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Auxiliary Problem Principle and Decomposition 
Optimization Problems 
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Abstract. The auxiliary problem principle allows one to find the 
solution of a problem (minimization problem, saddle-point problem, 
etc.) by solving a sequence of auxiliary problems. There is a wide range 
of possible choices for these problems, so that one can give special 
features to them in order to make them easier to solve. We introduced 
this principle in Ref. 1 and showed its relevance to decomposing a 
problem into subproblems and to coordinating the subproblems. Here, 
we derive several basic or abstract algorithms, already given in Ref. 1, 
and we study their convergence properties in the framework of infinite- 
dimensional convex programming. 
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1. Introduction 

Motivated by such works as those of Arrow-Hurwicz  (Ref. 1) in 1960, 
Takahara  (Ref. 2) in 1964, Lasdon and associates (Refs. 3 and 4) in 1965, 
and Mesarovic and associates (Ref. 5) in 1970, a plentiful literature has been 
and is still currently devoted to what we may call two-level or decomposition- 
coordination algorithms for various optimization problems. Recently, we 
presented an at tempt  to provide a unified view of this field (Ref. 6). We 
considered two simple principles to start with and derived a few basic 
algorithms from them. Several examples were given to illustrate the asser- 
tion that most  of . the  existing two-level algorithms can be considered as 
specializations of the previous basic algorithms to particular situations. 

The  main advantages of such an approach are the following. First, it 
reduces the so-called coordination principles or  techniques to a minimum 
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number of basic ones. Moreover, since classical algorithms (such as gradient, 
Newton-Raphson, Uzawa, etc.) can also be derived from the general 
formalism, we can bridge the gap between classical and decomposition 
algorithms. Although this abstract point of view, as is intrinsic in this kind of 
approach, may have the drawback of masking somewhat the practical issues 
of the decomposition-coordination approach (and thus may require some 
time for the reader to become familiar with it), this effort pays off in that 
many assumptions currently used by authors appear clearly unnecessary. In 
particular, we refer to separability assumptions, such as additive cost and 
additive constraints (see, e.g., Refs. 3 and 4). Hence, some coordination 
methods can be immediately extended to less restrictive situations. For 
example, the celebrated price coordination principle (Ref. 3) or interaction 
balance principle (Ref. 5) can be used in nonseparable problems as well. The 
last consequence of our systematic approach is that it gives guidelines for 
imagining new basic schemes, possibly more suited to particular problems. 

Since all these issues have been discussed in Ref. 6, we shall not come 
back to them in the following sections. However, along the way, some of 
them will be briefly alluded to. Our main purpose here is to introduce once 
again the two principles that are the roots of all the basic algorithms and then 
to discuss these algorithms from the mathematical point of view, that is, 
to give the theorems of convergence and the proofs which were missing 
in Ref. 6. 

The frame will be that of convex mathematical programming in possibly 
infinite-dimensional, reflexive Banach or Hilbert spaces. This includes most 
of the cases of interest in deterministic optimization, in particular optimal 
control problems of linear systems.: The restriction to the convex case 
allows us to state necessary and sufficient optimality conditions and also to 
obtain proofs of global convergence (i.e., starting from any initial guess). Of 
course, this does not prevent anybody from using the algorithms in practical 
nonconvex cases, since, if convergence results, then necessary conditions of 
overall optimality are generally met in the limit. 

In the rest of the paper, the so-called auxiliary problem principle is 
introduced first, and a first family of algorithms is derived. It will be 
explained how they can be used for parallel decomposition, that is, when a 
problem is decomposed into subproblems which can be solved independently 
at each coordination step. More widespread and related to sequential 
decomposition is the relaxation principle. Combination of both principles 
yields relaxed algorithms. While, in this first part, only minimization prob- 
lems on feasible subsets are considered, the second part extends the prin- 
ciples and algorithms to saddle-point problems and, more specifically, to 

2 Linearity is imposed by the convexity assumption. 
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minimization problems with explicit constraints (which, by duality, yield 
saddle-point problems for the Lagrangian functionals). All the proofs of 
convergence are collected in the Appendix. In the conclusions, we underline 
the basic assumption making the auxiliary problem principle, and thus 
parallel decomposition, possible. This suggests future directions of research 
when this assumption is not met. 

2. Auxiliary Problem Principle. First Family of Basic Algorithms 

2.1. Preliminaries. For convenience, we gather here some defini- 
tions, notation, terminology, and auxiliary results. Let 071 be a reflexive 
Banach space, which we sometimes assume to be a Hilbert space. 071" 
denotes the topological dual space of continuous linear functionals on 071. If 
u ~ 071 and p ~ q/*, then (p, u) denotes the scalar which results from the 
action of p on u. If 071 is a Hilbert space, 071" is identified to 071 by a standard 
procedure, and ( . ,  .) also denotes the scalar product in 071. 0/ff is a closed, 
convex subset of q/, and II denotes the projection onto q/r Let J be a convex 
functional on 071. 

Assumption (A). For a given q/t, we say that Assumption (A) is met 
for J if, for all sequence {u k lk ~ N, u k ~ q/e} such that IluklI~ + ~  (if any), 
then J(uk)~  +~. 

Of course, Assumption (A) is met for every J if q/r is bounded. The 
symbol J'(u) denotes the Gateaux derivative (G-derivative) of J at u; that is 
(see Ref. 7), we assume that the limit of (J(u +eh)-J(u)) /e ,  when e ~ 0, 
exists and is equal to (J'(u), h) for all h, where J'(u) ~ °71". If J is defined on a 
product space 071 × ~, J ' (u ,  v) denotes the partial derivative of J with 
respect to the first variable. 

The derivative is strongly monotone with constant a, if 3a  > 0 such that, 

for all u, w ~q/, (J ' (u)-J '(w),  u-w)>-altu-wl[ ~. (1) 

The derivative is Lipschitz with constant A, if 3A > 0 such that, 

for all u, w ~ q/, [ ] J ' (u) -J ' (w) l l ,  ~Allu - wll, (2) 

where II" H. is the classical norm of operator in 071". 

Lemma 2.1. If Y' meets (1), then 

r--  ~ _.~. 1 II forallu, w~q/, J(w)-J(u)>-(J'(u),w u) ~altu-wl[ 2. (3) 
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If J '  meets (2), then 

for all u, w~ql ,  J (w) -J (u)<-(J ' (u ) ,  w-u>÷ Allu-wll 2. (4) 

The proof is omitted. See Ref. 7 for a proof of (3). 
Notice that, if (1) holds, then (3) implies that the sum of J and any 

Lipschitz functional on u meets Assumption (A). 
We consider the so-called master problem [Problem (MP)]: 

(MP) min J(u) + Jl(u), 
ue,~f 

where J1 is another lower semicontinuous convex functional which is not 
assumed to be differentiable. Notice that J is continuous, since we assume 
that it is G-differentiable. If Assumption (A) is met by J + J1, then a solution 
u* of Problem (MP) exists. Moreover,  it is unique when (1) holds. 

2.2. Auxiliary Problem Principle 

Lemma 2.2. 
positive constant, and let u* be a solution of 

rain G(u)+J1(u ) .  
u ~  f 

Assume that 

G'(u*) = J ' ( u * ) .  

Let G be a convex, G-differentiable functional, let E be a 

(5) 

(6) 

Then, u* solves Problem (MP). 

Proof. A necessary and sufficient condition for a solution u* of 
Problem (MP) is that (see Ref. 7) 

u * ~  r and, for a l lu~q / r ,  (J ' (u*) ,u -u*)+J l (u ) -J l (u*)>-O.  (7) 

One can write the same kind of condition for Problem (5) and derive (7) 
using (6) and e > 0. []  

For  any v ~ q/r, any e > 0, and any convex, G-differentiable functional 
K, consider the following functional: 

GV : u ~--~ K (u)  + ( E J ' ( v )  - K'(v),  u). (8) 

We check that 

(G~)'(v) = eY'(v), (9) 

which looks like (6). Hence, if v happens to be a solution of (5), with G v 
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replacing G, then v is a solution of Problem (MP). This suggests the 
following algorithm of the fixed-point type. 

Let a sequence of functionals {K k, k ~ N} and positive numbers {e k, k 
~1} be chosen. 

Algorithm 2.1 

(i) Choose u°~ q/r Set k = 0. 
(ii) Solve the auxiliary problem 

(AP k) min Kk(U)+(EkJ'(uk)--(Kk)'(uk),  U)+ekJI(u). 
u~ORf 

Let u T M  be a solution. 
(iii) Stop if llu k --uk+ll[ or [(J+J1)(uk)-(J+J1)(uk+l)l is below some 

desired threshold. Otherwise, make k ~ k + 1, and return to step (ii). 

Notice that, if u°~ °Rf, then u 1 can be relabeled u °. The existence and 
even uniqueness of a solution to Problem (AP k) can be ensured by a proper 
choice of K k. Moreover, we can take advantage of this choice to obtain a 
good numerical conditioning of Problem (APK); that is, (Kk)  ' c a n  be 
strongly enough monotone. Finally, assuming a decomposition 

0~ = 0~1 X "  ' • X 0~N, 0~/f = ~{ X' • ' X ¢/~, (10) 

and provided that J~, the nondifferentiable part, be additive with respect to 
this decomposition, we can also choose K k additive, so that Problem (AP k) 
splits into N independent problems. As one sees, we can give to Problem 
(AP k) many special features by choosing K k. This is why we call it a core. 
Actually, this choice is subjected to rather mild conditions as indicated in the 
theorem below. In Ref. 6, we gave some references where the auxiliary 
problem principle, which is not really new, appeared in less general forms 
than that presented here. 

Theorem 2.1. We assume the following: 

(i) Assumption (A) is met for J +J1; 
(ii) J is convex, with a G-derivative Lipschitz with constant A [see 

(2)] on q/f; 
(iii) Yl is convex, lower semicontinuous, and such that Jl(u) + mllu l l  r is 

bounded from below on ~f ,  for some m > 0  and r < 2 ;  
(iv) the functional K k are convex, with G-derivatives strongly mono- 

tone, with constant b k and Lipschitz with constant B k on q/r 
Moreover, 3b > 0, ::IB > 0, such that, 

for all k ~N, bk>-b, Bk<_B. (11) 
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Then, a solution u* of Problem (MP) exists, as well as a unique solution 
u k+l of Problem (AP k) for all k. If the e k are such that 

a<--ek<--2bk/(A+[3), for some a > 0  and/3 >0 ,  (12) 

then the sequence {(J+J~)(uk)} is strictly decreasing (unless u k= u* for 
some k), and it converges toward (J + J~)(u*). Every weak duster  point of 
the sequence {u k} (at least one exists) is a solution of Problem (MP). Hence, 
the sequence {u k} weakly converges to u* if this is unique. 

Moreover, assume that 
(v) J '  is strongly monotone with constant a on q/( 

Then, {u k} converges strongly toward the unique u*, and we have the 
a posteriori error estimation 

llu k÷~- u*ll-< (1/ a )(Bk/ e k + A )l lu k ÷ l  - ukll. (13) 

2.3. Other Algorithms and Remarks. A first way of modifying 
Algorithm 2.1 is the following. If the core Kk( . ) is changed into K k ( ' )  + 
3,kll ' ii~, 3,k >0 ,  and E k is taken equal to 1, then one gets an additional term 
3,kllu -ukll in Problem (Apk). The convergence can then be obtained with 

k 3' large enough. 
Another way, still with e k = 1, is the following algorithm. 

Algorithm 2.2. Here, Step (ii) is replaced by the follow up steps. 
(ii-a) Solve Problem (Apk), with e k = 1. Let a k+l be a solution. 
(ii-b) Set 

k + l  pk/~k+l+(1 --  pk)uk, (14) U = 

with pk > 0 and such that u k+l ~ ql r (pk <_ 1, if necessary). 
When pk < 1, this is called under-relaxation ; and, when pk >_ 1, this is 

called over-relaxation (see Ref. 8). Algorithm 2.2 generates sequences 
generally different from those of Algorithm 2.1, but we have the following 
theorem. 

Theorem 2.2. With Assumptions (i) to (v) of Theorem 2.1, the same 
conclusions hold for Algorithm 2.2, if the sequence {pk} meets the condition 
(12) when J1 is not present and, in addition, if pk _ I when J1 is present. The 
a posteriori error estimation is now 

II~ k÷l - u*l[- (1/a)(B k + m)ll~ k÷l - uk]]. (15) 

Remark 2.1. To see that p k must not be taken greater than I when the 
nondifferentiabte part J1 is present, consider the case when J1 is the indicator 
function of a feasible convex set (Rockafellar, Ref. 9). 
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As previously indicated, our main motivation for considering the 
auxiliary problem principle and the resulting algorithms is in the case when a 
decomposition such as (10) is given. Moreover, we must assume that the 
nondifferentiable part J1, when it exists, is additive with respect to (10). 
Then, with an additive core, Problem (AP k) turns out to be made up of 
independent subproblems that may be solved in parallel if one has N 
processors at his disposal. Several examples are given in Ref. 6, with 
systematic ways of deriving additive cores from J. 

We shall limit ourselves here to the case when o-//is a Hilbert space and 
the core Kk(  • ) is ½ll" II 2. Then, Algorithm 2.1 yields, assuming J1 = 0, 

k+l 
u = I I ( u k - - E k J ' ( u k ) ) ,  (16) 

namely a projected-gradient algorithm. Also in Ref. 6, we recovered the 
Newton-Raphson algorithm for a twice-differentiable functional J. 

3. Relaxation and Relaxed Algorithms 

Relaxation is a classical principle in optimization to convert a problem 
into a sequence of subproblems solved sequentially (that is, each partial 
solution is immediately used in the next subproblem). Assuming (10), at step 
tN + i, one solves: 

min J ( u  ~+1 t+l t t 1 . . . . .  U i - - l ,  ul, ui+l . . . . .  uN),  (17) 
ui~° l l . f  i 

yielding t+l U i  • 

This principle can be combined with the auxiliary problem principle in 
the following way. For the sake of notational simplicity, we assume that 
J1 - 0, that K and e are chosen independent of k, and that q/is decomposed 
into only two components, which we now call q / a n d  7/'. That is, Problem 
(MP) is now the following Problem (MP'): 

(MP') min Y(u ,  v) ,  with u ~ q/i C °l/, v ~ ~F r C 7/'. 

Algorithm 3.1 

(i) Choose (u °, v °) ~ ~ r  x ~r. Set k = 0. 
(ii) Solve the following auxiliary problem: 

(AP,  k) min K ( u ,  V k ) + ( E 1 J ' ( u  k, V k) , k -Ku(u ,vk),u). 
u ~ l  f 

Let u k+l be a solution. 
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(iii) Solve the following auxiliary problem: 

(Apk) m i n K ( u k + l , v ) +  . . . .  k+l .~, .  k+l ~e~.l~tu , v  k ) - ~ o ~ u  , v k ) , v ) .  
v ~  f 

Let v k÷l be a solution. 
(iv) Stop if some degree of accuracy is reached. Otherwise, make 

k ~ k + 1, and return to step (ii). 

Notice that we can choose E~ different from e2, since Lemma 2.2 can be 
generalized to the situation (10) when (6) holds for each partial derivative 
with a different El. 

Theorem 3.1. We assume that J is jointly convex in (u, v), and its 
G-derivative is strongly monotone with constant a on q/rx  ~r. The map- 
pings u ~--~J" (u, v), v ~--~J" (u, v) are Lipschitz with respective constant AI  
(independent of v), A12, and A2 (independent of u). The restricted map- 
pings u ~--~K(u, v) and v ~ K ( u ,  v) are separately convex, respectively, in u 
for all v and in v for all u ; their G-derivatives are strongly monotone with 
constants bl and b2, respectively, and Lipschitz with constants B1 and B2. 
Then, if 

0 < ei < 2bJAi ,  for i = 1, 2, (18) 

the sequence {u k, v k} generated by Algorithm 3.1 converges toward the 
unique solution (u*, v*) of (MP'), and {J(u k, Vk)} monotonously decreases. 

Notice that we have no assumption on K jointly in (u, v), whereas We 
assume J to be jointly convex. Assume now that J meets Assumption (ii) of 
Theorem 2.1 and K meets Assumption (iv) of the same theorem. Then, we 
dearly have that 

A - m a x  (A 1, A2) and b -< min (bl, b2). 

Hence, the upper bound of E in Theorem 2.1 is smaller than the upper 
bounds of E1 and 62 in (18). This gives a heuristic comparison between 
Algorithm 2.1 and its relaxed version, Algorithm 3.1. It is well known that 
the latter requires less steps to achieve a desired accuracy. However, in this 
case, the partial minimizations are sequential, so that no parallel compu- 
tations are possible as it is with Algorithm 2.1 when, for example, we 
consider the additive core derived from the core K used in Algorithm 3.1 via 
the rule 

K k : ( u ,  V)~-->K(u, v k) + K ( u  k, v). (19) 

Thus, time savings may occur if a multiprocessor is used for the implemen- 
tation of Algorithm 2.1, despite its slower convergence. Further aspects of 
parallel and sequential decomposition algorithms are discussed in Ref. 6. 
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4. Auxiliary Problem Principle in Saddle-Point Problems 

Let  ~ be a functional on q / x  ~ (two reflexive Banach or Hilbert  
spaces), such that u ~--~(u, p) is lower semicontinuous and convex for all p 
and p ~--~dP(u, p) is upper semicontinuous and concave for all u. 

Let  ogf C # / and  ~ C ~ be closed, convex subsets. The master problem 
now is to find (u*, p*) e q/r x NI, such that 

for all ueqff, p~r,~(u*,p)<_Cb(u*,p*)<_Cb(u,p*). (20) 

A solution exists under mild additional assumptions (see Ref. 9). Assume 
now that G-derivatives with respect to u and p (separately) exist. Then, the 
following variational inequalities are equivalent to (20): 

f o r a l l u ~  r, (~'(u*,p*), u-u*)>_O, 

f o r a l l p ~  r, (~'v(u*,p*), p-p*)<-O. 

We generalize Lemma 2.2 as follows. 

Lemma 4,1, Let  F be a functional of the same kind as dp. Let  (u*, p*) 
be a saddle point of F on G//r x ~ ,  and assume that there exists E > 0 and 
p > 0, such that 

r ' ( u * ,  p*) ' * =ecb.(u ,p*) ,  r'v(u*,p*)=pcb'p(u*,p* ). 

Then, (u*, p*) is also a saddle point of qb on the same feasible sets. 
The  proof is straightforward. Notice that we could have added a 

nondifferentiable part ~l(U)+qb2(p) to qb and, consequently, Eqbl(u)+ 
#qb2(p) to F. Several other tricks of this kind could also have been consi- 
dered. In one instance hereafter,  we shall use an additional cb~(u,p) 
differentiable in p, but not in u. As previously, Lemma 4.1 suggests an 
iterative algorithm by choosing a core ~(u,  p), that may depend on the step 
k, and by adding linear modifications in u and p to it in order  to force the 
solutions of the successive auxiliary problems to converge toward that of 
(20). However,  due to the presence of two variables, namely u and p, we may 
or may not use the relaxation principle. In the former case, we shall obtain 
successive minimization and maximization problems, while in the latter case 
we shall obtain a sequence of saddle-point problems. We begin with the 
latter case. 

Algorithm 4.1 

(i) Choose (u °, pO) ~ agr × ~ .  Set k = 0. 
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(ii) Solve the following auxiliary problem: find the saddle-point 
(uk+l, pk+l) Of the following functional on q/r× ~f :  

+(e~.(u ,p ) - % ( u  ,p ), u} (u,p)'-~(u,p) , k k , k k 

+ {p~;(u k, pk) _%(u k, pk),/7). 

(iii) Stop if some degree of accuracy is reached. Otherwise, make 
k ~ k + 1, and return to Step (ii). 

As ~,  the quantities e and O might depend on k. If q/ and ogf are 
decomposed as in (10) and/or N and ~ r  are similarly decomposed, we may 
consider relaxed versions of Algorithm 4.1 with respect to these decom- 
positions. Notice that this is not the relaxation scheme considered in the 
following algorithm. To introduce it, assume first that • takes the form 
• l(u) +~2(P). Then, the auxiliary problem above splits into two parallel 
problems: one minimization in u and one maximization in p. We now 
consider sequential problems of these kinds. 

Algorithm 4.2. In Algorithm 4.1, replace Step (ii) by the following 
two steps. 

(ii-a) Solve the auxiliary problem 

(AP k) min XIt(u, pk)+{EdP~(uk, pk)--~!fu(uk, pk), U). 
u ~  f 

Let u k÷l be a solution. 
(ii-b) Solve the auxiliary problem 

(AP k) max ~(u  k+l, p)+(pd~'p(u k+l, pk)--~'p(U k+l, pk), p}. 
p E ~  f 

Let pk÷l be a solution. 
Notice that Problem (AP~) cannot be solved before Problem (AP~) has 

been solved. This is what we mean by sequentialproblems. If u k+~ is replaced 
everywhere by u k in Problem (Apk), then we obtain an algorithm of the type 
of Algorithm 4.1, with the step-dependent core 

q~k :(u, p ) ~  ~(u ~, p) + qr(u, pk). 

We shall not study Algorithms 4.1 and 4.2 in the general form given 
above. Instead, we shall apply these algorithms to the particular case when qb 
is the Lagrangian functional coming from a constrained optimization prob- 
lem. Moreover, we shall retain particular choices of cores ",I t in order to 
ultimately recover known algorithms and extend them. Corresponding 
respectively to Algorithm 4.1 and Algorithm 4.2, so-called one-level 
algorithms and two-level algorithms are examined in the following sections. 
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5. One-Level Algorithms in Minimization Problems 
with Explicit Constraints 

5.1. Preliminaries. As in Section 2.1, we gather here a few facts to 
make the paper sufficiently self contained and to introduce some notation. 
So far, we have considered implicitly constrained problems by introducing 
feasible sets (such as q/t). However,  when applying our results to decom- 
position, we have restricted th~se implicit constraints to the form (10) in 
order  to avoid any coupling through them. The motivation behind consider- 
ing explicit constraints is to deal now with possibly coupling constraints. We 
thus consider the master problem. 

rain J(u), (21-1) 
u ~  f 

(MP) 

subject to 

®(u) = 0 or ®(u) ~ - C ,  (21-2) 

where J is the same as previously and O is a mapping from q / t o  a Hilbert  
space c# supplied with a closed convex cone C (the positive cone) in case we 
need to consider inequality constraints. The interior C of C is assumed to be 
nonempty. Notice that, at least formally, we can imbed the case of equality 
constraints by taking C--{0}. 3 In this case, applying the definition of the 
conjugate cone C* C c~, (see Ref. 10) yields C* = c~.. This is well suited for 
the duality theory, that is, when a multiplier p ~ C* is associated with the 
constraints to define the Lagrangian functional 

L(u, p) =J(u)+(p, O(u)), (22) 

since p ~ c~, in the equality case. The mapping ® is assumed to be convex, in 
the following sense: 

for all u, w ~ q/, for all o~ ~ [0, I], 
(23) 

o~O(u) + (1 - a ) O ( w ) -  O(~u +(1 - ~ ) w )  ~ C. 

This implies that, for all p c C*, the functional u ~ ( p ,  O(u)) is convex in the 
classical sense. Moreover,  we assume it to be lower semicontinuous. Notice 
that, in the case C = {0}, (23) means that 0 is affine. 

It is well known (Ref. 10) that, if L has a saddle point (u*, p*) on 
q f f x C * ,  then u* is a solution of (21). Conversely, in the convex case 
considered here, and provided that some so-called constraint qualification 
condition is met, if u* is a solution to (21), then there exists p* s C* such that 
(u*, p*) is a saddle point of L. In our case, a possible constraint qualification 

3 Of course, C is now empty,  but  this does not mat ter  in the equali ty-constrained case. 
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condition is the following (see Ref. 10): 

3uO~ q/r, such that @(u°)c -C.  

We shall assume this to hold and shall search for the saddle point of 
L. Notice that we could also have considered augmented Lagrangian 
functionals (see Ref. 11). 

5.2. One-Level Algorithms. We apply Algorithm 4.1 with • = L, 
~ r  = C*, and 

• (u, p) a__ K(u)  + (p, Pt(u)), (24) 

where K and lq are mappings of the same kind as respectively J and O. One 
can check that the solution (u k+l, pk+l) of the auxiliary problem (if any) is 
also the solution of a constrained optimization problem given hereafter. As 
previously, to ensure that the latter problem is equivalent to the former, it is 
required that some constraint qualification condition hold. This is something 
difficult to guarantee at such a level of generality all along the algorithm. For 
the time being, we assume that this equivalence holds without going into 
details. More precise assumptions are considered in the next theorem. 

Algorithm 5.1. In Algorithm 4.1, set qb=L, ~ r =  C*, and replace 
Step (ii) by the following step: 

(ii) Solve the auxiliary problem 

min K ( u ) + ( e J ' ( u k ) - K ' ( u k ) ,  u )+(p  k, (e@'(Uk)--lT(uk)) " U), (25-1) 
u e ~  f 

subject to 

fl(u ) + O0(u k ) - fl(u k) e -C .  (25-2) 

Let u k+l be a solution, and let pk+a be an optimal multiplier for the 
constraint (25-2). 

The theorem of convergence will be restricted to a rather particular 
case, namely, 0-//r=o-//, C={0} (equality constraint), J, K quadratic 
functionals, and O, fl affine. Let 

J(u) = ½(u - f ,  A (u  - f ) ) ,  
K(u)  1 =~(u - g ,  B(u  -g) ) ,  

®(u)=D(u  - d ) ,  lq (u)=E(u  - e ) .  

Here, A, B are self-adjoint, continuous, linear operators on the Hilbert 
space q/; D, E are continuous linear mappings from q/ to c¢; and f, g, d, 
ecq / .  
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Theorem 5.1. Assume that K and J are strongly monotone and that D 
and E are surjective. Under  the assumption that 4 

DA-1E* + EA-1D*-DA-1BA-1D*i s s t rong lymono toneon  ~ *, (26-1) 

the parameters • and p in Algorithm 5.1 can be chosen such that P = • and 

B - eA/2  is strongly monotone on 0//, (27-1) 

D A - ~ E * + E A - 1 D * - D A - I ( B + e A / 2 ) A - 1 D *  (27-2) 

is strongly monotone on c~.. 

Then, for any given (u °, pO), the algorithm generates a unique sequence 
{(uk, pk)} which converges to the unique solution (u*,p*) of the master 
problem (21). 

Remark 5.1. Assumption (26-1) implies that 

DA-1E  * + EA-~D * is strongly monotone.  (26-2) 

One can say that this latter condition is also sufficient, because, if it is met, 
one can make use of ,~E instead of E,  with A positive and large enough for 
(26-1) to be met. Essentially the same effect could have been obtained by 
taking p ~ •, provided that • is replaced by p in the last term of (25-1) (this 
can be justified easily). We shall deal with condition (26-2) later. 

The proof given in the Appendix follows closely that given in a previous 
paper by Cohen and Joalland (Ref. 12). Let  us comment on assumption 
(26-2) in the case when we attempt to use this algorithm for decomposition- 
coordination purposes. We consider a decomposition of ~ as in (10), but we 
also consider a decomposition of the space ~ = ~*  (i.e., eventually c¢ into 
c¢1 x . . .  x c~N), and we must choose a core ~ in (24) assuming an additive 
form with respect to 

{(ui, Pi) e q/i × c¢/*, i = 1 . . . . .  N}. 

By doing so, Problem (25) splits into N independent problems [provided 
that °dt is also as in (10) and, similarly, the positive cone C is equal to 
C1 x . . ,  x CN, where Ci is a closed convex cone in ~i, which we assume]. 
Notice that the ith subproblem involves the variable ui and a constraint 
space % only (that is, the decomposition of c~ is in fact a distribution of the 
constraints among the subproblemsS), thus involving a multiplier pi e C*. 

The asterisk denotes the adjoint operator. 
5 In Ref. 6, we further discuss the connection between the decompositions of 0//and ~ and the 

fact that the latter can have less than N component subspaces. 
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Let  us consider more specifically the case in Theorem 5.1. Then, 
for the decomposition to occur, B must be block diagonal with 
respect to the decomposition of q/, and E must be block diagonal 6 
with respect to the decompositions of q / and  ~. This structural constraint of 
choosing a block diagonal E interacts with condition (26-2) in a way which is 
not fully studied at the present time. If D itself is nearly block diagonal (that 
is, the off-diagonal terms are small), one expects that (26-2) can be met under 
the structural constraint on E, since, if D were exactly block diagonal, one 
could choose E = D and meet  (26-2). This case is the case of weak coupling 
through the constraints. However,  this is not the only situation, and we give 
hereafter an example of an arbitrarily large coupling through D, which 
nevertheless allows us to meet (26-2). For this purpose, we use a trick 
borrowed from Sundareshan (Ref. 13). Assume that D can be written as 
E+ESA, where E is a self-adjoint, surjective operator  from q / t o  c~, S is 
skew symmetric in q/(S* = - S ) ,  and A is the same as in (26-2). Then, by 
choosing E in (26-2) precisely as E above, and by calculating the expression 
in (26-2), one finds 2EA-1E *, which is coercive, since E is surjective. Notice 
that S (which generally introduces a coupling through the constraints) can be 
multiplied by a positive, arbitrarily large number without altering the 
conclusion. 

In Ref. 6, we show how quasilinearization algorithms in optimal control 
can be imbedded in Algorithm 5.1, as well as the generalized Takahara 
algorithms (Refs. 2 and 12) in decomposition. Also, a coordination 
algorithm, previously proposed in Refs. 14 and 15, resting upon the prin- 
ciple of resource allocation (Geoffrion, Ref. 16) can be derived from 
Algorithm 5.1 (see Ref. 6). 

6. Two-Level Algorithms and Price Coordination in Nonseparable Cases 

We now make use of Algorithm 4.2 to find the saddle point of (22), with 
the following choice of the core ~ :  

• (u, p) ~ K(u ) -  ½tlpt[ 2. (28) 

However,  we introduce the following feature: the second term in the 
right-hand side of (22) will be considered as nondifferentiable in u and will 
be dealt with as we did with the part J1 in Algorithm 2.1. For  this purpose, we 
write a necessary and sufficient condition for the right-hand inequality of 

6 In case c¢ has less than N component subspaces (see Footnote 5), the concept of a block 
diagonal E needs some appropriate arrangement, which, however, is straightforward. 
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(20), with L replacing d~, in the following form: 

for all u ~ ql ~, (J'(u*), u - u*}+(p*, 19(u)- 19(u*))__> 0. 

Eventually, we get the following algorithm. 

(29) 

In Algorithm 4.2, set qb =L,  ~ r =  C*, and replace Algorithm 6.1. 
Steps (ii) by the following steps. 

(ii-a) Solve the following auxiliary problem in u: 

min K (U) +(EJ'(u k)-- K'(uk),  u) + E(p k, ®(U)). (30) 
u ~  f 

Let u T M  be a solution. 

(ii-b) Update p according to 

pk÷l = p (pk  +pO(uk+l)), (31) 

where P is the projection onto C* [P = L if C = {0}] and p > 0. 
Notice that (31) gives the explicit solution of the auxiliary problem in p. 

Theorem 6.1. We still assume that J (respectively, K) is convex, with 
a G-derivative strongly monotone with constant a (respectively, b) and 
Lipschitz with constant A (respectively, B). The mapping O is convex [that 
is, it meets (23)] and Lipschitz with constant . We assume that a saddle point 
(u*, p*) of L exists; then, u* is unique. Then, for k >0,  g k + l  exists and is 
unique; hence, pk+l is well defined. And, if E and p meet the following 
conditions: 

O<E<-b /A  and O < p < 2 a / r  2, (32) 

the sequence {u k} generated by Algorithm 6.1 converges toward u*. The 
sequence {pk} remains bounded, and any weak cluster point/~ (at least one 
exists) is such that (u*, p) is a saddle-point of L. 

By choosing K =J,  ~ = 1 in (30), Algorithm 6.1 turns out to be the 
Uzawa algorithm. Now, if one chooses 

K(u)  1 2 = llull, 
if q/r = q/, and if t9 is anne,  then the solution of (30) is given by 

t k u T M  = u k - e L , ( u  , pk); 

that is, we recover the Arrow-Hurwicz algorithm (see Ref. 7). 
Notice that Theorem 6.1 then gives a proof of convergence for this 

algorithm when J is convex (as far as the author knows, J is generally. 
assumed to be quadratic when dealing with such a proof in the literature, see 
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Ref. 7). Even more, we have generalized the algorithm to the case q/r ¢ q/ 
and to a large class of cores K. 

From the point of view of decomposition, assuming (10), it is well 
known that the Uzawa algorithm is the basis of the so-called price coordina- 
tion principle (Ref. 3) or interaction balance principle (Ref. 5). However, this 
requires that J and O assume additive forms with respect to the decom- 
position (10). Algorithm 6,1 provides an extension of this method to the case 
of a nonadditive Z One then chooses an additive K, and (30) splits into N 
independent problems. However, when O is also nonadditive, one must use 
the following algorithm, assuming O to be differentiable. 

For the purpose of being able to give a proof of convergence, we shall 
also modify (31) using the following definitions. Let 

~R = {p I]lpll-< R}, 

where R > 0, and let PR be the projection onto C* • ~R. 

Algorithm 6.2. In Algorithm 6.1, replace (30) and (31) by 

min K (u ) + ( eJ ' (uk ) -  K'(uk) ,  u } + e{p k, ®'(uk) • u ), 
ueORf 

k + l  p =PR(pk+pO(uk+I)). 

(33) 

(34) 

Remark 6.1. 

and second, 

The computation of (34) can be made in two steps. First, 
k + l  q = p(pk  +pO(uk+l)); 

k + l  p = [min (1, R/llqk+lll)]q k+'. 

Remark 6.2. If O is affine (and thus also additive with respect to a 
possible decomposition of u), problems (30) and (33) are equivalent. In this 
case, Algorithm 6.1, which is simpler, will be preferably used. 

Theorem 6.2. We consider the assumptions of Theorem 6.1 and these 
additional ones: O', the G-derivative of ®, exists and meets the following 
condition: 3 T ~ C, such that, 

for all u, w ~ °ll r, (®'(u)-®'(w)) .  (u - w ) - I l u  -wll=T  -C. (35) 

If R is large enough for some optimal p* to belong to ~R and if 

O<,<-b/(A+RIITII) and 0 < p < 2 a / r  2, (36) 

then Algorithm 6.2 generates a well-defined sequence {u k, pk}, for which 
the conclusions of Theorem 6.1 hold true. 
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Remark 6.3. The property (35) can be derived from a more classical 
one when ~ is finite dimensional (say, R r) and when C is the classical positive 
cone of this space. Then, let ®i map q/into the ith component of R r, if ®~ is 
Lipschitz with constant T~; then, T t= (7'1 . . . . .  T,.) meets (35). 

Remark 6.4. Tliere is some difficulty in using Theorem 6.2, since one 
would attempt to take a very large R in order to have a reasonable chance 
that some p* (unknown) does belong to ~R ; but this forces one to choose a 
very small E, according to (36), and this is intuitively not favorable for the 
convergence speed. However, one wonders to what extent these sufficient 
conditions are also necessary and, moreover, whether the sequence {pk}, if 
generated by (31), should not remain bounded without using the additional 
projection on ~R as in (34). 

As already discussed, Algorithm 6.2 and Theorem 6.2 provide an 
extension of the Arrow-Hurwicz algorithm when a//r is not 0-//, j is not 

lU2 quadratic, O is not affine, and K ( u )  is not Ell It • From the decomposition 
viewpoint, it provides an extension of price coordination to the case when 
both J and ® are not separable. 

7. Discussion and Conclusions 

Motivated by the decomposition-coordination algorithms, we have 
been led to the auxiliary problem principle, which provides a unified 
approach to the plentiful literature devoted to the topic in the last fifteen 
years (and especially after 1970). This has been more extensively discussed 
in Ref. 6. However, it is important to notice that the relevance of the 
auxiliary problem principle to this field stems from the introduction of an 
additional feature, namely, the choice of additive cores (with respect to some 
decompositions of the spaces involved). Without this feature, the auxiliary 
problem principle nevertheless has its own interest, since it has allowed us to 
recover and to extend some well-known algorithms, such as projected 
gradient, quasilinearization, Uzawa, Arrow-Hurwicz, and so on. Generally 
speaking, it allows one to replace the master problem by a sequence of 
auxiliary problems and, taking this opportunity, to give particular desirable 
features to the latter problems [well conditioning, see Gabay-Mercier 
(Ref. 17); decomposability, etc.]. It may also provide a framework for 
studying discretization or finite-element methods, although this task has not 
yet been tackled. 

Hence, classical and decomposition algorithms are imbedded in the 
same theory, which thus provides a link between the former and the latter 
types of algorithms. Also, the approach by basic algorithms not only allows 
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one to give general proofs of convergence for a large class of algorithms dealt 
with simultaneously, but it gives systematic guidelines for designing new 
algorithms. Notice, for example, that we have used a very narrow part of the 
potentiality of Algorithms 4.1 and 4.2 when applied to (22), since we have 
limited ourselves to the rather particular cores, respectively, (24) and (28). 
Even in this restricted class, we outlined in Ref. 6 how to mix Algorithms 5.1 
and 6,1 (or 6.2) in one single algorithm to obtain a new algorithm dealing 
with two sets of constraints differently. Since the possibilities of choices for 
cores and of combinations of the above basic algorithms are almost 
unlimited, one must wait for motivations arising from particular applications 
before going further in these directions. 

As far as decomposition-coordination is concerned, we shall not discuss 
their advantages in detail in this paper (see Ref. 6). Let us just say that 
sequential decomposition (that is, relaxed algorithms) seems to be useful for 
solving problems of a size larger than that one can deal with using the largest 
computer facilities available at the present time [especially in dynamic 
programming methods; see Joalland-Cohen (Ref. 18), for example]. Notice 
that we could also have discussed relaxed versions of Algorithms 5.1, 6.1, 
6.2, as we did for Algorithm 2.1. Parallel decomposition may be a way of 
achieving fast computation in online situations (arising, for example, in 
process control), provided that ad hoc tools be used (for example, multi- 
microprocessors). We lack experience in this field. 

However, the main advantage of the auxiliary problem principle seems 
to be that it makes clear what makes decomposition possible in nonsepar- 
able situations. As a matter of fact, when looking at (8), we noticed that, if K 
is chosen as an additive functional with respect to (10), then the functional 
G ° is also additive. This is because the coupling introduced by J is removed 
by taking a linear approximation of this functional. But this is possible, 
because we have assumed that J is Gateaux differentiable. Even subdiffer- 
entiability (and so existence of directional derivatives, but no linearity of 
these derivatives with respect to the directions) would not have sufficed. One 
can see this by several ways. Recall that, for a subdifferentiable J, the 
derivative of J at v in the direction u can be obtained by 

DJ(v; u)=  max (g, u). 
g~SJ(v) 

If this expression were to replace (J'(v), u) in (8), it would not be separable 
with respect to a decomposition of u as in (10), and the auxiliary problem 
would no longer split into independent subproblems. 

Another way for looking at the same phenomenon is to recall that for a 
non-G-differentiable functional being stationary at a point in the directions 
of component subspaces [as given in (10)] does not imply that the functional 
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is indeed stationary in all directions. For example, let us consider the 
following functional on ~2: 

J : (u t ,  u2),--> max(u~ + ( u z -  1) 2, u~ + (ul - 1)2). (37) 

This functional is convex and G-differentiable, except on the subspace 
ul = u2. If one considers the restricted mappings 

ul ~ J ( u l ,  0) and u2~-->J(O, u2), 

they are minimal at ua = 0 and u2 = 0, respectively. Hence, with an algorithm 
which proceeds by minimizations in ul and u2 separately, starting at (0, 0) 
one would stop immediately. To be able to go down further, one must go in a 
direction ( u l > 0 ,  u2>0),  but this requires one to move u~ and u2 in a 
coordinated way, while preserving some decentralization of computations. 
It would perhaps require some elaboration of the auxiliary problem prin- 
ciple, which is not clear at the present time. 

Without this extension, one cannot decompose problems involving 
non-G-differentiable functionals, except if they are already separable, as 
supposed for Y~ in Section 2. However, in some situations, the difficulty can 
be bypassed, if not overcome. Consider for example Ja being the indicator 
function of a feasible set, which would be nondecomposable as in (10); 
hence, Ja would be nonadditive. By taking an explicit representation of this 
constraint, and using duality theory, we have gotten around this obstacle in 
Sections 5 and 6. We are currently investigating the same kind of ideas 
in order to apply our approach to minimization of functionals defined 
by a maximization operation as in (37), which inevitably gives rise to 
nondifferentiability. 

8. Appendix: Proofs 

8.1. Proof of Theorem 2.1. Assumptions (iii) and (iv) ensure that 
Assumption (A) holds for Problem (Apk), giving the existence of u k+l. The 
uniqueness is a consequence of K k being coercive. 

We consider the difference 

A~+~ ~(y  +j~)(u~)-(]  +j~)(uk+~) 

>- (J'(uk), u ~-uk+l)-½Alluk-uk+ljl2 + Jl(u~)-Jl(uk+l), (38) 

from (4). The solution u ~+1 of Problem (AP k) meets the following condition: 

u k+a ~ o/ff and, for all u ~ ~r,  

((Kk)'(Uk +l)--(gk)'(Uk) + ekY'(Uk), U--U k +l) 
(39) 

+ Ek(J~(u)--Jduk+~)) >-- O. 
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Using (39) with u = u k, which belongs to o?/r, and placing it in (38) yield 

a~+l >- 1/ek((Kk)'(Uk+~)--(Kk)'(Uk), Uk+t-- Uk)-½Alluk _ uk+tll2. 

By the strong monotony of (Kk) ', we have 

A~+I -> (bk/e k - A / 2 ) l l u  k+~ - u~ll = -> (t~/Z)llu k+l - ukll 2, 

the latter from (12). This proves that the sequence {(J +Jl)(uk)} is strictly 
decreasing unless a k = u k+~, but then u k = u* from Lemma 2.2. Moreover, 
that sequence is bounded from below by {(J + J1)(u*)}, so that it converges to 

k some/x. Hence, Ak+l--> 0, when k--> +co; and, from the last inequality, 

Ilu k - u ~ + t I l - ~ 0 .  

We have that 

(J + Yl)(u k+l) >__ tZ >--- (J + J1)(u*). (40) 

We prove that indeed equality holds in the second inequality. As a matter of 
fact, we have 

A~+I ~ (J + J1)(u*) - (J  +J1 ) (u  k+l) 

>- ( 1 ' ( u k  +~), u *  - u k +~) + J l ( u * )  - J~(u k+~), 

from the convexity of Jr. Then, from (39), with u = u*, we get 

A~+ 1 ~-~ (Y'(u k+l) - - J ' ( u k ) ,  bt* -- U k+l) 

+ (1/Ek)((Kk),(U k)_ (Kk),(Uk+l), U*-- uk+t). 

The right-hand side of this inequality is proved to converge to zero by taking 
its absolute value, by making use of the Schwarz inequality and the Lipschitz 
continuity of J '  and (Kk) ', and by remembering that Ilu k _ u k+ll] -~ 0 and that 
{u k} is a bounded sequence. This last fact comes from Assumption (A), 
together with the fact that (J +J1)(u k) converges to a finite limit. Hence, we 
have that lim A*+I --> 0; but the reverse inequality also holds true from (40), 
which proves that 

= ( J  + y l ) (u*) .  (41) 

Since the sequence {u k} is bounded, it has at least one cluster point in 
the weak topology. Let t7 denote such a point, and let {u k'} denote a 
subsequence weakly converging to ti. Notice that a ~ q/t, since q/r is convex 
and thus weakly closed. Since J + Yt is convex and lower semicontinuous in 
the strong topology, it is also lower semicontinuous in the weak topology. 
Therefore, we have that 

lim (J + J1)(u k') = # - (J + J1)(t~); 
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but equality must hold from (41). This proves that t~ is a solution u* of 
Problem (MP). 

We now prove the last statements of the theorem by making use of 
Assumption (v), which implies that u* is unique. Adding (39) with u = u* 
and (7) multiplied by E k with u = u k+l yields 

((Kk) '(uk+l)--(Kk) '(uk)  + •k (J"(uk)-- J'(u*)) ' U *-- uk+I) >> O. 

We rewrite it as follows: 

((Kk) ' (uk+l)--(Kk) ' (Uk)+Ek(J ' (Uk)--J ' (uk+l)) ,  U*--U k+l) 

>_~k (J'(Uk +~)-- J'(U*), Uk +~-- U*) >__ EkaIIuk + ~ -- U*[I 2. 

the last inequality following from (1). Making use of the Schwarz inequality 
in the first member and then the Lipschitz inequalities on (Kk) ' and Y', we 
obtain Ineq. (13) after division by Ilu k+ l -  u*[I, which we assume nonnull 
(otherwise, the result is trivial). This inequality proves that 

, 

since flu k + l -  ukli does so, and Bk/E  k is bounded from above by B / a .  [] 

8.2. Proof of Theorem 2.2. We only give the beginning of the proof, 
since the rest follows as previously. We again consider Ineq. (38) and 
substitute the right-hand side of (14) for u k+l. This yields 

M > k. uk_a +l> _a + ll = k + l - p  ~ tu ), --(pk)2(A/2)Huk 

+ y~(u k) _ j ~ ( p k ~ + ~  + (1 --Ok)U k). 

Inequality (39) is replaced by 

~k+l q/f and Vu~q/f ,  

((K k)'(t~ k+l) -- (Kk)'(U k ) + Y'(uk), U -- Ct k+l) + Yl(u ) - J l (a  k+l ) >- O. 

We use it with u = u k in the previous one. This yields 

A~+~ >--pk((gk)'(uk) - - (Kk) ' (a  k+1), U k -- t2 k+l) -  (pk)2(A/2)IIU k -- a k+11t2 

+ (1 --pk)Jl(uk ) +pkJl(ak+l ) --Jl(pka k+l + (1 --pk)t, tk). 

If Y l ~ O ,  by taking pk___ 1, we use the convexity of J~ and the strong 
monotony of (Kk) ' to obtain 

A ~+~ >__ p k (b k _ P k(A/2))llu,, - a ~ =(f l /2 ) l lu  k _ a k+lllZ" 

The latter inequality follows from (12) applied to p k. Notice that we must not 
a priori restrict p k to be not larger than 1 if J1 - 0. However, we must ensure 
that u k e q/f for all k, since we have implicitly used this assumption. D 
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8.3. Proof  of Theorem 3.1. The solutions (u*, v*), u k+l, v k+l of, 
respectively, Problems (MP'), (Apk), (AP ~) are feasible points characterized 
by the following relations: for all u e q/r, v ~ °Ur, 

(J'~ (u*, v*), u - u*) + (J~. (u*, v*), v - v*)-> 0, (42) 

(K, (uk+I, v k ) _ K ,  (u k, k , k k+l)>_ v )+E1J,,(u , vk), U --U O, (43) 

(K ' (u  k+l, v k + l ) - K ' ( u  k+l, vk)+Ez v~J' tUk+l, vk), V--vk+l)>--O. (44) 

We now consider 

a~+l ~[J(u  k, v ~ ) - J ( u  k+l , v k ) ] + [ . r ( u  k÷~ , v ~ ) - J ( u  ~+~ , vk+~)]. 

We now proceed as in (38) for the two brackets above (respective constants 
A 1 and A2) and then we use (43) with u = u k and (44) with v = v k. At  last, we 
make use of the strong monotony assumptions on the restricted mappings 
derived from K (constants bl and bE). We obtain 

k k+~ A 2 V k+l u II + ( b ~ / ~ -  ~/ )11 -vktt ~, A k + , > - - ( b , l ~ , - A l l 2 ) l l u  _ k 2 

which proves that J(u k, v k) decreases and that 

Ilu k + ' -  ukll ~ o and IIv k + ' -  vkll - ,o,  

as in the proof of Theorem 2.1 and with the help of (18). 
Next, we add (42) with 

(U, V) = (Ig k + t ,  v k + l ) ,  

(43) with u = u* divided by Ex, and (44) with v = v* divided by E2. This yields 

(1/el)(K,  (uk+1, k, ,~., , k _Uk+l) V )-- l~u~U , Vk), U* 

+(l/E2)(K'v(Ig k+l, V k+ l )  --•vtU"tz k+ l ,  l.) k), I.)* --O k+l) 

+( [ / , (u  k,vk) _ , ,  k+l 
- . I  . t u  ,vk)] 

r r t  / k+l  k \  = t  z k+l  kdutU , V ) - - J u a n  , / .)k+l)],  U ,  u k + l )  

,'rt / k+l  k+ l )  ~du~,U , uk+X)--Jtu(U*, V*), U*--bl 

+ ([1'o (u ~+1, v k ) - j ' ~ ( u  k+~, v k+l)] 
. . b r r t  / k+l  . k+lx r t  / .  * ~vk+l)  kdvt.U , v  )--dvkU , V * ) ] ,  V* ~->0. 

We make repeated uses of the Schwarz inequality, the Lipschitz assump- 
tions, and the global strong monotony assumption on the derivatives of J, 
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and we get 
a @  ~+1 _ u *ll 2 + Jt~ T M  - ~*ll  2) 

<--[(Bale1 + A ,)Hu k - u k + lil + A a2iiv k - v ~+'11] l lu* - u k+all 

+ (B2/E2 + e2)liv k _ v ~+~ll IIv* - v k +11I 
__ (11. '<+' _ . . t t  2 + I1,., T M  _ ~*I12) ~/2 

x ( [ ( B , / ~ 1  + A,) I lu '< - u ~+'11 + A ,~11~, ~ - ~ ~ +1t112 

+ [ ( B U E z  +Az)llv k _ v k+,ll-i~).~. 

The latter inequality results from the H61der inequality. We divide by 

(tin ~+1 _ u ' t l  2 + tlv ~+1 _ v*t12) 1/2, 

which we assume nonnull (otherwise, the result is trivial), and take the 
square. This yields 

a 2(llu ~+1 - u * l P  + l l v  ~ + ~ -  v*ll  2) 

<- [(nl l ,~  + A~) l l u  ~ - u k+'l l  + A l = l l v  k - v ~+1113~ 

+ (Bzlez  + A 2)211v ~ - ~ ~+'112. 

We now easily complete the proof. []  

8.4. Proof of Theorem $.1. Necessary and sufficient conditions for 
problem (25) are 

B ( u k + I - - U k ) + e A ( u k - - ~ + E * ( p k + I - - p k ) + E D * p k  =0 ,  (45-1) 

E (u k+l _ u k) + ED (u k _ d) = 0; (45- 2) 

and, in the same way, for the equality-constrained problem (21), 

A ( u * - f ) + D * p *  = 0, (46-1) 

D (u * - d) = 0. (46- 2) 

Since A and B are strongly monotone, they have continuous inverse 
operators. Moreover,  since D and E are surjective, D A - a D  * and F_,B-aE * 

are also strongly monotone. From these facts, one can write explicit expres- 
sions for the inverse operators of the composite operators 

D *  
[ E  B ~* ]  and [ D  0 ] '  (47) 

which are involved, respectively, in (45) and (46). This proves that these 
equations have unique solutions, respectively, (u TM, pk+a) and (u*, p*). 
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Moreover, it is easy to check that, if (26) is met, then one can choose e 
small enough but positive, so that (27) is also met. We consider the following 
positive functional: 

F(u, p) Al(p  -p*,  DA-1D*(p -p*)) 
1 + ~(A(u - u*) +D*(p -p*), A-I[A(u - u*) +D*(p - p*)]) 

and the difference 

A~+i A F(u k, p k) _F(uk+I, pk+l). 

After some calculations, which make use of (45), one gets 

Ea~+l ~ ~ u ~+~, -uk+l ) )  = ~(u - (2B - eA)(u k 

+(U k _uk+I, (2BA-1D._eD,)(pk_pk+l)) 

_l_(pk _pk+l, (DA-1E, + EA-1D.  _EDA-1D.)(pk _pk+l)) ,  

which we may also write as 

~Ak+I = G(U k _ uk + l, pk _ pk + a), (48) 

with an obvious definition of the quadratic functional G, with G(0, 0) = 0. 
We notice that conditions (27) ensure that G is strongly monotone. Hence, 
(48) proves that the sequence {F(u k, pk)} is decreasing and bounded from 
below by zero. Thus, it converges and A~+I ~ 0. From the coercivity of G, we 
have that 

(U k -- U k+l, pk _pk+l )  ~ (0, 0). 

We now subtract (46) multiplied by E from (45), and we pass to the limit, 
which proves that 

(u k - u*, pk _p,)__, (0, 0); 

here, we use the continuity of the inverse of the second operator in (47). [] 

8.5. Proof of Theorem 6.1. From the assumptions on K and ®, 
Assumption (A) holds for the functional in (30). Hence, u k+l exists and is 
unique from the strong monotony of K. The 1eft-hand side inequality in (20) 
(for qb = L) is equivalent to 

for all p -> 0, p* = P(p* +p®(u*)). (49) 

Since the projection is a nonexpansive mapping, from (49) and (31) we get 

tip k + l - p * l l -  lip k -P* +P(O(uk+l)-- O(U*))II. 

By taking the square in both sides and using the Lipschitz assumption on (9 
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we get 

2(p k - p * ,  O(u*) - O(u k+l))-< (1/O)({{p k _ p,{{2_ {{pk+l _ p,}12) 

+ o,211u ~+~ - u '112 . (5 0) 

A necessary and sufficient condition for u k + ~  0//f to be a solution of 
problem (30) is that 

VU e Oll f, ( K ' ( u k + I ) - - K ' ( u k ) + e J ' ( u k ) ,  U --U k+l) 

+ e(p k, O(u) - O(u k+l)) > 0. (51) 

Let us add (51) with u = u* to (29) multiplied by • with u = u k÷l. We get 

( K ' ( u k + l ) -  K ' ( u k ) ,  u * -  uk+l)  + e(J'(uk. ) - J ' ( u  *), u * -  u k+l) 

+• (pk  _ p , ,  O(U,)_ O(U k+l))___ 0. (52) 

The first term in (52) yields 

( K ' ( u k + l ) ,  u *  - u k + ~ ) - ( g ' ( u l ' ) ,  u *  - u k ) - - ( K ' ( u k ) ,  u '~ --  u k+~) 

<_ ( K ' ( u k  + l), U* -- uk  + l ) - - ( K ' ( u k ) ,  U *--  U k) 

+ K (u k+l) - K (u k) - (b/Z)llu k - tt k+ll12 ' 

from Ineq. (3) used for K. The second term in (52) yields 

~( . r ' (uk ) ,  u k - u~ + l) + E ( J ' ( u k ) ,  u*  - u k) + E(J ' (u*) ,  u ~+1-  u*) 

<_es(a/2)llu k - u k + l l l 2 - E ( a / 2 ) ( l l u k - u * l l 2  +l luk+a-u*l l2) ,  

by repeated applications of Lemma 2.1. Finally, for the third term in (52), 
we make use of (50); eventually, we get from (52) the following: 

K ( u k +t) + ( K ' ( u k  +l), u*  - u k +l) - K (u k) - ( K ' ( u k ) ,  u*  - u k ) 

+ ½(cA - b)llu k _ u k+ll[z + ( , /2)a  (fin k +t _ u*ll z - l lu k _ u'tt 2) 

+ e (p (~-2/2) - a)llu k+l - u*ll 2 + (e /2p)( l lp  k -p*ll 2 - l ip  k+l -p* l l  =) -> 0, 

(53) 

which, by defining 

F ( u ,  p)  a_ ( • /2p)I IP - p * l l  2 + g ( u * )  

- K (u)  - ( K ' ( u ) ,  u* - u ) - e ( a / Z ) l l u  - u *ll 2, 

can be written as 

V ( u  k, p k ) _  F ( u k  +~ ' pk  +l) > e(a  - o ( ~ - 2  /2)) i lu  k+~ - u*ll = 

+ ½(b - ea) l lu  k _ U k+~ll 2. (54) 
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From that and (32), we obtain that the sequence {F(u k, pk)} is decreasing. 
Moreover, it is bounded from below, since we have 

F(u, p) >-- (~/2o)l lp - p ' I f  z + ~(b - ~a)llu - u*l[ 2 - 0, 

the first inequality coming from (3) applied to K and the second because 
E <- b/A <- b/a. Thus, the sequence {F(u k, pk)} converges, and the left-hand 
side of (54) goes to zero when k -~ +co. Looking at the positive right-hand 
side, and recalling (32), we see that I lu ~+1-u*ll-, 0~ This proves the first 
assertion of the theorem. 

Notice that, since F(u k, pk) and u k have a limit when k ~ +co, so does 
lip k -p* l l  z. With this remark, we can then proceed as Bensoussan, Lions, 
and Temam (Ref. 19) to prove the last assertion. We first prove that 
<pk, O(u~)>_, 0. 

Since lip k -p* l l  2 has a limit, the sequence {pk} is bounded and has weak 
cluster points. Let /7 be one of them, and let {pk'} be a subsequence 
converging toward ft, Since C* is closed and convex, hence weakly closed, 
/5 e C*. From the previous results, 

<p~', O(u ~'))-, <p, e(u*)>. (55) 

Equality (49) is equivalent to 

(p* ,  O(u*))  = o, 

Hence, 

for allp ~ C*, (p, ®(u*))-< 0. (56) 

<p, O(u*)>-< 0. 

The reverse inequality will now be established. Equality (31) is equivalent to 
k+l p ~C*, f o r a l l p ~ C * ,  (p pk+l, pk+pO(uk+l)--pk+l)<--O, 

which we use with p = p*, yielding 

O(p k+l --p*, O(U k+l)) > (pk+i _p, ,  (pk+l  _ p , )  -- (p k _p,)) 

___ ~(llp k+l -p* l l  = - l i p  s - p*tt2). 

Consider the above inequality for indices k', and recall that lip k ' -p* l l  2 has a 
limit. The right-hand side goes to zero as k -~ +co; thus, recalling (55), 

<p, O(u*)>- <p*, O(u*))-> 0. 
Using the first equality (56), we have established the reverse inequality that 
we were looking for. Thus, 

lim(p k', O(uk')) = 0 

for any subsequence, and so this holds for the whole sequence. 
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Since 
(p, O(u*))  = 0, 

from the inequality in (56) we have that 

L(u*,p)<_L(u*,p), for al lp ~ C*. 

As far as the other inequality of the saddle point is concerned, we obtain an 
equivalent variational inequality by taking the limit in (51). Since this holds 
for any weak duster  point p, the proof is now completed. [] 

8.6. Proof of Theorem 6.2. We just outline the differences with 
respect to the previous proof. Since we have assumed that there exists a 
solution of (49) which belongs to ~n ,  then this p* is also a solution of 

p* = P R ( p *  + p O ( u * ) )  

(see Remark 6.1). Using this and (34), as we did previously with (49) and 
(31), we can derive (50) once again. The other difference between 
Algorithms 6.1 and 6.2 lies in ®'(uk) • u [see (33)] replacing O(u) [see (30)]. 
This causes the last term in (51) to be, with u = u*, 

E(p k, O'(u ~) • (u* - u ~+1)). 

Since the functional u ~__~(pk, O(u)) is convex, we have 

(pk, ®,(Uk) . (U,_Uk))<(pk, ®(U,)_ ®(Uk)). 

On the other hand, using (35), one can prove an inequality similar to (4) for 
the functional above, with the constant A replaced by 

(p k, T) <_ IIp kIHITH <_ R]ITI]. 
Therefore, 

(pk,  O,(u k) .  (u k _ uk+l))  __. (p~, O(u  k) _ O(u  k+l)) + (R/2)IITIIIIu k _ uk+~Ilz" 

Adding the above two inequalities, we get 

(p~, O'(u ~) • (u* - u ~+~)) <- (p~, O ( u * ) -  O(u ~+~)) + ( R / 2 ) i l T I I I l u  k - u k+1112. 

This eventually shows that the previous proof can be carried on starting from 
(51), with u = u*, with the only difference that we must add the new term 

~RHTIIIIu k - uk+1112 /2  

in the left-hand side of this inequality. This modifies the last term in (54), 
which is now 

(b - E(A + RIITII))Itu ~ - u ~ +a112/2. 

The first condition in (36) allows one to complete the proof as previously. [] 
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