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On the Optimal Mapping of Distributions 

M .  K N O T T  t A N D  C.  S. S M I T H  2 

Communicated by D. Q. Mayne 

Abstract. We consider the problem of mapping X ~ Y, where X and 
Y have given distributions, so as to minimize the expected value of 
I X - Y I  2. This is equivalent to finding the joint distribution of the 
random variable (X, Y), with specified marginal distributions for X 
and Y, such that the expected value of I X -  Yt 2 is minimized. We give 
a sufficient condition for the minimizing joint distribution and supply 
numerical results for two special cases. 

Key Words. Inequalities, marginal distributions, Fr6chet derivatives. 

1. Introduction 

If the random variable X has a continuous distribution function F and 
the random variable Y has distribution function G, what mapping, f rom 
values of X to values of Y will maximize the correlation of X and Y? It 
is well known that the solution is 

Y = G - 1 F ( x ) ,  

where G -1 is defined as 

G - l ( u )  =inf{y: G(y )  > u}. 

An equivalent problem is this. What  is the bivariate distribution function 
H which has marginal distributions given by F and G and which has 
maximum correlation between its two variables X, Y? This problem was 
investigated by Fr6chet, Hoeffding, and others (see Ref. 1). 
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A typical result is that the correlation is maximized for 

H(x, y)= min(F(x) ,  G(y)). 

If the marginal distribution F has a density function, then H is the distribu- 
tion function of (X, G-IF(X)). The function G-1F is nondecreasing, so it 
maintains the ordering of the values of X. 

There  are many ways to prove such results. We shall in this paper be 
mainly using an approach derived from transportation algorithms. To 
maximize the correlation between X and Y is to minimize the average 
squared distance E[(X- y)2],  so the problem may be thought of as that 
of moving the mass distributed as F to that distribution given by G in such 
a way that the average squared distance moved is as small as possible. The 
connection with transportation or transhipment problems has long been 
realized; see Berge and Ghouita-Houri  (Ref. 2, p. 155). One may note in 
passing that, if F and G each give probability 1/n to n points, there are 
strong links to work with rankings or rearrangements. 

When F and G are defined on R ~, the problem is, as in the' result 
above, completely solved. If instead we define F and G on R 2, and try to 
find a quadrivariate distribution minimizing the expected squared Euclidean 
distance EIX- YI 2, there are very few known results. We shall discuss the 
more general problem when F and G are defined on R m. The main difference 
of the case m > 1 from m = 1 is that there is no obvious ordering of the 
values of X and Y. In Section 2, we give our main results. Section 3 
specializes to distributions uniform over regions of R 2, and Section 4 
contains numerical work allied to Section 3. 

2. Problem in m Dimensions  

Let  F, G be distribution functions for random variables X and Y which 
take values in R m. What is the distribution function H for (X, Y), defined 
on R 2m, which minimizes the expected squared Euclidean distance 
EIX- YI2? 

There  is related work due to Monge (Ref. 3), Appell (Ref. 4), and 
others referred to by Appell, but they consider mainly m = 2 or 3, take 
E[X- Y[ as the distance to minimize, and obtain necessary conditions on 
H. Appell (Ref. 5) obtains necessary conditions for a distance Ef([X- Y[) 
and m = 3, but does not give the sufficient conditions of our main result. 

None of these authors have attempted to give any method of finding 
H, except in the most special and trivial cases. In Sections 3 and 4, we 
present less trivial examples. 
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It is clear from the results of linear programming which apply to 
transportation algorithms that the distribution function H which we wish 
to find will concentrate its probability on a set of Lebesgue measure zero 
in R 2m. We shall consider only cases where H is the distribution function 
of (X, O(X)) ,  eb(X) being a suitably smooth invertible mapping from R m 
to R m. We believe that this covers many cases of interest. When m = 1, we 
have seen in Section 1 that H is often of this form. Our main theoretical 
result is given below. Treat  x, y, ~b(x), 4~(y) e R m as column vectors, where 

is inverse to ~b. We shall always assume that the elements of o4)(x)/ax' 
and OO(y)/Oy' are continuous on R "~. This implies that we assume ~b is a 
diffeomorphism between R m and R m. In a fairly standard notation, we 
would say that ~b and q, are of class C (2). 

Theorem 2.1. Let  F and G be known distribution functions of random 
variables taking values on R " .  A sufficient condition that, among all distribu- 
tions of (X, Y) on R 2" with E I X -  YI 2 finite, that of (X, 4~(X)) minimizes 
EIX- YI 2 is that: 

(i) <b(X) has distribution G;  
(ii) a4)(x)/ax' is symmetric and positive semidefinite. 

Proof.  If u e R m, then the differential form 

2du'(u - 4~(u)) = d~, 

is exact because a,b(x)/ax' is symmetric by condition (ii) and has continuous 
elements by assumption. So the line integral along a piecewise smooth path 
y from 0 to x in R"*, given by 

a (x)  = J~ d~', (1) 

depends, as the notation suggests, only on x and not on 3'. Similarly, for 
v c R m, the differential form 

- 2 d v ' ( ~ ( v )  - v) = drl, 

where 

O(4~(u))= u, for all u e R  m, 

is exact. This is, as before, implied by condition (ii) and the well-known result 

a6(v)lav' = [a,b(u)lau']-l[~.>v. 
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So, the line integral along the piecewise smooth path 6 from q~(0) to y in 
R'~, given by 

Ix(y) = I~ dr/, (2) 

depends only on y and not on & 
We shall define the constant 

c = 10-  4, (0)12. 

The line integral from (0, ~b(0)) to (x, 6(x))  of the differential form dff+ d~/ 
along the path in R 2m given by (u, 6 (u) ) ,  where u moves along path 3' in 
R m, is not dependent on path 3', and is Ix-~b(x)[2-  c. Thus, for x z R '~, 

a (x) + t, ( 6 ( x ) )  = I x -  6 (x ) l  2 -  c. (3) 

Also, for (x, y) ~ R 2m, 

A (x)+ l~(y)=lO(y)-y[2  + I~ d ~ - c ,  

where v may be taken as the straight line in R "~ from 4'(Y) to x. Putting 

u = O(y)+o~(x-O(y)) ,  

we have 

fo A ( x ) + ~ ( y ) + c = t q , ( y ) - y I 2 + 2  ( x - O ( y ) ) ' ( u - ~ ( u ) )  dc~ 

Io = l x - y l ~ + 2  ( x - O ( y ) ) ' [ ( u - ~ ) ( u ) ) - ( u - y ) ] d o ~  

IoIo = Ix - yt z -  2 ( x -  ~b(y))'[Od~(v)/Ov'](x- O(y))a dfl doe 

where 

v = 4'(Y) +/3(u - 6(Y)). 

Since the quadratic form in the integral is nonnegative by condition (ii), 
we deduce that, for all (x, y) c R 2", 

A (x) + Ix (y) <~ Ix - yl z -  c. (4) 

It will be noticed that h(x)  and/~(y)  are the shadow costs in the program- 
ming formulation of our problem. Using (3) and (4) leads to the theorem. 
If Ho is any distribution on R zm with the required marginal distributions 
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F and G, and if H is the distribution of (X, cb(X)) where conditions (i) 
and (ii) are satisfied, then by (4) and (3), 

EIX- YI2~ > E[A(X)+tt(Y)]+c= E [A(X)]+ E[tz(Y)]+c 
HO Ho Ho 14o 

= E[A (X)]  + E[t t  ( Y)] + c = E[A (X) + tt ( Y)] + c 
H H H 

= E[A (X) + tt (¢  (X)]  + c = EIX-  ¢ (X)] z 
H H 

= E I x -  r l  [] 
H 

Comments 

(a) Condition (ii) ensures that pairwise interchanges and local rota- 
tions cannot produce a better 4~. 

(b) If q~ satisfies (i) and (ii) for F, G, then ~ satisfies (i) and (ii) for 
F, G, where 

~o(x+a)=O(x)+a and F(x+a)=F(x), 

for fixed a ~ R m and all x ~ R m. A linear transformation ~b will satisfy (ii) 
if and only if it is self-adjoint. 

(c) The inequality (4) reduces to Young's inequality when m = 1 and 
is a generalization of this inequality to many diemensions when there are 
suitable restrictions on the derivatives of 4~. 

(d) If m = 1, the Hessian O0(v)/Ov' is automatically symmetric, and 
condition (ii) reduces to 

dch(x)/dx >10. 

This fits with the known results, but adds nothing new. 
(e) Condition (ii) of the theorem may be interpreted as requiring 

that 4~ is the gradient of a convex function on Rm. 
(f) If F and G have density functions f, g, then, when m = 2, 

r (x)  = + (x ) )  

satisfies a Monge-Amp6re  differential equation, 

(oZr/oxZ)(oZr/Ox~) - (02r/Oxl 0x2) 2 = f(x)/g(Or/Oxl, Or/Ox2), 

obtained by writing the Jacobian of the mapping q~ and using conditions 
(i) and (ii) of the theorem. Such equations are hard to solve, but led us to 
the results of Section 3. We are indebted to Professor Pirani of King's 
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College, London,  for referring us to literature on the Monge-Amp~re 
equation. 

Simple Example. Suppose that 

X ~ M N ( O ,  Yq) and Y - M N ( O ,  £2). 

Then, the transformation 05 giving the smallest expected squared distance is 

05(X) -- x., 2x' 1/2/'x" 1/2kx.~2 X~lX' ~.1/2)-1/2~2X, (5) 

where the square roots are all taken positive semidefinite. The maximum 
possible value for E X '  Y is trace (Ya £2). Notice that the special case £1 = I 
is particularly easy. 

3. Case m = 2, with F and G Giving a Uniform Distribution over Bounded 
Sets A, B 

In the case m = 2, when X, Y are distributed uniformly over bounded 
sets A and/3, respectively, we can simplify the problem of finding an optimal 
05 by using complex variables. Suppose that 4J(w, z) is a polynomial in the 
complex variables w and z, and put 

4`1=04`/0w and ~2=Otp/Oz. 

Then, 

4`(,,/qx! + i05> 61 + i~/qx2) = 0, (6) 

for suitable 0, defines a mapping 

(Xl,  x2) -~ (05t, 052), 

where we take q as the ratio of the area of set B to that of set A. 
Differentiation w.r.t. Xl and x2 leads to 

4`1(~/q + i0052/0xl) + I[t2( O051/ Ox1 ] = O, 

01( iOcb2/ OX2) + Oe( OCbt/ OXz + i,Jq) = O. 

Assuming 4'1 if2 ¢ 0 gives 

005Jax2 =0052/0x~ and (0051/OxO(O05z/OXe)- (0051/0x2) z = q. 

So, if we find a suitable 0 which implies that q5 maps A to B, then the 
requirements of our theorem are satisfied. 

As a simple example, consider 

44 w, z )  = z -  w 2. 
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Solving gives 

051 = (Xl + x~), 052 = 2x2(x1 + x~). 

This 05 will give an optimal mapping from 

A = { x :  xl~>0, xl+x22~<2} 

to 

B = {05 :0  ~ 051 ~ C, 10521 ~" 205~z}, 

where c > 0. For xl < 0, ~ may be defined in any convenient way. For 
instance, 4~ might be taken as the gradient of the convex function 

h(x) = ~ 2/3(xl + x2)3/2, Xl-l- X22 ~-- 0 ,  

(0, x~+x~<0, 

confirming comment (d) to the theorem. 
In the next section, we use (6) to obtain approximations to 4~ for more 

interesting shapes of A and/3. The idea is to approximate q, by a polynomial, 
and to make use of the fact that, for 05 satisfying the conditions of our 
theorem, the boundary of A will map to the boundary of B. 

4. Numerical Investigations 

Suppose that we are given sets A, B in R 2, and we want to find 6(w, z), 
a polynomial of degree sufficiently high, such that, on solving (6), the 
resulting q5 maps A to B at least to a good approximation. If ~0 is chosen 
so that 05 maps the boundary of A to the boundary of B, then the same 05 
will optimal throughout the interior of A. To find suitable polynomials, 
guess a correspondence between K fixed points on the boundary of A and 
K points on the boundary of B, to give K pairs (wi, zi). A simple linear 
least-square algorithm allows the determination of the coefficients of the 
polynomial so that ~k t0(wi, zi)I 2 is minimized. Now, use the polynomial i=1 
obtained to recalculate K points close to the boundary of B corresponding 
to the fixed points on the boundary of A. Each point will require the solution 
of a polynomial equation. Use the recalculated points to obtain K new 
points close to them exactly on the boundary of B. Repeat the whole process 
until (6) produces a ~b which satisfactorily maps the boundary of A to the 
boundary of/3. 

Though this procedure seems rather a roundabout approach, it gives 
better results than using transportation algorithms on a discrete approxi- 
mation. 
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Example 4.1 

A ={x:  xl i>0, X 2 ~ 0  ) X1 +X2~< x/2}, 

B = { y :  0~<y l~  < 1, 0<~ y z ~  < 1}. 

Here ,  A and B are equal in area. 
Taking account of the symmetries of the sets A, B, a polynomial 

approximation 

No 
~(w, z) = w - z - ~  ar(W"J-z) 4r-1, 

1 

where the ai's are real, is likely to be adequate. We started with 11 points 

x ~ j = l / ~ / 2 ( l + j / l O ) ,  x2j = ~ /2 -  Xli, j = 0 ( 1 ) 1 0 .  

We guessed Ytj = 1 and intuitively reasonable values for YEj. The polynomial 

~9( w, Z)= W -  Z--O.O28( w + z)3--O.OOOOOl ( w + z) 11j 

was found on iteration to give good results. We used a V D U  screen to 
display results and to guide the choice of new points on the boundary at 
each stage. A few results are given in Table 1, and a picture of the mapping 
is given in Figs. l a  and lb.  

×2 

10 

0.5 

0 0 5  10 xl 
A 

Fig. la. Initial grid for Example 4.1. 
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Fig. lb. 

Y2 
L0 ...... 

0 5  

0 0'.5 1,0 y 
B 

Final grid for Example 4.1 after optimal mapping. 

Tab le  1. Values  for approx imate ly  opt imal  
mapping  in Example  4.1. 

x1 x2 4, 'b2 

0.000 0.000 0.000 0.000 
0.142 0.142 0.142 0,142 
0.283 0.283 0.294 0.294 
0.424 0.424 0.464 0.464 
0.566 0.566 0.672 0.672 
0.707 0.707 0.992 0,992 
0.283 0.000 0.278 0.000 
0.424 0.142 0.414 0.158 
0.566 0.283 0.563 0.343 
0.707 0.424 0.743 0.573 
0.849 0.566 1.005 0.914 
0.566 0.000 0.529 0.000 
0.707 0.142 0.650 0.192 
0.849 0.283 0.795 0.434 
0.990 0.424 0.997 0.768 
0.849 0.000 0.737 0.000 
0.990 0.142 0.842 0,251 
1.131 0.283 1,000 0,589 
1.131 0.000 0.896 1.002 
1.273 0.142 1.001 0.365 
1.414 0.000 1.003 0.002 

Example 4.2 

A = { x :  0 ~ x ~ < ~  1 , 0 < ~ x 2 ~  1}, 

B = { y :  y l ~ > 0 ,  y2~>0,  y2+y22<~ 4 / ~ ' } .  
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A and B have equal area. A good approximation is 

~(w, z) = ( z -  w) -O.146(w+ z)3 +O.OOOO4(w+ z) 7. 

Table 2 gives a few of the mappings for points on the boundary. A picture 
of the mapping is given in Figs. 2a and 2b. 

X 2 

1,0 ~ 

0.5 

--]ll~ X 1 
0.5 1.0 

A 

Fig. 2a. Initial grid for Example 4.2. 

Y2 

1.0 

0.5 

~ Y ~  
0 0.5 1.0 

B 

Fig. 2b. Final grid for Example 4.2 after optimal mapping. 
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Table 2. Values for approximately optimal 
mapping in Example 4.2. 

x, x2 '~1 4'z 

0.1 1 0.071 1.134 
0.2 1 0.140 1.129 
0.3 1 0.211 1.116 
0.4 1 0.282 1.100 
0.5 1 0.353 1.077 
0.6 1 0.426 1.046 
0.7 1 0.504 1.003 
0.8 1 0.590 0.951 
0.9 1 0.688 0.886 
1.0 1 0.803 0.810 
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