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Application of Functional Analysis to Models of 
Efficient Allocation of Economic  Resources 1 
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Abstract. The present paper studies existence and characterization of 
efficient paths in infinite-horizon economic growth models: the method 
used is based on techniques of nonlinear functional analysis on Hilbert 
spaces developed earlier by Chiehitnisky. Necessary and sufficient 
conditions are given for the existence of positive competitive price 
systems in which the efficient programs maximize present Value and 
intertemporal profit. Approximation of these competitive price systems 
by strictly positive ones with similar properties is studied. A complete 
characterization is also given of a class of welfare functions (nonlinear 
operators defined on consumption paths) for continuity in a weighted 
/2-norm. 
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1. Introduction 

We study a recurrent  p rob lem in inter temporat  economic analysis, the 
dual characterization of infinite-horizon efficient programs by competit ive 
prices. From an economic viewpoint, if an efficient program x admits a 
competi t ive price system p at which x maximizes present  value and inter- 
temporal  profit, then a centralized notion of efficiency can be translated to 
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one  of decen t r a l i z ed  max imiza t ion  of va lue  or  prof i t  t h rough  t ime.  Hence ,  
efficiency can in p r inc ip le  be  ob t a ined ,  unde r  these  condi t ions ,  by  decen -  
t r a l i zed  dec i s ion -mak ing .  A p r o g r a m  is a p o i n t  of  a s e q u e n c e  space ,  each  
e l e m e n t  of  the  s equence  d e n o t i n g  d a t e d  consumpt ion .  H e n c e ,  a p r o g r a m  is a 

s t r eam of c o n s u m p t i o n  t h rough  t ime.  
A n  efficient  p r o g r a m  within  a p roduc ib l e  set  Y is one  tha t  canno t  be 

s t r ic t ly  d o m i n a t e d ,  or  i m p r o v e d ,  in the  vec to r  o r d e r  of sequences .  F r o m  a 
m a t h e m a t i c a l  v iewpoin t ,  an efficient  p r o g r a m  x in a set  of  p roduc ib l e  
p r o g r a m s  Y can be desc r ibed  as one  with the  fo l lowing p r o p e r t y :  the  set Y 
and the  t r ans l a t ion  of the  pos i t ive  cone  P~+ of the  s equence  space  with  ve r tex  
x on ly  in te r sec t  at  x. A compe t i t i ve  pr ice  p for  x is a con t inuous  l inear  
func t iona l  which t akes  its m a x i m u m  over  the  set  Y at the  po in t  x. T h e  
ex is tence  of such a pr ice  can then  be  t r ans l a t ed  into the  exis tence  of an 
a p p r o p r i a t e  c losed  h y p e r p l a n e  s epa ra t i ng  Y and  P+. A p r o b l e m  ar ises  
because  Y and  P~+ a re  b o t h  con ta ined ,  by  the i r  def ini t ion,  in the  pos i t ive  
cone  of the  space  of c o n s u m p t i o n  sequences .  In o r d e r  to app ly  H a h n -  
B a n a c h  type  t h e o r e m s  to p rove  exis tence  of s epa ra t i ng  hype rp lanes ,  one  
needs  at  leas t  o n e  of the  convex  sets be ing  s e p a r a t e d  to con ta in  an in t e r io r  

po in t  o r  at leas t  an in t e rna l  poin t .  4 
T h e  only  /p-space of s equences  which  has a pos i t ive  cone  with non-  

e m p t y  in te r ior ,  or  wi th  in te rna l  points ,  is l~. H o w e v e r ,  the  sup no rm is fine 
e n o u g h  tha t  its dua l  t* ,  the  space  of  pr ices ,  con ta ins  e l e m e n t s  which are  no t  
r e p r e s e n t a b l e  by  sequences  5 and  do  not  have  an a d e q u a t e  e c o n o m i c  in te r -  
p re t a t ion .  6 F o r  this, a m o n g  o t h e r  reasons ,  /p-spaces wi th  1 -<p  < oe and 
espec ia l ly  /2-spaces s eem na tu ra l  c and ida t e s  for  spaces  of c o n s u m p t i o n  
pa ths .  H o w e v e r ,  these  spaces  have  pos i t ive  cones  with an e m p t y  in t e r io r  and  
no in te rna l  points ,  and  this rules ou t  the  app l i ca t ion  of the  usual  H a h n -  
Banach  type  s e p a r a t i o n  t h e o r e m s  which requ i re  one  of the  two d is jo in t  
convex  sets to have  an in te r io r  or  in te rna l  poin t .  Because  of this,  in Sec t ion  2 
we p r o v e  a gene ra l i z a t i on  of a H a h n - B a n a c h  s e p a r a t i o n  t h e o r e m  which  is 

4 The hypothesis that one of the convex sets being separated contains an interior point can be 
weakened to the assumption that one of the sets has an internal point (see Ref. 1) relative to 
the least closed vector subspace containing the set; this latter hypothesis, however, cannot be 
eliminated. For a counterexample, see Dieudonn6 reference in Ref. 1. Dieudonn6 also shows 
that, in a nonreflexive space, such as I~o, two closed convex bounded sets without a common 
point may not have any closed separating hyperplane. If the space is reflexive (e.g., lz), such 
sets can be separated by a closed hyperplane. In our problem, however, the two closed sets do 
have one point in common, namely, the efficient or optimal path, so this last result also does 
not apply, and new tools have to be used here, 

5 i.e., purely finitely additive elements, Ref. 1. 
6 This occurs, for instance, when the function part of a price p is given by a purely finitely 

additive measure on I~, and hence its sequence part is identically zero, while p as a functional 
on l~ is not zero. 
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shown to enable many standard results to be rescued. Fur thermore,  we give 
a complete  characterization of certain nonlinear operators  (welfare 
functions) for continuity in a weaker  weighted I2 norm, and we prove that if 
the efficient program x maximizes the value of such a continuous welfare 
function then the problem, can also be overcome.  Basically, one shows that, 
in this case, one of the sets being separated is contained in a convex set which 
has an interior in a weighted/2-norm,  since it is the inverse image under an 12 
continuous map, and intersects the other convex set at the point x only. 
Thus, the separating hyperplanes can be chosen so as to be representable by 
sequences, effectively elements of l* ~ I2. Thus, it is shown that the question 
of existence of prices is also related to the appropriate  continuity of welfare 
functionals, if one is to work on t2. 

In Theorem 2.1, necessary and sufficient conditions for a separation of 
the feasible set Y from the set of programs which are strictly larger in the 
vector order are given. This separation result is equivalent, in this case, to 
the existence of nonzero competi t ive prices for the efficient programs. Such 
prices are shown to assign strictly larger present  and inter temporaI  profit 
value to strictly larger programs. They define continuously a bounded 
present value and inter temporal  profit for all programs in the space, which is 
maximized in Y at the efficient program. A sufficient condition is also give~a 
on the feasible set Y for existence of an efficient program in Y. In 
Proposition 2.1, a complete  characterization of continuous utility functions 
in a weighted /2-norm is given; these utilities are represented by sums of 
discounted t ime-dependent  utilities. Theorem 2.2 is an extension of Arrow, 
Barankin,  and Blaekwell (Ref. 2) and Radner ' s  (Ref. 3) results. This 
theorem gives an approximation of a competi t ive price p for an efficient 
program x by a sequence of competi t ive prices p~ which maximize the value 
at x ~ in the set Y, where the x~s are efficient paths in Y, x ~ --> x, and p~ -> p. 
This result extends those of Ref. 2, adapting the proof of Ref. 3 for programs 
and prices in weighted/2-spaces.  The results given in this paper  are based on 
previous work by Chichilnisky (see Ref. 4). 

2. Competitive Prices for Efficient Programs 

A production program is a sequence {at, b~+l}, t =  1, 2 . . . . .  where 
at e R ~ represents inputs, b~+l e R ~ represents outputs at period t and t + 1, 
respectively, a, -> 0, b~+l >- 0, and bt+1 is in T~(at), T~ a correspondence 7 from 
R n+ to R n+ representing the production possibilities or technology at date t. 
For a product ion program {at, b~+l}, let {x~} denote the sequence {be- a~}, 

7 .  1.e., a set-valued function. 
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t -> 2, and xa = - a l ,  which is called the net output program. A feasible set of 
net output  vectors Y is defined as a set of nonnegative net output  programs 
{xt}, t = 1, 2 . . . . .  where bt+l ~ Tt(a,) for all t. From now on, the word 
program is used to denote  net output  programs. 

If x = {xt} and y = {y,}, t = 1, 2 . . . . .  are two infinite sequences of 
vectors, we denote  x => y if xt ->-_ yt for all t, x -> y if x -_> y and x ~ y, and x > y 
if x~ > yt for all t. A program x is efficient or maximal in a feasible set Y if 
there is no y in Y with y - x, i.e., x is efficient in Y if Y ~ Px + = {x}, where P+ 
is the translation of the positive cone in the sequence space with vertex x, 

e+~ ={zlz >=x}. 

A system of prices p is called a competitive price system for the program 
x in Y if 

p ( x ) = m a x p ( y ) .  
y~Y 

If p = {p~} is a sequence of prices at each data t, the intertemporat profit of the 
production program {at, bt+t} at price {p,} and t ime t + l  is defined by 
pt+l" bt+~ - pt" at, where pt" at denotes the inner product  of the vectors pt and 
at. For a review and discussion of these models,  see for instance Ref. 5. 

The approach that we follow here is to give these spaces of consumption 
paths a weighted 12-norm induced by a discount factor. The notion of 
distance of paths in this space seems quite welt fitted for discounted types of 
models;  the results apply to nondiscounted models as well. Some of the 
difficulties noticed by Majumdar  and Radner  (Ref. 4), among others who 
work on /~-spaces ,  seem surmountable  in this f ramework;  in particular, a 
difficulty that their approach runs into now disappears. Every  value 
functional in the dual of a Hilbert  space of sequences can be represented as a 
sequence of prices, and thus the difficulty that  the sequence part  of a nonzero 
value functional may be zero is removed.  In addition, in these prices, the 
value is given by an inner product  and therefore has a ready interpretation. 
This brings together  the concepts introduced by Malinvaud (Ref. 6), Debreu  
(Ref. 7), and Radner  (Ref. 3) for infinite programs in this space. Further,  
economic relations between the concepts of efficiency, present  value maxi-  
mization, and inter temporal  profit maximization of finite programs are 
shown to be inherited by these programs. 

Let  x and y be two bounded programs.  Define the inner product: 

(x, y),~ = Z a t(x~ • yt), (1) 
t = l  

where 0 < A < 1. This inner product  can be thought of as representing the 
present  value of program x in price system y with discount factor A. It 
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induces a normed topology on I~, with uorm I1" H~ given by 

Ilxli~ : (x, xt  ~/2. 
We consider the completion of l~ under this topology. This space is denoted 
HA to call attention to the parameter A in its definition; in Proposition 2.1, 
the relationship between the parameter A and the continuity of discounted 
additive welfare functionals is shown. The inner product defined in (1) 
extends to an inner product on Ha and defines a Hilbert space structure for 
the space HA, which is an /2-space of sequences with the finite measure 
induced by the density function A t, t = 1, 2 . . . . .  

A price p is a function that assigns to every program in HA a present 
value, which is a continuous linear functional on the space of all programs° 
Thus, the space of prices is isomorphic to the dual space of HA, H~. Since H~ 
is a Hilbert space, H*  is isomorphic to HA. 

Thus, the space of prices H ~  is a sequence space; and, if p = {pt} ~ H*  
and y = {yt} is a program in H~  then the present vatue of y at price p is equal 
to the inner product 

(p, y ) =  ~ At (p .  y~). 

The space of prices l* (continuous linear functionals on l~ with the 
sup norm) must be strictly larger than the space of prices of Lo with the t]" II)~ 
topology. Intuitively, since It" is weaker than 1]" on l~, i.e., []. It~ on lo~ has 
fewer open sets than [].11~, there exists then fewer continuous linear 
functions on lv with .he 11" ][x norm than with the 11" lLu  norm. A problem for 
the choice of (t~, I1" as a space of programs is that t* contains elements 
which are not sequences: there are nonzero continuous linear functionals on 

I1' II u ) whose sequence part is zero, the purely finitely additive measures 
(Ref. 1). By weakening the topology of l~, the purely finitely additive 
measure part of l* disappears (i.e., looses continuity in the new norm), and 
we are left only with a sequence space H*.  

The following results show necessary and sufficient conditions for the 
existence of nonzero prices supporting efficient programs under tech- 
nological assumptions on the set Y of feasible programs. We first need a 
lemma; a result related to this, but for sup norms instead of/2-norms, is 
stated without proof in Ref. 8, page 52, E. 

Lemma 2.1. Let f be a linear functional defined on an/2-space of real 
sequences, f nonnegative on l~-, the set of nonnegative sequences of 12. Then, 
f is also continuous on lz, i.e., f ~  12. 

Proof. Let {(~} be the canonical base of 12. Consider the sequence of 
real numbers St, defined by S t = (f((1), f(~2) . . . .  ), the sequence part off.  We 
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shall show first that Sr is in 12. Consider a sequence/3 = (/31,/32, .) in 1 + • • 2 ,  

Then, 
oo 

i i q_  f(~)= f(i~=l /3i~ )= f(,~=l /3i~ ) f(N~+l /31~i), 
which by linearity is equal to 

i = 1  1 

Since/3 ~ l +2 a n d f  is well defined and nonnegative on ~ ~ l~-, it is obvious that 

°°>f( i  

so that, for any/3 in I~-, 

lim 
N ~ o o  i = 1  

Then, for any fl in I2, 

also. Since 12 is self-dual, 

/3,~ -> 3, = E/3d(¢i), 
i 1 i = 1  

N 

Y 3~f(¢')= ~ /3~f(¢')<oo. 
i ~ 1  

~ ~3if(d) < oo 
i = 1  

and S~ is nonnegative and it well defines a 
continuous linear function on/2, it follows that S f is in 12. Now, let h = f -  &, 
that is, h is the n o n s e q u e n c e  par t  of f. We shall show that h is identically zero. 
First, note that h(s d) = 0, for all s ci in the base of 12. 

For all ~ in l~, there exists a/3 in l~- with 

l im(/3i /  oei ) = cx3 ; 
i ~ cx3 

then, given any N > 0, if k is large enough, 

( f i t - N c ~ i ) £  i is in l~-. 
i = k + l  

Note that, given that, for k large enough, 

i -- Noti 
i= 1 

is as close to zero as desired, then since h = f -  Sf  a n d f  is nonnegative on l~-, 
this implies that, for k large enough, 

~X3 

h ( i = ~ + l ( / 3 i - g ° l i ) ~ i  ) 
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is a nonnegative number,  and so 

\ i ~ k + l  \ i = k + l  

Also, 

h ~. fii~ i =Nh c~i =0, 
i = 1  i i 

since by definition h = f - S  r. Thus, 

h(o~)<-(1/N)h(fl) for alt N. 

Since N is arbitrarily chosen, this implies that h (a)  = 0, which completes the 
proof. 

We need some more  definitions. A point x is said to be internal to a set 
Y in a linear space X if, for all z in X, there is an e > 0  such that x +Az ~ Y 
for all/~ with fhl< e. Note that an internal point may not be interior. A 
real-valued function u on Ha is called strictly increasing when z > y implies 
that u(z) > u(y). 

Let  Y be a convex set, and x 6 I~: The cone with vertex x generated by Y 
is the smallest cone with vertex x containing the set Y denoted C( K x). It  is 
easy to see that 

C ( Y , x ) = { z l z = a ( y - x ) + x ,  y~ Y, a_>0}. 

Let A be any real number  in (0, 1). 

Theorem 2.1. If Y is nonempty,  norm-bounded,  closed, and convex 
in Ha, then there exists a maximal e lement  x in Y. For any maximal x, the 
following conditions (a), (b), (c) are equivalent, and are each necessary and 
sufficient for the existence of a nonzero continuous supporting hyperplane 
p ~ H *  + for Y, supported at x ; further, for any such hyperplane, if z ~ Ha, 
z>-x, then p(z)>_p(x) and if z > x ,  then p(z)>p(x).  This hyperplane p 
defines a price system with respect to which x is value maximizing and 
discounted inter temporal  profit maximizing; and, in this price system, any 
program y E Ha has a finite present  value given by 

(p, x)a = 2 ~ (p , . x t ) .  
t = l  

(a) There  exists a vector w -> x which is at a positive distance from the 
set C(Y,x) .  

(b) y maximizes a strictly increasing concave t1" ltx continuous function u 
defined on a neighborhood of Y, 

(c) There  exists a convex set Y1DP~-, Y c~ Y1 = {x}, and Y1 contains an 
internal point. 
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Proof.  First, we prove existence of a maximal e lement  in Y. Note that, 
since HA is a Hilbert  space for any h ~ (0, 1), it is reflexive. Thus, by 
Alaoglu 's  theorem (Ref. 1), Y is weakly compact.  It follows that Y is 
compact  in the pointwise convergence topology (see Ref. 1). Thus, by Ref. 9, 
Theorem 2.2 there exists a maximal e lement  x in ii. 

We now study the existence of the separating hyperplane for Y and P~+ 
with the above properties.  

We first prove  sufficiency of (a). Consider the set 

L = C ( Y , x ) - P  + ={zlz = y - u ,  where y c C ( Y , x ) ,  u~P+}. 

L is a convex cone with vertex {0}, since C(Y, x) and P+ are convex cones 
and x 6P+ n C(Y, x). 

Let  w be the e lement  of P+ at a positive distance from C( Y, x). Then,  
the vector wl = w - x is in H~ ~ and it is at a positive distance from L. For, if it 
is not [i.e., if for all e < 0  there is a u in k with d(Wl, u ) <  e], then since 

d(wl, u )=d(wl+x ,u+x)<E,  u + x s C ( Y , x ) ,  w l + x = w  

this would imply that w is not at a positive distance from C(Y,x) ,  a 
contradiction. 

Therefore,  by Theorem V.2.12 of Ref. 1, the closure of the cone L, L, 
and the point wx ~ H ~  can be separated by a nonzero continuous linear 
functional, say, p. In addition, since 0 is the vertex of the cone L, and p(0) = 0 
by linearity of p, p can be chosen so that p(z) <- 0 for all z in L. This last point 
can be seen as follows. Since p separates L and wl, there is a constant c such 
that 

p(u)<-c<p(wa) 

for all u in L. 
If there would exist a z in L with a = p(z) > p(0) = 0, then, by linearity 

of p, 

p(  ~ z )  = ~,p(z) = ~,a. 

Since y is arbitrary, and yz is in L for all y > 0, this would contradict the fact 
that p(u) <- c Vu in L. 

We now complete  the proof  of sufficiency of (a). 
As shown in Ref. 1, the positive cone P~- is supported by a continuous 

tangent functional at p = (Pi) iff pl = 0 for some i -> 0 (see Ref. 1, page 458, 
No. 9). Suppose now that z ~ P+ and p(z) = p(y).  Then, by the above result, 
zt = yt for some t. Thus, p(z)>p(y) if z > y. This completes the proof of 
sufficiency of (a). To see the necessity of (a), note that, if p separates C( Y, y) 
f rom P+, then 

C(Y, y) D{z c HA with p(z) -<p(z)}; 
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thus, C(Y, y) is actuaily contained in a closed half-space, and, by definition 
of P~+, this implies (a). 

We now prove (b). If y maximizes a strictly increasing concave 
continuous function u defined on a neighborhood of Y, then the set 

S = { z : z  ~ H  and u ( z ) >  u(y)} 

is convex, and its interior is not empty. Thus, Y and S can be separated by a 
nonzero continuous hyperplane p. Note that p ( z )>  p (y) if z > y. 

The converse is trivial, since p itself is continuous concave and can be 
taken to be positive, and thus increasing. 

We now prove (c). For the sufficiency of (c), note that, if Y1 ~ Y = {x}, 
Y~ DP~ +, and Y1 contains an internal point, then by Ref. 1, Theorem V.I.12, 
there exists a linear function p separating Y~ and Y, and thus Y and P~+. We 
next note that, by Lemma 2.1 above, if p is positive on p2, P is continuous. 

The reciprocal is immediate: if p separates Y and P+, then 

P+~ C{z  in H. ,p (z )>-p(y )} .  

Remark 2.1. For an example of a maximal program in a convex set 
which does not satisfy the above conditions, see McFadden (Ref. 10). 

Remark 2.2. Note that, in the above results, the separation theorem 
yields a separation between Y and tl~e set p2  ; and, if z > x, then p(z) > p(x). 
For some economic purposes, this strong separation is not needed: it may 
suffice that y maximizes present value and intertemporal profit with respect 
to a positive price system, without being concerned with the value of 
programs which are strictly larger than y. 

Corollary 2.1. Let  Y be a convex subset in H~.  For any maximal x, the 
following are necessary sufficient conditions for the existence of a nonzero 
price p in Ha  *+ with respect to which x is present value maximizing and 
discounted intertemporal profit maximizing. 

(a) C(Y, x) is not dense in HA. 
(b) y maximizes a concave function u which is continuous in a neigh- 

borhood of Y. 

Proof. First, we prove the sufficiency of (a). Assume that there exists 
w in Hx with d (c (Y, x), w) > 0. By Ref. 1, V.2.12, there exists a continuous 
linear function h, with 

h(w)  >- c ->. h ( C ( Y ,  x)). 
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We shall see that h is maximized in C(Y,x )  at x. Let  h(x)=cl .  If z c  
C(Y,x) ,  

h(z) = h(r(y - x ) +  x)) = rh(y - x ) +  h(x), 

so that, if h ( y ) > c l  for some y in C(Y, x) then 

rh (y -  x) + h(x) > c 

for some r -> 0. Thus, h (y) -< cl, for all y in II, which completes the proof  of 
separation. 

On the necessity of (a), note that, if there exists a continuous linear 
function supporting Y at x, then C (Y, x) is contained in a closed half-space. 

To see that (b) is necessary and sufficient, note that the proof  of (b) in 
Theorem 2.1 holds: 

S = { z :  u ( z ) >  u(x)}(3 Y =  Q.  

Note  that S does not necessarily contain P+ here, since u may not be 
monotone  nondecreasing. 

R e m a r k  2.3. The condition (a) of Corollary 1 is equivalent to (a) of 
Theorem 2.1, when there is free disposal, i.e., when if y ~ Y and z <= y, then 
z ~ Y .  

In the following, in view of the conditions (b) of Theorem 2.1 and 
Corollary 2.1, we study necessary and sufficient conditions for continuity in 
HA of utility functions of a usual type in economics, given by a discounted 
sum of t ime-dependent  utility of consumption. The next result gives a 
complete characterization to the class of such functions that satisfy the 
continuity condition (b) of Theorem 2.1. First, we need more  definitions. 

Le t  H I  be the Banach space of all sequences x satisfying 

a~lx, l<co, 0<a < 1 ,  
t = l  

with the norm 

Il lf = A'tx l 
t = l  

Let  u(c, t) be a nonnegative real-valued function of two variables, for 
- co  < c < co, t = 1, 2 , . . . .  Assume that u is continuous with respect to c for 
all values of t. Then, u induces a real-valued map W on any real-valued 
function c(t) on {1, 2 . . . .  } by 

W(c)= ~ au(c(t), t) 
t = l  
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when this sum exists, u (c (t), t) represents ,  for  instance, a t ime-dependen t  
utility der ived f rom consumpt ion.  

P r o p o s i t i o n  2 . 1 .  

is i1" ilA cont inuous  iff 

The  real-valued funct ion 

W(c)= E a'u(c(t), t) 
t = l  

u(x, t)<-b(tl+~lcl 2, 
1 +  where  c~ is a positive number  and b ~ HA • 

iff 

P r o o f .  Note  that  
11. Ii~ 

n 
C - - - - >  C 

A t/2C n _.> A t/2C 

in 12. Also, c --> W(c)  is i[" I]A cont inuous  iff (a) d --> ;t -"u (A ~/2d, t) is continu-  
ous f rom 12 to li, with d(t) = A r/2c (t). By Ref. 11, Theo rems  2.1 and 2.3, pp. 
23 -28  and remarks  on page 28, a necessary and sufficient condi t ion for  (a) to 
be cont inuous  is that  

3, ~u (A -'/2d, t) <- a (t) + o~ Idi 2, 

where  a ( t )~ l [  and ~ is a positive constant .  Or,  equivalent ly,  

u(c, t)<-b(t)+o~icl 2 for  b ( t ) = A ~ a ( t ) ~ H ~  +. 

This completes  the proof .  

R e m a r k  2 . 4 .  

also, Hx D Ho. 
WIHo: Ho--> R is 
funct ion 

Let  0 -<- p -< A. Then,  

II. LI o Jl .]1~ 
f~ > f ~ f "  , f ;  

The re fo re ,  if W:HA-->R is !t'itA cont inuous,  when 
also H'IIo continuous.  The re fo re ,  for  all 0-<p_<A, the 

W(c) = E a'u(c(t), t) 
t = I  
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is U' ]lo continuous; or, equivalently, for all p --- A, the function 

W(c)= ~2 otu(c(t), t) 
t = l  

is Ha-continuous. 
Examples of functions which are l~-continuous and Ha-discontinuous 

can be constructed by considering functions which are essentially given by 
the it" 11o~ norm, which is strictly stronger than II" tla. For  instance, 

F(c) = sup (ct). 
t 

We now extend Arrow, Barankin, and BlackwelI (Ref. 2) and Radner 's  
results (Ref. 3) on approximation of nonnegative continuous competitive 
prices for efficient programs by strictly positive ones in Ha. The next result 
extends a theorem of Ref. 3, page 352, which is valid only for strongly 
compact convex feasible sets Y; here, we prove the result for It" lI~ bounded 
and closed convex feasible sets Y, which is a strictly weaker condition 
than that of strong compactness of Ref. 3. 

Theorem 2.2. Let  x be a maximal point in a convex closed [l" l[~ norm 
bounded set Y in H~-. Assume that Y satisfies one of the conditions (a) or (b) 
of Theorem 2.1. Then,  a price p such as that of Theorem 2.1 can be 
constructed so that Ilpll = 1, p - 0, and (x, p) is the limit of a net (x ~, p~) in 
Y x H *+ with the weak convergence on H * ,  such that, for all a, x ~ is 
maximal in Y, and it maximizes the value of p ~ on Y, and p~ -> 0. 

Proof.  We first show that, if Y CHa  is a closed and 1[. 11~o bounded set, 
then Y is Ha-compact.  Since Y is [l' [too bounded and closed, Y is weak* 
compact as a subset of looCHa. Let {x ~} be a sequence in Y. Then, there 
exists a subsequence {x m} such that x m -~ z weak* (Ref. 1) for some z ~ Y. 
Thus, x ~ ~ z, for each t. Also, for all t and m 

IxT'-ztl<-2N, 

where N is the bound for Y in 1]. I]~. Since 

lim ~ At=O, 
T ~ e o  t > T  

there exists a T~ such that 

Atx"-z t i2~4N 2 ~ At>e .  2 
t> T .  tz> T.  

Choose M such that, for m > M and all t-< T~, 

Ix7 -z,]2 <e/2TE. 
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Then 

E ~ ' i xT-z~ lZ<e /2 ;  
t<T~ 

and thus, for any E > 0, there exists an M with 

E~'txT-zti2<~, for m>M,  
t 

i.e., 

rl. II~ 
X m ~ Z .  

Let 

S ; {p ~ H* ,  liP!t, = 1 and p >-" 0}. 

By the construction in Theorem 2.1, the competitive price corresponding to 
the efficient program x can be assumed to be an element of the set & Note 
that the results of Lemma 1, 2, 3 of Ref. 3 hold also in our case. The 
evaluation map ~b: HA x S ~ R, &(y, p) = p(y) is continuous, when S is given 
the weak topology, and HA x S the corresponding product topology. 

The set 

Sq={p: p ~ S , p > - q }  

for some q >> 0 in H *  is a closed subset of S. Since S is closed, it is compact in 
the weak topology by Alaoglu's theorem, and therefore so is S e The proof of 
Lemma 3 in Ref. 3 holds also in HA, so that the rest of the proof of Ref. 3 is 
valid here. This completes the proof. 
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