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TECHNICAL NOTE 

Laguerre Series Direct Method for Variational 
Problems 

C.  H W A N G  1 A N D  Y. P. S H I H  2 

Communicated by A. Miete 

Abstract. A direct method for solving variational problems via 
Laguerre series is presented. First, an operational matrix for the integra- 
tion of Laguerre polynomials is introduced. The variational problems 
are reduced to the solution of algebraic equations. An illustrative 
example is given. 

Key Words. Laguerre polynomials, variational problems, Ritz direct 
method, optimization. 

1. Introduction 

The direct methods of Ritz and Galerkin in solving variational prob- 
lems are well known (Ref. 1). Recently, Chen and Hsiao (Ref. 2) introduced 
the Walsh series method to variational problems. Due to the nature of the 
Walsh functions, the solutions obtained are piecewise constant. 

Laguerre polynomials are well known in mathematics. In this paper, 
an operational matrix for the integration of Laguerre polynomials is intro- 
duced. This matrix enables one to solve variational problems by Laguerre 
series. The method consists of the following steps: (i) assuming the candidate 
functions as Laguerre series with unknown coefficients to be determined; 
(ii) finding the necessary conditions for extremization; and (iii) solving the 
algebraic equations obtained to evaluate the Laguerre coefficients. The 
new method is simple, as illustrated by an example. First, a brief review 
of the properties of Laguerre polynomials is outlined. 
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2. Laguerre Polynomials 

The Laguerre polynomials are known as (Ref. 3) 

Lo(t) = 1, 

Li f t )  = 1 - t ,  

L2(t) = 1 - 2 t  +½t 2, (1) 

. . , , , , , . . . . . .  , 

Li+l (t) = [(1 + 2i - 1)/(i + 1)]L~ (t) - [ i / ( i  + 1)]L~_I (t). 

The polynomials are orthonormal in t ~ [0, o0) with respect to the weighting 
function exp(- t ) .  That is, 

f ~  exp(-t)L2(t)  dt = 1, 

(2) 0 o  

f oexp( - t )L i ( t )L j ( t )  =0,  i ~f.  

A function f(t'), which is absolutely square integrable in t ~ [0, co), may be 
approximated as a sum of Laguerre polynomials, 

m - - 1  

f(t)-~ E ]~Ldt)=frL(t) ,  (3) 
i = 0  

where T means transpose and m is a sufficiently large integer. The Laguerre 
coefficient vector f and the Laguerre vector L(t) are, respectively, 

f = [/o, f l  . . . . .  & - d  ~, (4) 

t.(t) = [L0(t), Z ~ ( t ) , . . . ,  L,~_l(t)] ~. (5) 

The Laguerre coefficients f~ are obtained by the minimization of the integral 
weighted square error e, 

c o  

= [ [ f ( t ) - - f rL( t ) ]  2 exp(--t) dr, (6) 
J0 

and are given by 

f~ = exp(- t )At)Li( t  ) dt. (7) 

The choice of m in the approximation of f(t)  given by Eq. (3) is based on 
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the criterion that 
r a  - -  1 t t t  - -  I I 

,~o f iL l ( t ) -~- -o  f, Li ( t )  [ <e ,  

for every t in the interval [0, oo). The value of e can be chosen arbitrarily. 

3. Operational Matrix 

It is also known that 
t 

o L i ( t  ') d t '=  L i ( t ) -L~+l ( t ) ,  i = 0, 1, 2 , . . .  (8) 

For i = m - 1, by approximating 
t 

o Lm_l( t  ') dt '  =Lm-~(t) 

with the omitting of L,~(t), Eq. (8) can be written in matrix form as follows: 

1 - 1  0 ~" 0 0 

0 1 - 1  . . .  0 0 t 

Io L ( t  ) dt' = . . . . . . . . . . . . . . . . . .  
0 0 0 . . .  1 - 1  

0 0 0 . . .  O 1 

- Lo(t) 

L l ( t )  
. . . .  PL( t ) .  (9) 

L~-z(t) [ 

P is called the operational matrix for integrating Laguerre polynomials. 
Notice that the m x m constant matrix P is an upper bidiagonal matrix. 
The unique form of the operational matrix plays an important role in the 
direct method for solving variational problems. 

4. Laguerre Direct Method 

Let us consider the problem of finding the minimum (or the maximum) 
of the functional 

1 P 

J ( x )  = J0 F[t, x( t ) ,  2(t)] dt, (10) 

where ( ' )=  d( )/dt, The necessary condition to minimize J ( x )  is that x(t) 
satisfies the Euler-Lagrange equation 

OF/ Ox - ( d / dt )( OF/ 02 ) = O, (11) 
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with appropriate boundary conditions. The Euler-Lagrange equation can 
be integrated easily only for simple cases. Therefore, direct methods and 
numerical methods have been used to solve variational problems. The Ritz 
and Galerkin methods are well-known direct methods. The Ritz direct 
method, using Laguerre series, is developed as follows. 

First, assume that the rate variable 2 (t) can be expressed as a truncated 
Laguerre series, 

m - - 1  

2( t )=  E d,L,(t)=drL(t), (12) 
i = 0  

where de's are the Laguerre coefficients of 2(t). Using Eq. (9), x(t) can 
be represented as 

t "  t 

x(t) = Jo 2(t') dt'+x(O) 

= drPL(t) + [x (0), 0 . . . . .  O]L(t), (13) 

Notice that 

Lo(t) = 1 

has been used in the last term of Eq. (13). Expressing t in Laguerre series 
gives 

t = [1, - 1 ,  0 . . . . .  0]L(t) & h rL(t). (14) 

Substituting the Laguerre series of ~(t), x(t), t into Eq. (10), the 
functional J(x) becomes a function of di. Thus, the necessary condition for 
extremizing of J(x) is that 

OJ/Odl =0,  i =0 ,  1 . . . .  , m - 1 .  (15) 

In fact, Eqs. (15) form a set of algebraic equations which are used to 
solve di. When the di's are obtained, the extremal function x(t) is thus 
determined. The procedure is best illustrated by an example. 

5. Illustrative Example 

Consider the problem of finding the minimum of 

1 

J(x) = I [22(t)-F-tSc(t)] dt, 
3o 

(16a) 
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with boundary conditions 

x (o) = o, 

x(1)=¼.  

Inserting Eqs. (12) and (14) into Eq. (16a) gives 
1 

J = | [dTL(t)LT(t)d +dTL(t)Lr(t)h] dt. 
3o 

Letting 

(16b) 

(16c) 

(17) 

where 

1 

x(1)=dTfo L ( t ) d t = d %  =¼, (21) 

.1 t 
v = | L(t) dr. (22) 

d 0 

The variational problem becomes to minimize J given Eq. (19), subject to 
the constraint of Eq. (21). Let o~ be the Laguerre multiplier; Eq. (19) is 
rewritten in terms of an augmented functional ], 

] = drWd +dWWh +o~(dTv --¼). (23) 

The necessary condition to minimize ] becomes 

OJ/Od = 0, (24) 

o r  

2 Wd + Wh +cw = 0, (25) 

Hence, 

1 

W = Jo L(t)LT(t) dt, (18) 

where W is an m × m matrix, Eq. (t7) becomes 

J = dTWd + drWh. (19) 

Recursive formulas for the evaluation of the W-matrix are given in the 
Appendix. To satisfy the boundary conditions (16b) and (16c), integration 
of 2(t) gives 

g t 

x(t) = 1 2(t) dt' +x (0). (20) 
Jo 
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subject to 

d%-¼=O. 

Equations (25) and (21) consist of rn +1 simultaneous linear equations 
which are used to determine do, d l , .  • . ,  din-1 and a. For m = 4, we have 

d T = [0, 0.5, O, 0]. 

Thus, the extremal function is 

2 =~(1 - t )  

with 

and x( t )=~t(1-½t) ,  

a = - 1 .  

6. Concluding Remarks 

A method for solving variational problems is proposed in this paper. 
The method reduces a variational problem to the solution of algebraic 
equations. After finding the operational matrix for the integration of the 
Laguerre vector, the calculation is recursive and useful in digital compu- 
tation. 

If the function F(t, x, 2) appearing in Eq. (10) is a polynomial function 
in t, x, 2, the Laguerre series may serve well as a particular case of the 
Ritz method. However, if F is not a polynomial function in t, x, 2, the 
Laguerre series method might be impractical. 

For more general computing techniques for solving variational prob- 
lems, see Refs. 4-8. 

7. Appendix: Recursive Formulas for the Matrix W 

An operator Rk (t) is defined as 

Rk(t)L(t)  = f '  L(t')(t') k dt'. 
Jo 

Hence, 

Ro(t) =P. 

Integration by parts of Eq. (26) gives 

Rk (t) = t k P -  kRk-l( t)P.  

(26) 

(27) 

(28) 
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Since (Ref. 3) 

L i ( t )=  ~'~ [(-1)'/f!](~)d, (29) 
f=0 

the (i + 1)th column of the matrix W becomes 

L(t')Li(t') dt'=,~o L(t')[(-l y//!] (t ') j d t '  

= i [(-1)'/f,J(;)Rk(t)L(t). (30) 
i=0 
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