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Optimal Control of a Class of Systems with 
Continuous Lags: Dynamic Programming Approach 

and Economic Interpretations I 

R .  F .  H A R T L  2 A N D  S. P .  S E T H I  3 

Communicated by J. V. Breakwell 

Abstract. This paper derives a maximum principle for dynamic systems 
with continuous lags, i.e., systems governed by integrodifferential 
equations, using dynamic programming. As a result, the adjoint variables 
can be provided with useful economic interpretations. 
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1. Introduction 

Dynamic systems with continuous lags occur frequently in modeling 
of population, economic, and ecological systems; e.g., see Sethi and McGuire 
(Ref. 1), Arthur and McNicoll (Ref. 2), Banks and Manitius (Ref. 3), Bailey 
(Ref. 4), and Pauwels (Ref. 5). Optimization of these systems is usually 
carried out with the maximum principle (see Refs. 6-9). This approach 
yields adjoint variables, which are difficult to interpret in the framework 
of the maximum principle. 

This paper derives the maximum principle by using the method of 
dynamic programming. This involves a transformation of the original system 
to an optimal control problem governed by both lumped-parameter and 
distributed-parameter equations. Our approach uses a method similar to 
those of Wang (Ref. 10) and Brogan (Ref. 11). The result of our analysis 
is a characterization of the Hamiltonian and the adjoint variables in terms 
of the value function satisfying the Hamilton-Jacobi-Bellman equation of 
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dynamic  p rogramming .  W e  il lustrate our  in te rpre ta t ion  with respect  to a 
con t inuous- t ime  version of the  example  in Burde t  and Sethi (Ref.  12). 

In the next  section, we define the op t imal  contro l  p rob l em and m a k e  
necessary  t ransformat ions .  Sect ion 3 der ives  the H a m i l t o n - J a c o b i - B e l l m a n  
equa t ion  and obtains  the m a x i m u m  principle. In  Sect ion 4, we provide  
economic  in terpre ta t ions  to the adjoint  variable.  For  a s impler  class of 
p rob l ems  with cont inuous  lags, an a l ternat ive  fo rm of the adjoint  equat ion  
is der ived in Section 5. W e  il lustrate our  results  with an opt imal  advert is ing 
p r o b l e m  in Section 6, and Section 7 concludes the  paper .  

2. Optimal Control Model with Continuous Lags 

Le t  x(t) ~ R n and u(t) ~ f~ C R m deno te  the  s tate  and control  t ra jec-  
tory,  4 respect ively,  defined on the t ime interval  ( -oo ,  T]. Le t  
F(x, u, t), f(x, u, t), g(x, u, r, t) be cont inuously  differentiable funct ions on 
R n x f~ x [0, T]  and R n × f~ × {(7-, t): - oo  < ~- _< t -< T}. Then,  the op t imal  
control  mode l  is as follows: 

m a x { J = I ~ F ( x ( t ) , u ( t ) , t ) d t  }, (1) 

subject  to  

~(t) =f(x(t),  u(t), t)+f]o~ g(x( ' r ) ,  u(,r), r, t) dr, (2) 

with the initial condit ions 

x(t)=x(t) ,  t e  ( -oo ,  0], 

u(t)=u(t) ,  t~  ( -oo ,  0]. (3) 

In  o rde r  to t r ans fo rm the integrodifferent ial  equa t ion  (2), we in t roduce  
the new state var iable  y(t, s), defined on  {(t, s): 0 <- t -< T, 0 -< s <- T -  t} by 

y(t, s) a [ t  g(x(z), u(r), r, t+s) dr. (4) 
,1- o ~  

By introducing the d i s t r ibu ted -pa ramete r  state var iable  y(t,.), denot ing  
y(t, s) for  s ~ [0, T- t ] ,  the original p rob l em (1) - (3)  is easily t r ans fo rmed  

4 In the sequel, x and u are treated as scalars in order to simplify the notation. The generalization 
to the case of n > 1, m > 1 is straightforward. Note that, in this paper, x(t) is only a part of 
the state of the system under consideration. Some writers prefer the term phase variable for 
xft), 
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to the following problem: 

m a x ( J = f ~ F ( x ( t ) , u ( t ) , t ) d t } ,  

subject to 

.it(t) = f (x( t), u( t), t) + y( t, 0), (5) 

y,( t, s) = g( x( t), u( t), t, t + s) + ys( t, s), (6) 

with the initial conditions 

x(0) = xo ~ _x(0), (7) 

y(O, s) = h(s) a g(_x(r), _u(~'), % s) dr, (8) 
o 0  

with subscripts denoting partial derivatives. The additional state equation 
(6) is easily obtained by computing y~ and Ys from (4) and combining them. 
It should be noted that the state variable x(t), together with the past history 
y(t , . ) ,  represents the complete state of the system described above. 

The transformation (4) is in the spirit of Burdet  and Sethi (Ref. 12), 
who treated a discrete-time version of our model. In their model, it is 
possible to transform the problem into a standard control problem in a 
higher-dimensional state space, s 

In our model, Eq. (5) is a lumped-parameter equation, and Eq. (6) is 
a distributed-parameter equation, i.e., a partial differential equation. Thus, 
the transformed problem is not a standard distributed-parameter optimal 
control problem. 

In the next section, we will use the dynamic programming approach 
to obtain necessary optimality conditions and adjoint functions associated 
with x(t) and y(t , . )  for the problem represented by (1) and (5)-(8). 

3. Dynamic Programming Formulation and the Maximum Principle 

Let us define the value function 

J()Z, y ( . ) ,  ~)--a max F(x( t ) ,  u(t), t) dt: x(i) =~,  y(~, - )=  ~( . ) ;  

u(t) e a , ~  <- t <- T } ,  (9) 

5 Equations (4), (5), (6) correspond, respectively, to Eqs. (12), (4), (11) of Ref. 12; see also 
Ref. 13. 
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which is a functional of $, ~, and the continuously differentiable function 
y( . ) ,  denoting y(s) for s~[0 ,  T -7 ] .  

Using Bellman's principle of optimality, we have 

It t+A J(x(t) ,  y(t," ), t) = max _ F(x(r) ,  u(r), r) dr 

+J(x ( t+A) ,  y ( t + A , - ) ,  t + A ) } ,  (10) 

with x(t), y(t, • ) denoting the state of the system at time t. We now follow 
the procedure used in Refs. 10 and 11 in order to derive the Hamilton- 
Jacobi-Bellman equation. Expanding x and y in Taylor series, we have 

x(t  + A) = x(t) + A[f(x(t) ,  u(t), t) + y(t, 0)] + o(A), 

y ( t + A ,  s) = y(t, s)+ z~[g(x(t), u(t), t, t + s)+ ys(t, s) ]+ o(A). 

Assuming the value function J($, y, ~) to be sufficiently smooth with respect 
to ~ and y( . ) ,  we obtain the Taylor series expansion of J as 

J(x( t+A) ,  y ( t +  A,-),  t+A)  =J(x( t ) ,  y(t,-),  t) 

+ A[OJ(x(t), y(t, .  ), t)/Ox][f(x(t), u(t), t)+ y(t, 0)] 

Io +A [rJ(x(t), y(t, s), t)/Sy][g(x(t), u(t), t, t+s)+ y,(t, s)] ds 

+ A[OJ(x(t), y( t, . ), t)/Ot]+ o(A). (11) 

Here, 6J(Y, y(g), ~)/6y denotes the functional or variational partial deriva- 
tive (see Refs. 14 and 15), which is defined as the variation of the functional 
J(£, y( . ) ,  i) with respect to the function y ( . )  at the point s = g. 

Inserting Eq. (11) in (10) and taking the limit as A->0, we arrive at 
the following partial differential-integral equation: 

c3J(x(t), y(t," ), t ) /Ot+max{F(x(t) ,  u(t), t) 

+ [OJ ( x( t), y( t, " ), t) / Ox]f ( x( t), u( t), t) 

+ [rJ(x(t), y(t, s), t)/Sy]g(x(t),  u(t), t, t+ s) ds 

+[OJ(x( t), y( t, " ), t)/ Ox]y( t, O) 

Ior-' + [rJ(x(t),  y(t, s), t)/ry]ys(t, s) ds =0,  (12) 

which is the Hamilton-Jacobi-Bellman equation for our problem. 
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Let us now define the adjoint functions 

A(t) ~OJ(x(t) ,  y(t, -), t)/Ox, Ix(t, s) ~- 6J(x(t),  y(t, s), t)/6y, (13) 

and the Hamiltonian 

H(x,  u, t, A, Ix(t, .)) = F(x, u, t)+ Af(x, u, t) 

for-' + # ( t , s ) g ( x , u , t , t + s ) d s ,  (14) 

where the argument Ix(t, .) indicates that H depends on Ix(t,s) for s e  
[0, T -  t]. 

Integration by parts, 

T--t ---~ S ] r- t  f T--t 
o lx(t ,s)y~(t ,s)ds [Ix(t,s)y(t,  ) J s=o-oo  tz~(t,s)y(t ,s)ds, 

allows Eq. (12) to be written as 

OJ(x(t), y(t, .), t ) /Ot+maxH(x( t ) ,  u(t), t, Z(t),/~(t, .)) 
u(t) 

+[h(t)--ix(t ,  O)]y(t, O) + p~(t, T - t ) y ( t ,  T - t )  

Io - Ix,(t, s)y(t, s) ds =0.  (15) 

Note that H as well as the maximized Hamiltonian 

H°(x,  t, h, Ix(t,-)) = max H(x,  u, t, h, ix(t,. )) 

do not depend on y(t, .  ). Since Eq. (15) must hold for every x and y, we 
can take appropriate partial and functional derivatives with respect to y (t, 6), 
y( t, s), x( t), to obtain 

,~(t)-~(t, 0) =o, 

/~t (t, s) = (O/Ot)(M/6y) = (~/Sy)(OJ/Ot) =/zs(t, s), 

)t ( t) = (O/ Ot)(OJ/ Ox) = (O/Ox)(OJ/ Ot) = -OH°(x(  t), t, h ( t) , /z(t , .  ) )/ Ox. 

The second equation above implies that 

Ix( t, s)= ix( t + s, O); 

thus, 

tx(t, s)= A(t + s). (16) 
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Note that (16) is the continuous-time counterpart of Eq. (21) in the discrete 
model of Ref. 12. The adjoint equation can be written as 

)t ( t) = - o H ° ~  Ox = - o H / 0  x, (17) 

where the second equality is known as the envelope theorem. A general 
proof of this result is given in Derzko, Sethi, and Thompson [Ref. 16, Eq. 
(24)); see also Ref. 7, Eq. (13)]. Finally, from 

J ( £  y(.  ), T) = 0, 

we obtain the transversality condition 

A (T) = [OJ/Ox],=r = O. (18) 

Making use of the identity 

io i t * ( t , s ) g ( x , u , t , t + s ) d s =  A('r)g(x,u,t ,r)d~',  
t 

we can express the results (15)-(18) derived so far as the following theorem. 

Theorem 3.1. Maximum Principle. Let u(t) be an optimal control of 
the problem (1)-(3) with associated state trajectory x(t). Then, there exists 
a continuous adjoint function A (t) on [0, T] such that, with the Hamiltonian 
defined as 

H [ x , u , t , A ( ' ) ] = F ( x , u , t ) + A ( t ) f ( x , u , t ) +  A( r )g (x ,u , t , r )d r ,  

(19) 

the following conditions are satisfied: 

H[x(t) ,  u(t), t, A(.)]>--H[x(t), u, t, A(-)], Vu ~f~, (20) 

"a (t) = -OH[x(t) ,  u(t), t, a (')]/Ox, (21) 

A (T) = 0. (22) 

This theorem corresponds to the necessary optimality conditions 
obtained by Bate (Ref. 6; see also the appendix in Ref. 17). Sethi (Ref. 7) 
has shown, that (20)-(22) are also sufficient for u(t) to be optimal if the 
maximized Hamiltonian 

H ° = max H 
u 

is concave in x. 
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The maximum principle also holds if there is a salvage function S(x(T)),  
so that the objective function in (1) becomes 

m a x { Y = f / F ( x ( t ) , u ( t ) , t ) d t + S ( x ( T ) ) } .  (23) 

In this case, the transversality condition (22) changes to 

A (T) = aS(x( T))/Ox. (24) 

Moreover, if S(x) is a concave function, then the maximum principle can 
easily be shown to be sufficient as in Ref. 7. 

It is also possible to easily develop the current value version of the 
maximum principle when F(x, u, t) and S(x(T))  defined in (23) have the 
form exp(-rt)ff(x, u, t) and exp(-rT)S(x(T))  respectively; see Refs. 19 
and 21. 

4. Economic Interpretation 

In optimal control problems in economics and management science, it 
is useful to provide the adjoint functions with economic interpretations. 
This allows additional insights into the structure of the problem. 

For standard optimal control problems, these interpretations are in 
terms of the shadow prices and are given by Dorfman (Ref. 18), Arrow 
and Kurz (Ref. 19, Chapter 2), Peterson (Ref. 20), and Sethi and Thompson 
(Ref. 21, Chapter 2). With our derivation based on dynamic programming, 
it is possible to provide similar interpretations for the adjoint functions of 
optimal control problems with continuous lags. Our discussions will follow 
very closely the discussion in Ref. 21. For the purpose of discussion, it will 
be convenient to consider x(t) as the stock of capital at time t and u(t) as 
the rate of investments in the capital stock. By (2), these investments lead 
to both instantaneous and delayed increase in the stock of capital (via f 
and g, respectively). The objective function (23) then represents the aggre- 
gate value of the net profit stream F plus the salvage value S at the terminal 
time T. 

From (13), it is obvious that the adjoint function A(t) represents the 
rate of change of the value function with respect to changes in capital stock 
x( t). Thus, we can interpret A(t) as the marginal value per unit of capital 
or, in other words, the shadow price of capital. It should be emphasized 
that A(t)hx(t) evaluates the value of the change Ax(t) at time t and all the 
future effects of this change along the new optimal path from t to T. 

It is also possible at time t to make changes in the past history 
x(s), 0 <- s ~ t. For example, if old machines of different vintages are traded 
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for new machines, then the past history changes. This will affect the future 
dynamics from time t on. Moreover,  it is possible to make changes in future 
technology of capital formation, i.e., changes in the form of function g in 
its fourth argument from time t on. It is easily seen that both kinds of 
change can be specified by a variation Ay(t, r -  t) in the function 

y(t, "r- t) = f]o~ g(x(s) ,  u(s), s, z) ds, 

for z >- t, because the state equation (2) can be expressed as 

f 2(z) =f(x( 'r) ,  u(r),  z)+ y(t, z - t ) +  g(x(s) ,  u(s), s, r) ds. 
t 

(25) 

The shadow price for y(t, z -  t) is 

/z(t, r -  t) ~= 6J(x(t) ,  y(t, z -  t), t ) /6y = h(~'), (26) 

where the second equality is a restatement of (16). The equality (26) 
between the shadow price ~ (t, z -  t) and the shadow price h (z) is no longer 
a surprise, because both these quantities evaluate the value of a change in 
x(~'). To see this informally, let us suppose that the change in y(t, z -  t) is 
concentrated at one given time ~-> t. This can be accomplished by letting 
the change Ay(t, z-- t) in y(t, z-- t) be a &function; thus, 

Ay(t, z-- t) = 6( r - -  ~), r>--t. (27) 

Integrating (25) from t to z, we can obtain the change Ax(~), r_> t, in x(r) 
as follows: 

I { AX(~')= ~(s--'2) ds= O, r < z ,  
t 1, r - > ~ .  

(28) 

It can now be seen that 

f 
T 

h(¢) = ~(t, s - t ) 6 ( s - " ~ )  ds=/z( t ,  "~-t), 
t 

(29) 

where the left-hand side represents the value of the change Ax(¢) and the 
right-hand side represents the value of the change 

Ay(t, r -  t) = 6(~'- ~), 

defined in (27), that results in the change Ax(~). 
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We are now prepared to obtain the interpretation of the Hamiltonian 
function (19), which we write as 

g = F ( x ( t ) ,  u(t), t) + A(t)f(x(t),  u(t), t) 

f" 
+ A(r)g(x(t), u(t) ,  t, r) dr 

t 

= F(x(t),  u(t), t) 

f7 + A(r)[f(x(t),  u(t), t )6(~'- t)+g(x(t) ,  u(t),  t, r)] dr. (30) 

The first term represents the marginal direct contribution to the profit 
functional (profit rate) if we are in state x(t) and we apply control u(t). 
The second term in the second expression in (30) represents the total indirect 
contribution to J. This consists of the usual contribution representing the 
value Af of the instantaneous marginal change f in x(t) and the additional 
contributions ~ a(r )gdr  representing the value of the marginal change 
densities g in x ( r ) ,  r > - t. 

With this interpretation of the Hamiltonian representing the surrogate 
profit rate, it is easy to see why the Hamiltonian must be maximized at 
each time t. This interpretation of the maximum principle, therefore,  
becomes the same as in the case of the standard optimal control problem. 

Now that we have interpreted the Hamiltonian as the surrogate profit 
rate at time t to be maximized, the interpretation of the adjoint equation 
(21), which can be rewritten as 

- d)t = Hx dr, 

is the same as in the standard case. That is, the decrease in the price of 
capital -d) t ,  which can be considered as the marginal cost of homing the 
capital, equals the marginal revenue of investing the capital, given by Hx dt. 
It is also possible, by integrating (21), to derive 

I7 a (t) = S~(x(T)) + F~(x(s), u(s), s) ds 

+ )t(s) f~(x(s) ,u(s) ,s)+ g~(x(r) ,u(~') ,r ,s)dr ds. 
t 

This equation enables us to explicitly see the marginal value interpretation 
for the adjoint variable ,~ (t). 

In concluding this section, we should remark that fhe importance of 
these interpretations can be more clearly seen in the advertising example 
treated in Section 6. 



82 JOTA: VOL. 43, NO. 1, MAY 1984 

5. Problems Governed by Integral Equations 

This section deals with the following problem: 

m a x { J = f ~ F ( x ( t ) , u ( t ) , t ) d t + S ( x ( T ) ) } ,  (31) 

subject to 

x(t)  = f '  h(x(s) ,  u(s),  s, t) ds (32) 
. i -  

and the initial conditions 

x(t)  = _x(t), u(t) = _u(t) given for t-<0. (33) 

Equation (32) is known as Volterra's integral equation. Different sets 
of necessary conditions for this class of problems have been given by various 
authors, e.g., Vinokurov (Refs. 8 and 9), and Bakke (Ref. 22). In what 
follows, we shall derive these conditions from Theorem 3.1 and establish 
relations between the adjoint functions of the different approaches and 
their interpretations in a unified framework. 

We differentiate (32) with respect to time t to obtain 

f_ it(t) = h(x( t ) ,  u(t) ,  t, t)+ [Oh(x(s), u(s),  s, t)/Ot] ds. (34) 
o o  

Note that this equation can be related to Eq. (2). Define the Hamiltonian 
for the problem (31)-(33) as 

H = F ( x (  t), u, t) + A ( t )h(x( t ) ,  u, t, t) 

+ A(~')[Oh(x(t), u, t, ~')/0~'] d~. (35) 

It is easily seen that the application of Theorem 3.1 to this problem gives 
(20), (21), (24) as necessary optimality conditions. These conditions corre- 
spond to those obtained by Bakke (Ref. 22). 

It is now possible to derive an alternative form of the necessary 
conditions. Define 

~0(t) ~ - 4  (t). (36) 

Then, we can prove the following theorem, which corresponds to Theorem 
2.1 of Vinokurov (Ref. 8; see also Ref. 9). 

Theorem 5.1. Let u(t), with associated state trajectory x(t), be an 
optimal control of the following problem: max(31), s.t. (32), (33). Then, 
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there exists an adjoint function 6 (not necessarily continuous) such that 
the Hamiltonian 

H*[x( t), u, t, 6( .  )]=F(x( t ) ,  u, t) +[aS(x( T))/Ox]h(x(t), u, t, T) 

+ 6(z)h(x( t ) ,  u, t, ~') dr (37) 

is maximized by u(t) and 

6 ( 0  = OH*[x(t), u(t), t, 6(" )]/Ox. (38) 

Proof. Integrate the last term in (35) by parts to obtain 

j . T x ( ~ )[ah  (x ,  u, t, ~)/o~-] c/~ 
t 

= [h(~')h(x, u, t, z ) ] L , -  "h(r)h(x, u, t, "r) dr. 
t 

This allows Eq. (35) to be written as 

H = f ( x ( t ) ,  u, t )+h( r )h (x ( t ) ,  u, t, r ) +  6(~)h(x(t) ,  u(t), t, r) d~:. 
t 

(39) 
The application of the transversality condition 

A(T) =OS(x(T))/Ox 

implies that 

H[x, u, t, h (.)] = H~[x, u, t, 6(" )]. 

Thus, 

O( t) = -'h ( t) = OHq'/ Ox, 

which completes the proof. [] 

In the next section, we formulate an advertising model and obtain its 
solution. 

6. Application to an Advertising Problem 

Let x(t) denote the stock of goodwill, and let u(t) denote the rate of 
advertising at time t. Then, the system dynamics, with carryover effects of 
advertising, can be stated as 

2(t) = - 3 x ( t ) + p  3-[' f (x(z) ,  u(r) ,  z, t) dz, (40) 
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where 6 and p are decay and response constants, respectively. Note that 
this is the continuous-time version of the system dynamics obtained in 
Burdet  and Sethi (Ref. 12). The function f represents the effects of advertis- 
ing expenditures at time T on the sales at time t. Some important special 
cases reported in the literature are: f = u e x p ( r -  t) (Connors and Teich- 
roew, Ref. 23); f = u(1 - x )  e x p [ a ( r - t ) ]  (Ireland and Jones, Ref. 24); and 
f = g ( u ) w ( t - r )  (Pauwels, Ref. 5), where g(u) is a production function of 
goodwill and w(s) denotes the density function of the distribution of the 
time lag between the advertising expenditures u and the increase in x. 

As an illustration of the maximum principle, we will consider the 
following optimal control model: 

max{J=foTexp(-r t )[Trx( t)-u( t )]dt} ,  (41) 

subject to 

i(t) =-~x(t)+p f~ 
and 

g( x( r), u( 7) ) w( t -  r) dr 

x(t) = _x(t), u(t) = _u(t) given for t -  0. 

(42) 

Here,  r denotes the constant discount rate, ~- is a profit parameter relating 
goodwill to sales, and g(x, u) is a production function of goodwill with 
advertising as an input. 

From (19) and (21), we have 

H =  (Irx-u)  exp(-rt)-~.~x+pg(x(t) ,  u(t)) ~ ( r ) w ( r - t )  dr, 

"~ (t) = -OH/Ox = - ~  e x p ( - n )  + A6 

+p[Og(x(t), u(t))/Ox] A(r)w(~ ' -  t) dr. 

The transversality condition is 

&(T) =0.  

In order to obtain monotonicity results for u, we make the simplifying 
assumption 

g(x, u) = g (u) ,  

such that the adjoint equation becomes 

~ (t) = 63t - ~- exp( - r t ) ,  A(T) =0 ,  
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whose solution is 

;t (t) -- [~r/(r + 6)] exp(-rt){1 - exp[-( r  + 6 ) ( T -  t)]}. (43) 

Let us first consider the case where the advertising expenditures u are 
subject to decreasing returns to scale: 

g(0) =0 ,  g'(0) =oo, 

g ' ( ~ ) > 0 ,  g " (u )<0 ,  f o r u > 0 .  

Then, the maximization of the Hamiltonian yields 

OH/Ou =-exp(-rt)+og'(u) A(r)w(r-t)  d r = 0 .  (44) 
t 

Making use of (43), we can compute 

(d/dt)(exp(-r t ) Ir~(r)w(r- t )d 'c}  

= [Tr/(r + 6)](d/dt) 

x{Io- 'exp(-rs) (1-exp[-(r+6)(T- t -s )] Iw(s)ds  } 

6)]{ - e x p [ - r ( r -  t)][1 - e°]w( r - t) - (r + 6) 
f 

[~r/(r+ 

f; =-~r exp[-r(r- t)]exp[-(r+6)(T-r)]w(r-t)  dt<O (45) 

which, in turn, implies that 

g'(u)(d/dt){exp(-rt) Irt A(r) w(r -  t) dr} 
~i(t) = g"(u){exp(-rt) Ir~ A(r)w(r-t)  dr} < 0  

when we apply the implicit function theorem to (44). Taking the limit as 
t-~ T in (44), we obtain 

g'(u(T)) =oe, 

which is equivalent to 

u(T) =0. 

Thus, the optimal advertising policy is one where the advertising expen- 
ditures are concentrated at the beginning of the time interval. These are 
monotonically decreasing and reach zero level at the terminal time T. 
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Let us now address ourselves to the case of linear effectiveness of 
advertising expenditures g(u)= u with the constraints 0 -  < u-<ti for the 
control variable u. The maximization of the Hamiltonian yields [see (44)] 

0, if OH/Ou <0, 
u(t)= a, i fOH/Ou>O, 

that is, 
I T 

0, ifexp(rt) [ A(~')w(~'-t) d'c<l/p,  
u( t ) = Jc'r 

t7, ifexp(rt) [ A(r)w(~'-t)  d r > l / p .  
J t 

Using relation (45), we can conclude that there is an interval of time 0 such 
that 

a, for t-<- T -  0, 
u ( t )=  0, f o r t > T - O .  

In other words, it takes at least 0 units of time for any dollar invested in 
advertising to pay off. 

Note that, for concave as well as linear effectiveness functions g(u), 
the adjoint function A(t) is monotonically decreasing. This is consistent 
with the interpretation of A (t) as the shadow price of goodwill, since the 
benefits of an additional unit of goodwill at time t can be reaped only over 
the interval It, T], which decreases as t increases. 

7. Concluding Remarks 

In this paper, we have presented an alternative derivation of the 
maximum principle for systems with continuous lags. Using the method of 
dynamic programming, we were able to provide the adjoint functions and 
the optimality conditions with useful economic interpretations. This allows 
additional insight into the nature of optimal control models with lags that 
are encountered frequently in economics and management science. 
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