - -  O) W / ( t  - -  O) G' ( t )  qs'(t, t - -  0)}, (54) 

~qf~VIl(t , x(t), ~(t I t)) = {A(t) x(t) @ B(t )  W(t ) (x( t )  - -  ~(t 1 t)) 

q- C(t) ¢(t, x(t), ~(t I t)) }' [el/)l(t, x(t), 2(t l t))/~x(t)] 

+ {A(t) ~(t I t) + C(t) ¢(t, ~(t), ~(t I t)) - -  C(t) S(t) (x(t) 
--- ~(tl t)) --  ~(t) q)(t, t - -  O) a(t)  H~(t - -  O) 2(t - -  0 ] t)}" 

• [eVH(t, x(t), ~(t i t))/eg(t 1 t)] + ½ ,~(t) tr{[~VH(t, x(t), ~(tI t))/O~(tI t)] 
• ~ ( t ,  t - -  O) G ( t )  Wz( t  - -  O) W / ( t  - -  0) G'( t )  ~ ' ( t ,  t - -  0)). (55) 

For these optimal control problems, we get the following sufficient 
conditions for optimality. 

L e m m a  3.1. Let  V1(t, k(t I t)) and l~1(t, x(t), 2(t t t)) be functions 
such that V~ : [to, tl] × R~- -+R 1 and Vn : [to, tl] × R n × R ~ ~ R1; 
VI,  V . ,  VI~, VI~ and V n ,  V n t ,  V n ~ ,  VII~, V n ~  are continuous; 
and, for some K~ and /£6 ,  

t r l  l -+- t rx~ l + t ~ } ] rl~ l + I r z ~  l ~ gs ( l  + l ~ I2), (56) 

I v . I  + l v x , , t  + ( I x [  + t g I)(I v,,~t + I vH~I) 
+ l  VH~I~<K0(1 q-(lx[ q-121)2). (57) 
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Suppose there exist closed-loop control laws ~** a q~ and ~** ~ v  
such that, for any (t, ~, x, ~)~ [to, t/] × R n ×  R n ×  R n and any 
admissible controls 9 and ~b, 

o = v . ( t ,  ~(t l  t)) + ~**vx(t, ~(t I t)) 
+ ~**'(t ,  :c( t l t ) )Qz( t )~**(t ,  ~(t [ t)) - L ( t ,  ::( t l t))  
<~ Vx,(t, &(t i t)) + .W, Vx(t, N(tl t)) 

-1- cp'(t, ~rtyi) Q,(t) cp(t, ~r,y~) - L(t,  :c(t I t)), (58) 

V~(t: , &(t: [ t:)) = N'(t: [ t:)P' P::(t: [ t:) + tr{M(t: [ t:)P' P}, (59) 

0 = Vm(t ,  x(t), ~ ( t I t ) )  + ~**VH( t ,  x(t), N(t I t)) 

+ (~(t) - ~(t I t))' w ' ( t )  Q~(t) w ( t )  (x(t) - ~(t t t)) 

--  ¢**'(t ,  x(t), ~(t I t)) Qxx(t) ¢**(t,  x(t), $(t I t)) 
Vm(t ,  x(t), ~(t I t)) + Z~Vn(t ,  x(t), ~(t ] t)) 

+ (x(t) - ~(t l t))' w ' ( t )  Q~(t) w ( t )  ( 4 0  - ~(t t t)) 

- -  ~b'(t, 7r,yn, ~(t 1 t)) Qn(t) ~(t, 7rty2ri , ~(t i t)), (60) 

V~z(t:, x(t:), ~(t:l t:)) == x'(t:)P' Px(t:). (61) 

Then, the controls ~** and ~** are optimal for any admissible controls. 
This Iemma is proved by the method analogous to Ref. 11. Suppose 

that the conditions (21) and (22) are satisfied simultaneously; it follows 
from this lemma that Player I's and Player I r s  optimal closed-loop 
control laws can be constructed by the state estimate ~(t [ t) and by the 
state x(t) and the estimation error 2(t I t), respectively. 

4~ G a m e  wi th  De layed  and  Noisy I n f o r m a t i o n  

Lemma 3.1 shows that the optimal closed-loop control laws are 
derived from (51) and (52). Then, we get 

u**(t) := --½Q71(t)B'(t) [OVs(t, ~(t l t))/~:¢(t [ t)], (62) 

v**(t) ~-: {Onl( t )c ' ( t )  {eVn(t ,  x(t), N(t I t))/Sx(t) 
-~- 6qgll(t , x(t), ~(t l t ) ) /~ ( t  l t)}. (63) 

Substituting (62), (63) into (51), (52), Bellman's equations are obtained. 
Suppose that the solution to this Bellman's equation for Player II is 
given by 

Vii(t, x(t), ¢~(t I t)) = xt(t) R(t)  x(t) @ xt( t)L(t)  x(t I t) 

.l- ~'(t [ t) N( t )  ~(t ] t) + r(t). (64) 
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Since @Ill C ~[IIt, we get 

Vt(t, Pc(tit)) = e{Vn(t ,  x(t, x(t), ~(t l t)) ] ~/x, } 

= ~'(t ] t) R(t) P~(t i t) + tr[M(t I t){R(t) + L(t) ~- N(t)}] + r(t). 
(65) 

Then, we get the following theorem (Appendix A). 

T h e o r e m  4A. The optimal controls which satisfy (16) and (17) 
subject to (1)-(5) and the assumption that Player II can deduce the value 
of k(t  ] t) at time t ~ [to, ti] , are given by 

u*(t) = -Q-i t( t )  B'(t) R(t) ~(t t t), (66) 

v*(t) = Qhl(t) C'(t){R(t) x(t) + N(t)  2(t I t)}, t o ~ t ~ tf ; (67) 

and the optimal cost from t o to t t is given by 

]to(u*, v*) = x'(to) R(to) X(to) + 2'(t o L to) N(to) 2(to I to) + r(to), (68) 

where Y¢(t l t), 2(t ] t), and M ( t  - -  O i t) are, respectively, the solutions 
to (29)-(31), (43)-(46), and (36)-(37) into which (66) and (67) are 
substituted; the symmetric matrices R(t) and N(t )  are the solutions of 

dR(t)/dt + A'(t) R(t) + R(t) n(t)  -- R(t) B(t) QTa(t) B'(t) R(t) 

+ R(t) C(t) Qhl(t) C'(t) R(t) = O, (69) 

R( t , )  = P ' P ,  (70) 

dN(t)/dt + A'(t) N(t)  -+- N(t)  A(t) ~- N(t) C(t) QT~l(t) C'(t) R(t) 

+ R(t) C(t) Qn1(t) C'(t) N(t) -}- N(t)  C(t) Qnl(t) C'(t) N(t)  

+ R(t) B(t) QT~(t) B'(t) R(t) 
- ~(t)  N ( t )  ~ ( t ,  t - -  O) a ( t )  H i ( t  - -  O) ~ ( t  - -  O, t)  

- -  •(t)  q ) ' ( t  - -  O, t )  H / ( t  - -  O) G ' ( t )  q~'(t, t - -  O) N ( t )  = O, (71) 

U(t,) = O; (72) 

the scalar r(t) satisfies the relations 

ar(t)/dt + tz(t) tr[N(t) qs(t, t --  O) G(t) W,(t --  O) Wi ( t  -- O) 
• G ' ( t )  q) ' ( t ,  t - -  0)] = 0, (73) 

r(tl) = 0. (74) 
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M(t  

It  is easily shown that, from (43)-(46), (66), and (67), we get 

t )  = t - o )  - o I t ) ,  ( 7 5 )  

t)  = @(t,  t - -  O) M ( t  - -  0 L t) q~'(t, t - -  0), to -k 0 ~ t <~ t I . (76) 

Player I 's optimal control law (66) shows the separation theorem 
to be satisfied, in the sense that the state in the optimal control law for 
the deterministic game (Ref. 12) is replaced by the optimal estimate 
~(t] t). In  view of (68), the optimal cost from t o to t I consists of three 
terms. The  first term is the optimal cost from t o to t I corresponding to 
the deterministic game with the initial state x 0 (Ref. 12). The  second 
term depends on the initial error ~(t01 to) in Player I 's state estimate. 
The  third term is due to the noise in Player I 's measurement from 
t o + 0 to t l .  In  the interval [t o , t o -t- 0), Player I has no observation, so 
that  k(t ] t ) =  S¢(tlto) and his control coincides with the open-loop 
control. Suppose that  0 > t I --  t o , this game is reduced to the one in 
which one player has perfect information and the other has no observa- 
tion. In  the case where the information delay is reduced to zero, the 
above results are easily shown to coincide with the results obtained 
from the game of imperfect information without delay (Refs. 3 4 ) .  

Theorem 4.1 is derived on the assumption that Player II  can deduce 
Player I 's state estimate N( t i t  ). Some of the conditions needed to 
satisfy this assumption for the game of imperfect information without 
delay have been discussed variously (Refs. 3 4 ) .  These conditions are 
applicable to this game with delayed information. In the time-invariant 
case, we get a less restrictive condition as follows. 

L e m m a  4.1. Consider the time-invariant system (1)-(5), (7). 
Suppose that Player I uses his optimal control on [t o , tl]. Player II  can 
deduce ~(t ] t) on [to, tl] if it holds that 

rank[Fo'(t), Fl'(t ) ..... F~'(t)] ~- n, t o ~ t < t o -]- 0, (77) 

~(R( t )  BQT~B ' + N(t)  CQHIC ') -~ [{R(t) .[t -~- K(t) {~)'(t - -  O, t) H~'G'(t) 

• ~b'(t, t -- 0) R(t)} BQ-;1B ' + {N(t) A + N(t)  CQnlC'R(t) 

+ R(t) BQT~B ' N(t)  + N(t)  CQhlC ' N(t)  + R(t) BQ-i-IB ' R(t) 

-- K(t) N(t )  q~(t, t --  O) G(t) HI ~(t  --  O, t)} CQh~C '] 

• J~/'{W,'G'(t) q)'(t, t --  O) (R(t) BQz1B ' -t- N(t)  CQ-~IC')} = R n, 

t o + O ~ t ~ t f ,  (78) 
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where i is some finite integer; 

I~)+1(t ) := (4/dt)F,(t) + Fi(t) {A --  BQ71B" R(t) + CQhIC ' R(t)}, 

Fo(t ) = BQTXB ' R(t) + CQ71xC ' N(t); 

~ (Y)  and dU(Y) are the range and the null space of Y, respectively. 
This lemma is proved in Appendix B. Player I has no observation 

in the time interval [to, t o + 0), so that ~ ( t [ t )  on [to, t o + 0) obeys 
the ordinary differential equation (29). On the other hand, ~ ( t l t  ) on 
[t o -[-0, ts] is the solution to the stochastic differential equation (29) 
and (31). Hence, the differing types of conditions [(77) and (78)] obtain 
for t ~ [to, t o + O) and [t o + O, tl]. 

5. Conc lus ions  

In this paper, we have formulated a linear-quadratic-Gaussian 
zero-sum game in which Player I has delayed and noisy information 
and Player II has perfect information. Here, it is assumed that Player II 
can derive Player I's state estimate, which means that Player I's infor- 
mation is nested in Player II 's information. Then,  it is shown that the 
solution to this problem requires an estimator given by a delay- 
differential equation and Player I's optimal closed-loop control law 
satisfies the separation theorem. 

6, Appendix A: Proof of Theorem 4.1 

Substituting (64)-(65) into (58)-(6t), we can get the optimal controls 

u*(t) = -QF1(t)  B'(t) R(t) P~(t I t), (79) 

v*(t) == Q-~l(t) C'(t){(R(t) + ½L'(t)) x(t) + (N(t) + ½L(t)) ~(t ] t)}, (80) 

where 

dR(t)/dt + A'(t) R(t) + R(t) A(t) -- R(t) B(t) Qi-l(t) B'(t) R(t) 

+ R(t) C(t)Qhl(t) C'(t) R(t) --  ¼ L(t) C(t)Onl(t) C'(t)L'(t) = 0, (81) 

R(ts) = P'P,  (82) 

~L(t)/dt + A'(t)L(t) + L(t) A(t) -- R(t) B(t) 971(t) B'(t)L(t) 
-+- R(t) C( t )Qp(t )  C'(t)L(t) + L(t) C(t)Q-s} (t) c '( t)  R(t) 

+ ½L(t) C(t)Q}}t(t) c ' ( t )L(t)  + ½L(t) C(t)Q]~ (t) C'(t)L'(t) 

- -  K(t)L(t) q~(t, t --  O) G(t) H~(t --  O) O(t --  O, t) = O, (83) 

L(tl) -= O, (84) 
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dN(t)/dt + A'(t) N(t)  + N(t) A(t) + N(t) C(t) ~ l ( t )  C'(t) R(t) 

-}- R(t) C(t) QHI(t) C'(t) N(t)  + N(t) C(t) Qnl(t)c'(t) N(t)  

+ R(t)  B(t)  Q;~(t) n' ( t )  R(t)  - -  ,~(t) N( t )  ¢ ( t ,  t - -  O) G(t) 

• H , ( t  - -  O) ¢(t - -  O, t) - -  K(t) O'(t  - -  0, t) H, ' ( t  - -  O) G'( t )  

• qb'(t, t - -  O) N ( t )  + ½ (L( t )  + L'( t ) )  C( t )  Q-~l(t) c ' ( t )  N ( t )  

+ ½ N(t) C(t) Q})l(t) C'(t) (L(t) + L'(t)) 

+ ½ R(t) B(t) Q}l(t) B'(t)L(t) + ½L'(t) B(t) Q}-X(t) B'(t) R(t) 

+ 1L'(t) C(t)Q~l(t) C'(t)L(t) = O, 

N(tl) -~ O, 

dr(t)/dt + ~¢(t) tr[N(t) ~(t, t - -  O) G(t) WI(t - -  0) Wi ( t  - -  0) 
• G'(t) # ' ( t ,  t - -  0)] = O, 

~(t~) = 0 .  

From (83)-(84), we get 

L(t) = O, t o ~ t <~ t 1, 

This completes the proof. 

(85) 

(86) 

(87) 

(88) 

(89) 

7. Appendix  B: P roof  of L e m m a  4.1 

Since Player II knows x(t) and dx(t)/dt,  he can utilize the observation 
q0 defined by 

qo(t) = --dx(t)/dt + {A + CQ~IC'(R(t) + N(t))) x(t) 

~- {BQ;~B'R(t) + CQh'C' N(t)} Sc(t ] t) ~ Fo(t) ~(t l t). (90) 

Thus, we can recognize the projection of ~(t 1 t) on the subspace 

~r(BQ71B' R(t) + CQ[zlC ' N(t)) j- = ~(R( t )  BQ71B ' @ N(t) CQffC').  (91) 

More knowledge of ~(t I t) can be obtained by taking the derivative 
of (90) and substituting (29), (69), (71), and (76), as follows: 

[ - -BQi lB  ' A'R(t)  - -  CQHIC'{A'N(t) -~- R(t) CQHIC ' N(t)  + N(t)  BQj-IB ' R(t) 

+ N(t) C(~}-I1C ' N(t) + R(t) BQTIB ' R(t) 

--  to(t) qb'(t - -  0, t) H/G'( t )  O'(t, t --  O) N(t)} 

--  K(t) BQ;ZB ' R(t) qb(t, t - -  O) G(t) H,  q)(t --  O, t)] ~(t t t) 

= 4o(t) - -  ~:(t) {BQiIB ' R(t) + CQ~IC" N(t)} ~(t, t - -  O) G(t) 

• {HI ¢(t - -  O, t) x(t)  + W i ~ i ( t  - -  0)} ~ Fl(t  ) ~(t ] t). (92) 
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For each t on [t o + 0, tt] , let us define the projection P(t)  on the subspaee 

R{(BQ71B ' R(t) + CQI]C' N(t)) qs(t, t - -  O) G(t)W~}" 

= .# '{WiG'( t )  q)'(t, t --  O) (R(t) BQf IB  ' + N(t)  CQh~C')}. (93) 

Here, we define the process q2(t) as follows: 
t 

qa(t) = .[ P(s)F,(s) ~(s is) ds 
to 

f) = P(s )  [4o(S) - K(s) {BQ;~B ' R(s) + CghlC ' N(s)} 
to 

• q~(s, s - -  O) G(s)H, qS(s - -  O, s) x(s)] ds. (94) 

Since q~(t) is equal to the middle term of (94), it must  be differentiable, 
and so Player II  can get the observation q~(t) by differentiating q2(t). 
Thus,  he can recognize the projection of ~(t ] t) on the subspace 

./ff(P(t) f ~(t)) ± = f l'(t ) N(P'(t)). (95) 

From the definition of P(t),  the right-hand side of (95) is reduced to 

F~'(t) W { W / G ' ( t )  ~ ' ( t ,  t - -  O) (R(t) BQ71B ' + N(t) CQh~C')}. (96) 

Then,  from (91) and (96), we can get the condition (78) for t ~ [t o + 0, tl]. 
In the interval [to, t o + 0), K(t) =- 0, and so P(t)  = I.  Then,  iterating 
the above procedure,  we see that the condition (77) is obtained. 
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