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Cone Dominance  1'2'3 

G. R. B I T R A N  4 AND T. L. M A G N A N T I  5 

Communicated by P. Varaiya 

Abstract. We study the set of admissible (Pareto-optimal) points of a 
closed, convex set X when preferences are described by a convex, but 
not necessarily closed, cone. Assuming that the preference cone is 
strictly supported and making mild assumptions about the recession 
directions of X, we extend a representation theorem of Arrow, Baran- 
kin, and Blackwell by showing that all admissible points are either limit 
points of certain strictly admissible alternatives or translations of such 
limit points by rays in the closure of the preference cone. We also show 
that the set of strictly admissible points is connected, as is the full set of 
admissible points. 

Relaxing the convexity assumption imposed upon X, we also 
consider local properties of admissible points in terms of Kuhn-Tucker 
type characterizations. We specify necessary and sufficient conditions 
for an element of X to be a Kuhn-Tucker point, conditions which, in 
addition, provide local characterizations of strictly admissible points. 
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1. Introduction 

Formal approaches to decision making almost always presume that an 
underlying preference relation governs choices from available alternatives. 
Rich theories now go far toward either characterizing or computing solu- 
tions that are in some sense optimal. Mathematical programming techniques 
predominate when preferences can be embodied in a real-valued utility 
function [Debreu (Refs. 1 and 2) discusses appropriate conditions, see also 
Bowen (Ref. 3) and Arrow and Hahn (Ref. 4, page 106)]. Multi-attribute 
utility theory (Keeney and Raiffa, Ref. 5) provides one means for consider- 
ing multi-objective situations which involve several, possibly conflicting, 
criteria. In summarizing methods for studying multi-objective decision 
making, MacCrimmon (Ref. 6) has classified approaches as weighting 
methods, including statistical analysis, sequential elimination techniques, 
mathematical programming procedures, and spatial proximity methods. 

Although these theories have made impressive contributions to 
decision making, they have yet to resolve a number of issues that are 
fundamental to both descriptive and prescriptive theory. For arbitrary 
preference relations, still little is known, and possibly can be said, about such 
an essential concept as admissible alternatives, also called nondominated, 
efficient, or Pareto-optimal alternatives. Even when a convex cone P, the set 
of points 

x + P - { x + p : p ~ P }  

specifying those alternatives preferred to x, describes preferences, admis- 
sible points have not been characterized completely. Is the set of admissible 
points connected? Are there representation theorems which characterize 
admissible points? What are local characterizations of admissible points? 
Can the notion of admissible points be exploited within the context of 
solving mathematical programs? 

In this paper, we consider several of these issues. In Section 2, we 
introduce notation and concepts to be used throughout the paper. The next 
section considers global characterizations of admissible points, including 
existence. We show that the sets of admissible and strictly admissible points 
are both connected when (i) the preference cone P is convex, (ii) the set 

-b + 

Ps-----{P e N n : p + ' p > 0  for all nonzero p e P} 

is nonempty, (iii) the set of available alternatives X is convex and closed, and 
(iv) some element of P~ makes an obtuse angle with every direction of 
recession of X. In this section, we also present a representation theorem 
which partially characterizes admissible points. This result says that all 
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admissible points can be expressed as limit points of strictly admissible 
alternatives or as a translation of such limit points by certain rays in the closure 
of the preference cone P. Section 4 considers local characterization of 
admissible points in terms of linear approximations. These results are 
related to the usual Kuhn-Tucker characterizations of nonlinear program- 
ming. The final section discusses possible extensions and applications. 

Our analysis is based upon results of convex analysis and mathematical 
programming. This approach is an outgrowth of work conducted around 
1950 in mathematical statistics [Wald (Ref. 7), Arrow, Barankin, and 
Blackwell (Ref. 8)], in linear and nonlinear programming [Gale, Kuhn, and 
Tucker (Ref. 9), Kuhn and Tucker (Ref. 10)], and in economic planning 
(Koopmans, Ref. 11). These fundamental contributions either proved or 
suggested many of the properties that we consider here under various 
restrictions on the problem structure, most notably that the set of available 
alternatives is polyhedral and/or that preference x ~--y, x is preferred to y, is 
defined by x I> y, x ~ y. Later, in a series of papers (Refs. 12-14), Geoffrion 
studied properties and computational aspects of certain nonlinear vector 
maximization problems. More recently, Yu (Ref. 15) considered pref- 
erences defined by cones as here, including several results related to this 
paper. In the economic literature, Smale (Refs. 16-18), Rand (Ref. 19), 
Simon and Titus (Ref. 20), and Wan (Ref. 21) have studied local properties 
of admissible points from the viewpoint of differential topology. A number 
of other papers [Charnes and Cooper (Ref. 22), Ecker and Kouada (Refs. 
23-24), Evans and Steuer (Ref. 25), Gal (Ref. 26), Geoffrion, Dyer, and 
Feinberg (Ref. 27), Philip (Ref. 28), Sachtman (Ref. 29), and Yu and Zeleny 
(Ref. 30)] have treated algorithms for determining and investigating admis- 
sible points, primarily for linear problems. 

Applications of the concept of cone dominance are varied and include 
efficiency in economic planning (Refs. 4, 11), mathematical statistics (Ref. 
31), maximizing utility vectors in exchange equilibrium (Refs. 4, 32), 
risk-return trade-offs in portfolio selection (Refs. 33-34), risk sharing and 
group decisions (Ref. 35), and many others as suggested in Ref. 36 and the 
collection in Ref. 37. 

2. Preliminaries 

Throughout our discussion, we let P be a nonempty and nontrivial, i.e., 
P ~ {0}, cone in N n. We say that an n-vector x is pre[erred to an n-vector y 
with respect to the cone P, denoted by x~--y, when x ¢ y and 

x ~ y + P - - { y + p :  p~P}. 
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We say that a point y is admissible for the cone P over  a given set X when 
y ~ S and X contains no points preferred to y, that is, 

Xc~ (y + P )  ={y}. 

Let  A(X) denote the set of all admissible points y in X. 
Frequently, the cone P is the nonnegative orthant  R 7-. Then, x >---y when 

x I> y and x # y, and admissibility is commonly called Pareto optimality. As a 
useful variant of this example,  the preference cone P is given by 

Pk = {0} w {(A 1 . . . . .  Ak, ~/k+l . . . . .  ~/,) ~ ~n : all Ai 1> 0 and (A 1 . . . . .  Ak) # 0}. 

In this case, the preference relation compares  only the first k components  of 
any vector. 

The preference cone Pk arises f rom the vector maximization problem of 
optimizing a vector 

[(z) = (f~(z), f2(z) . . . . .  f~(z)) 

of k real-valued criteria over  a subset Z of R "-k. A point 2 e Z is called 
efficient in this problem if there is no point z ~ Z, satisfying 

f (z)  >~f(e), 

with the inequality strict in at least one component .  
If 

X = { x  =(y,  z ) ~ R n :  z e Z  and y<~f(z)}, 

then a point 2 ~ S is admissible with respect to the cone Pk iff 

= (9, 2), 37 = f(5),  

and 2 is efficient in the vector maximization problem. By this construction, 
we have expressed, and can study, the preference order  z>--2 defined by 

f (z)  >>-f(e), [(z) ~[(e) ,  

in terms of a cone preference Pk in an enlarged space. 
These examples suggest that both closed and nonclosed preference 

cones might be studied profitably, since both arise in practice. 
Many propert ies  of admissible points depend upon the separation of the 

sets y + P and X by a hyperplane. For any admissible point y, such a 
separation is possible whenever  P and X are convex, since 

(y + P )  n X  = {y}. 

That  is, there is a nonzero n-vector  p÷ such that 

p+.x<~p+.y<~p+.(y+p), f o r a l l x e X a n d p e P .  (1) 
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Because the rightmost inequality can be restated as 

p÷.p>~O, for a l l p ~ P ,  

we may reexpress (1) by saying that there is a nonzero vector p ÷ contained in 
the positive polar cone P+ of P defined by 

P+~{p+eR~:  p+'p >-0 for all p e P}, 

with the property that y solves the optimization problem 

max{p+, x: x ~X}. (2) 

The positive polar cone is closed and convex without any assumption on P. 
There is a partial converse to this necessary condition for a point y to be 

admissible, which does not require any convexity assumptions. Let P~+ 
denote the set of strict supports of P, defined by 

P~+ -=- {p+ ~ R" : p+- p > 0 for all nonzero p ~ P}. 

If this set is nonempty, we say that P is strictly supported or that P is a strictly 
supported cone: any p÷ ~ P~+ defines a supporting hyperplane 

{ x ~ : p + . x = O }  

that intersects P only at the origin. In this terminology, the converse states 
that, if y solves (2) for any strict support p+ ~ P+, then y is admissible. This 
fact is a simple consequence of observing that p+ ~ P+ and x ~ y  (i.e., x ~ y, 
x - y  ~P) implies that p + - ( x - y ) > 0  and, therefore, that y does not solve 
(2). We distinguish these special admissible points in the following 
definition. 

Definition 2.1. An admissible point y ~ A(X) is strictly admissible if it 
solves the maximization problem 

max{p ÷. x: x c X}, 
÷ ÷ 

for some p ~ Ps. Any other admissible point is said to be nonstrict. We let 
As(X) denote the set of strictly admissible points in X. 

Most of our subsequent results require that preference cones be strictly 
supported. When IP is closed and convex, this condition is equivalent to it 
being pointed, that is, containing no lines. In Appendix A, we extend this 
characterization, in order to interpret the strictly supported condition 
directly in terms of the underlying preference cone whenever P is convex. 
The following characterization is a consequence of this development. 

Proposition 2.1. Let P be a convex cone in R ~. P is supported strictly 
iff the relative interior of P+ is contained in P~. 
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As an example, if 

P={P = (pl, P2, P3)EN 3: (Pl, P2, P3) = (0, 0, 0) or Pl i>0 and p2>0}, 

then 

P+ = c l  P ~ { p  ~N3: p3=0}, P,+ = P+\{0}, 

and the relative interior of P+ is the set 

{P s R3: Pl > 0, p2 > 0 and P3 = 0}, 

a strict subset of IIz2L 

Remark 2.1. Throughout the remainder of this paper, we frequently 
apply elementary results of convex analysis without reference. We also 
translate many properties of polar cones usually formulated in terms of the 
negative polar of any set S, denoted by 

S*={y~R~: y.x<~O for all x~S},  

into statements concerning the positive polar S ÷ of S. Standard texts in 
convex analysis [Rockafellar (Ref. 38), Stoer and Witzgal (Ref. 39)] discuss 
those results that we use. 

In addition to the notation introduced earlier in this section, let RC(X) 
denote the recession cone of a convex set; let el(S), ri(S), and 

- S -  {x: - x  ~ S} 

denote the closure, relative interior, and negative of any set S; and let 
S\T denote the set-theoretic difference of two sets S and 7'. We adopt 
Rockafellar's terminology (Ref. 38) by including the origin in RC(X), 
but by defining the direction of recessions as only the nonzero elements of 
this cone. Finally, we use the Euclidean norm to define the open and 
closed unit balls in R ~. 

3. Global Characterization 

When the set of available alternatives X is convex and closed, and the 
preference cone P is convex and supported strictly, the admissible set A(X) 
has important global properties: it is connected (see Theorem 3.4) if some 
strict support to P makes an obtuse angle with every direction of recession of 
X, and it can be characterized in terms of strictly admissible points (see 
Theorem 3.1) if no direction of recession of X belongs to the closure of P. 

Before establishing these properties, we briefly consider the existence 
of admissible points. 
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Existence. Yu (Ref. 15) has observed that A ( X )  is nonempty if X is 
compact and the interior of P+ is nonempty (P~ ~ • suffices) or if the 
problem 

max{p ÷- x: x ~ X} 

has a unique solution for some p ÷ c P+. Neither condition requires convexity 
of P or X. He also notes that A (X) may be empty when these conditions are 
not satisfied. 

The following propositions characterize the existence of admissible 
points for closed and convex, but not necessarily bounded, sets of alter- 
natives when preferences are defined by strictly supported closed convex 
cones. 

Proposition 3.1. Let  P be a strictly supported closed convex cone, and 
let X be a nonempty closed convex set. Then,  A ( X )  ¢ Q iff the origin is the 
only element contained in both P and the recession cone of X. 

Proof. If 

then 

y ¢ 06  Pc~RC(X),  

x + y ~ ( x  + P ) ~ X ,  

for any x ~ X, and so no point x ~ X is admissible. 
If 

P ~ RC(X) = {0}, 

then ( y + P ) ~ X  is compact for any y E X  (Ref. 38, Theorem 8.4). 
Consequently, for any p~+ ~ P~+, there is an optimal solution z to the 
optimization problem 

max(ps ~ . x :x  ~ (y + P) ~X} .  

The point z is strictly admissible in (y + P) ~ X with respect to P. It also must 
be admissible in X ;  for, if 

p ¢ 0 ~ P  and z + p ~ X ,  

then 

z + p ~ ( y + P ) ~ X  

is preferred to z. [] 
To obtain a dual version of this proposition, we note the following 

theorem of the alternative. 



580 JOTA: VOL. 29, NO. 4, DECEMBER 1979 

Proposition 3.2. (a) Let  P be a strictly supported closed convex cone 
and let X be a closed convex set. Then, exactly one of the following 
alternatives is valid: 

(I) P c~ RC(X)  # {0}, 

(II) P2 c~ R e ( x ) *  # ~ .  

Consequently, the set of admissible points in X is nonempty  iff 

P2 c~ RC(X)*  # Q .  

(b) Moreover ,  if P is any strictly supported convex cone, not necessarily 
closed, then 

As(X)# 

implies alternative (II), and alternative (II) implies that 

A s (X) # Q~ 

whenever  X is a polyhedron.  

Proof.  Alternatives (I) and (II) cannot both be valid, since any 

p ¢ 0 c P c~ RC(X)  and p~+ ~ P2 ~ RC(X)*  

must satisfy 6 

So, suppose that 

+ + <~0. ps . p > 0  and Ps "P 

P~+ c~ RC(X)*  = • .  

Since P+ and RC(X)*  are nonempty  convex sets, they can be separated;  that 
is, there is a nonzero vector u ~ R n and a real number /8  satisfying 

u.y<~fl~u.p+~, f o r a l l y ~ R C ( X ) * a n d a l l p s  + ~P~.+ 

Since the origin is a limit point of P,+ and is contained in RC(X)*,  fl = 0. The  
leftmost inequality implies that 

u e RC(X)** = RC(X),  

since the recession cone of a closed convex set is closed. The rightmost 
inequality shows that 

+ 

u . p s  I>0, for allp~+ ~PT, 

and thus, 7 
u "p+ ~>0, for all p+ ~ P+. 

6 The closure of ~ is not required for this conclusion. 
7 Every point of P+ is a limit point of P~, since, by Proposition 2.1, ri(P +) C_ P ~+ C_ P+. 
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Consequently, 

u ~ P++ = P and u e P ~ RC(X),  

so that one of alternatives (I) and (II) is always satisfied. 
Since, by the previous proposition, A ( X )  is nonempty iff alternative (I) 

is not satisfied, A ( X ) ¢  0 iff alternative (II) is valid. 
To prove the final assertions of the proposition, consider the optimiza- 

tion problem 

max{p~ • x: x ~ X}, (3) 

where p~ c 1?~ +. If z ~ As (X ) ,  we can select p~+ so that z solves this problem. 
Therefore,  

p~+.y~<0, for all y e RC(X),  

implying that 

and that 

If 

-t- 
p, ~ RC(X) ~ 

P2 ~ RC(X)* ¢ 0 .  

q- -+- 
Ps CPs n R C ( X ) *  

and X is polyhedral, then 

p~ .  y ~ O, for all y c RC(X),  

impiying, by linear programming theory, that there is a solution to problem 
(3). This solution is strictly admissible. []  

The following examples show that the hypothesis that P is closed is 
required for these propositions and that converses to part (b) of the last 
proposition are not possible. 

Example 3.1. Let 

X = {(x1, x2) e []~2 XlX2 ~ 1, xl >I O, X2 "~ 0}, 

and let 

Then, 

[~ = {(X1, X2) C 1 1 ~ 2 : X l < 0  and x2 >~ 0} w{(0, 0)}. 

p+ = ( -1 ,  O) ~ P+c~ RC(X) * and A (X )  = ~ .  
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Fig. 1. 

X2 

• 
RC(X) 

'"¢i-:.. X 

I 

~--x I 

P c~ RC(X) = {0} and no admissible points. 

The preference cone P is not closed, and neither of the conditions 

P n  R e ( x )  ¢ {0} or P~+ ~ RC(X)* = O 

for A ( X )  to be empty is valid. In addition, the converse to the first assertion 
in part (b) of the last proposition is violated. See Fig. 1. 

Example 3.2. Let  P be the positive orthant in R 3, except for those 
points in the xlx2-plane not on the x2-axis, i.e., 

P = {(0, I ,  0): 1 ~> 0} w{(A1, 12, 13): 11/>0, 121>0 and t 3 > 0 } .  

Let  

X = {(xl, x2, x3) c R3:x3 = 0, Xl/> x2, and xl ~< x2 + 1}. 

Then, RC(X) is the line 

{I(1, 1, 0 ) : t  ER}; 

RC(X)* is the subspace 

{(Xl, X2, X3) (~ R 3  Xl -l'-X2-~- 0}; 

also, 

and 

P2 = {(11, 12, 13) EN3:11 t>0, 1 2 > 0  and 13>0}  

A ( X )  = {(x1, x2, x3)E ~ 3  x3 = 0 and X1 = X2}. 

In this instance, P is not closed, and neither alternative (I) nor (II) of 
Proposition 3.2 is valid. The example also shows that A ( X ) ~  0 does not 
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x 2 

/ /  
x 3 

Fig. 2. P ropos i t ion  3.2 r equ i res  P to be  closed.  

necessarily imply alternative II, even when X is polyhedral, unless F is 
closed. See Fig. 2. 

Representation. Arrow, Barankin, and Blackwell (Ref. 8) have 
shown that every admissible point is a limit point of strictly admissible points 
whenever P = R~_ and X is convex and compact. The following example 
shows that this property is not valid for all preference cones. 

Example 3.3. 
with vertex 

and circular base 

Let  

Let  X, as illustrated in Fig. 3, be a truncated cone in •3 

V=(O,  1, 1) 

2 2 { x ~ a : x l + x 2 ~ < l a n d x 3 = 0 } .  

P = P2 = {0} w {(A 1, A 2, A 3): A 1 I> 0, A 2 >1 0 and (h 1, h 2) ~ 0}, 

which ignores the direction +(0, 0, 1). The set of strictly admissible points 
As(X) consists of those points on the interior of the arc KS, the closure of 
these points is the entire arc, but the admissible points also include the line 
segment KV. 

Observe that the admissible points in this example are those points in X 
which are translations of the arc KS by the direction (0, 0, 1), a direction 
which belongs to the closure of the preference cone P2, but not P2 itself. Our  
next result, which shows that this observation characterizes admissible 
points under very general hypothesis, extends the Arrow, Barankin, and 
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x3 

i I~x 2 

Fig. 3. A(X)~_cl  As(X). 

Blackwell representation by permitting more general preference cones and 
by relaxing the compactness of X. We build upon their clever proof 
techniques, using the following result in place of the von Neumann minimax 
theorem. 

Lemma 3.1. Let  C and D be nonempty closed convex sets in R n 
satisfying the conditions 

(i) C *  ~ R C ( D )  = {0}, 

(ii) RC(C) ~ D  ÷ ={0}. 

Then, the function u.  v has a saddlepoint on C x D, in the sense that, for 
some u°~ C and v ° ~ D ,  

u . v°  <~ u° . v°  <~ u° .  v, for all u ~ C and v ~ D.  

]Proof. The lemma is a specialization of a theorem du~ to Rockafellar 
(Ref. 38, Theorem 37.6). By this theorem, a saddlepoint exists if the 
functions 

[ . ( v ) ~ u  "v,  for u ~ ri(C), 

have no common direction of recession over  their domain D and the 
functions 

g ~ ( u ) = - - u ' v ,  for v ~ ri(D), 
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h a v e  n o  c o m m o n  d i r e c t i o n  of r eces s ion  o v e r  t he i r  d o m a i n  C. A d i r e c t i o n  of  

r e ce s s ion  y for  f , ( v )  is a n o n z e r o  e l e m e n t  of  R C ( D )  sa t i s fy ing  

u.y<~O. 

T h e r e f o r e ,  t he  f u n c t i o n s  f , ( v )  for  u ~ r i ( C )  have  n o  c o m m o n  d i r e c t i o n  of  

r eces s ion  if n o  n o n z e r o  y ~ R C ( D )  satisfies 

u . y ~ < O ,  for  all  u ~ C, 

t ha t  is, 

R C ( D )  c~ C *  = {0}. 

S imi la r ly ,  t he  f u n c t i o n s  g~(u) for  v ~ r i ( D )  h a v e  n o  c o m m o n  d i r e c t i o n  of  

r e ce s s ion  if the  i n e q u a l i t i e s  

- y . v ~ < O ,  for  all  v ~ D ,  

a re  i m p o s s i b l e  to  sat isfy  s i m u l t a n e o u s l y  w h e n e v e r  y ~ R C ( C )  is n o n z e r o ,  

w h ich  is c o n d i t i o n  (ii). [ ]  

T h e o r e m  3.1.  L e t  X b e  a c losed  c o n v e x  set,  le t  P b e  a s t r ic t ly  

s u p p o r t e d  c o n v e x  cone ,  a n d  s u p p o s e  t ha t  

c l  P ¢~ R C ( X )  = {0}. 

T h e n ,  a n y  p o i n t  x ~ A ( X )  c an  b e  w r i t t e n  as 

x = x * - i f ,  

w h e r e  x* b e l o n g s  to c l  A ~ ( X )  a n d  e i t he r  ~6 = 0 o r  p b e l o n g s  to c l  P \ P .  

Proof.  W e  first e s t ab l i sh  p r e l i m i n a r y  resu l t s  to  b e  u sed  in  t h e  p roof .  
Le t  B b e  the  c losed  u n i t  ba l l  in  N n, a n d  let  S~., for  j = 1, 2 . . . . .  b e  n o n e m p t y ,  

i n c r e a s i n g  co n es  (I.e., Sj C Sj+I), w h o s e  u n i o n  is r i (P  +) w closed,  convex ,  a n d "  " s • 

{0}. T h e n ,  

c l  P = P + + =  ri(P+) + =  f~  S ; .  
]~1 

8 Several choices are possible. We may, in fact, choose polyhedral cones for the S i. Let B ° 
denote the open unit ball in R"; and, for each j = 1, 2 . . . . .  let ~ be a finite set of points in 
O---[ri(P +) ~{0}] c~B °, with the property that (1//') balls about these points cover O. The 
convex hull H i of {0} u F1 w F2 u -- • u F~ is polyhedral, and so then is the cone S i that it 
generates (Ref. 38, Corollary 19.7.1). Any x E O belongs to the interior of a simplex in Q, 
whose dimension equals that of O. For some j, points in F/are close enough to the vertices of 
this simplex, so that x~Hj. Therefore, u{/-/~:]~>l}=O, and the union of the Si's is 
ri(P +) u {0}. 
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Note  that, for some positive integer jr, 

S ;  c~ RC(X)  = {0}, 

Otherwise, 

whenever  j /> J. 

(B n S +) ~ (B n RC(X))  ~ {0}, for all / ,  

which implies, by the finite intersection proper ty  [since X is closed, so is 
RC(X)] ,  that 

(B c~ cl  •) c~ (B c~ RC(X))  ~ {0}, 

contrary to hypothesis. 
The sets 

T i - - S j n B ,  f o r j = l ,  2 . . . . .  

are nonempty,  convex and compact.  In addition, 

T ;  = $ 7 .  

Now, let x ° be any admissible point in X, and let 

Z = {z ~ ~ ~ : z = x - x ° for some x ~ X}. 

Then,  Z is convex and 

R C ( Z )  = RC(X).  

We apply L e m m a  3.1 with 

C = Z ,  D =  Ti, j>~J,  

where J is defined as above. Since Tj is compact,  conditions (i) and (ii) of the 
l emma reduce to 

R C ( Z )  c~ T ;  = {0}, 

which we established previously. Therefore,  for each j I> J, there are points 
t i ~ T j and z i ~ Z satisfying 

z . t i < ~ z i . t i < - z i . t ,  f o r a l l z c Z ,  t c T  ]. (4) 

Since x°~  X; z = 0 belongs to Z and 

z i .  t >~ z i .  t i >~ O, for all t ~ T i. 

The definitions of S j and T i imply that the inequalities 

zi.s>.>-O, f o r a l l s ~ S  ~, (5) 

are valid as well. 
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Because the union of the increasing sets St, for j = 1, 2 . . . . .  is ri(P +) u 
{0}, Ineqs. (5) imply that, for any p+ E ri(P÷), 

p+. z i >i O, for all j sufficiently large. 

Consequently,  if z* = x* - x  ° is a limit point of the sequence {zi}i~j, then 

p+-z*~>0,  for all p+ E ri(P+), 

and z* belongs to 

ri(P+) + = P++ = cl  P. 

If x* ~ x °, then (x* - x °) ~ P, because x ° was chosen from A ( X ) .  
Therefore,  any limit point  z* to the sequence {zi}j~l gives x ° = x* - z*, 

with 

either z* = 0 or  z* E c l  P\P.  

This representat ion satisfies the conclusion of the theorem if 

x* ~ c l  A s (X). 

But x* fulfills this condition, since, with z i = x i - x  °, expression (4) gives 

t i . [ x J - x ° ] > ~ t i . [ x - x ° ] ,  for all x ~X.  

Consequently,  x i solves 

max{t i. x: x E X}, 

and x j s A S ( X ) ,  because t i e  P+. Thus, x* is a limit point of the strictly 
admissible points {xJ}i~l. 

To complete the proof, we must show that the sequence {z~}i~l contains 
a limit point. Suppose, to the contrary, that it does not. Then, the Euclidean 
norms h i of the z i must grow without bound as j increases. As we have noted 
previously, for each p+ E ri(P+), 

and hence 

p+. (z~/~,i) ~ O, 

p+. z i ~ O, 

for all j sufficiently large. 

But then, for any limit point y to the sequence {zi /h i}i>~l, 

+" p Erl(P ). p y ~ 0 ,  for all + ' + 

Therefore,  

y ~ ri(P+) + = P++ = c l  P and y E RC(X)  = R C ( Z )  

(Ref. 38, Theorem 8.2), contrary to hypothesis, and our  assumption that the 
{Z }]~1 contains no limit point is untenable.  sequence i 
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o r  

When the preference cone P is closed, either 

P n RC(X) ~ {0} and A (X) = 

P n RC(X) = {0}, 

which fulfills the hypothesis of the theorem. In either case, the charac- 
terization simplifies as follows. 

Corollary 3.1. Let  X be a closed convex set, and let P be a strictly 
supported closed convex cone. Then, every admissible point is a limit point 
of strictly admissible points. 

A slight modification to Example 3.3 shows that the representation of 
Theorem 3.1 might not be valid when 

c l  P ~ RC(X)  ~ {0}. 

Example 3.4. Let  Y be the cone generated by X - V in Example 3.3. 
Then, if P = P2, the admissible set of V + Y is the half line from V passing 
through K. The set of strictly admissible points is empty, however. 

We should emphasize that the previous results do not characterize 
admissible points completely. Arrow, Barankin, and Blackwell show by an 
example that a limit point of strictly admissible points need not be admis- 
sible. The following example shows that points expressed by x = x* -/~, as in 
Theorem 3.4, need not be admissible, even when x*~ c l  A s ( X )  is admis- 
sible. 

Example 3.5. As in Example 3.2, let P be defined by 

P ={(0, A, 0): A ~ 0} u{(Ax, ),2, A3): A1 I>0, A2~>0 and A3 > 0}. 

Let  S be the triangle in R 3 given by 

X = {(Xl, x2, 0): x2 I> 0, xl I> x2 and Xl + x2 ~< 1}. 

Every point in X on the line segment l satisfying 

xl--[.-x2 = 1 

is strictly admissible, and every point x in X can be written as 

X = x * - - p ,  

for some x*~ l and /~ ~ cl  P\P;  but not every point is admissible. The 
admissible points are the points in X on the lines 

x ~ = x 2  and x l + x 2 = l .  
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Conneetedness. When X is a polyhedron and P is a polyhedral cone, 
parametric analysis in linear programming shows that A(X) is connected 
[see, for example, Koopmans (Ref. 11) or Yu and Zeleny (Ref. 30) for 
related results]. To study the connectedness of A(X) in a more general 
setting, we also use a parametrization of a mathematical programming 
objective function. 

We first set some additional notation. Let p (0) and p (1) be any points in 
R", and, for each 0 ~  < 0 ~< 1, let 

p( O ) = Op(1) + (1 - O )p(O). 

denote the set of optimal solutions to the optimization Let X(O) 
problem 

v (0) = sup{p (0). x: x 6 X}, (6) 

for a given set X, not necessarily convex; x(a) denotes a generic element of 
X(O). 

Berge (Ref. 40) discusses several properties of parametric optimization 
problems which encompass results for this problem. See also Hildenbrand 
and Kirman (Ref. 4), whose introductory description of parametric analysis 
is formulated to include the following result. 

Lemma 3.2, Let X be an arbitrary closed subset of R", and assume 
that the solution set X(#) to problem (6) is nonempty and compact for all 
0 ~  < 0<~1. Then, the point-to-set mapping # ~ X ( # )  is upper semicon- 
tinuous; that is, if 0 <~ 0 ~< 1 and G is an open set in R" containing x(a), then 
there is a real number ~ > 0 such that X(O') C G whenever 

0~<0'<~1 and 10-0'I<~6. 

Using this lemma, we first consider the set of strictly admissible points. 

Theorem 3.2. Let P be a strictly supported convex cone, let X be a 
given subset of R", and suppose that the solution set to the optimization 
problem 

max{p~ + .x: x e X }  

is nonempty, compact, and connected for each p~ e l ~  +. Then, As(X) is 
connected. 

Proof. Suppose, to the contrary, that A~(X) is not connected; that is, 
there are disjoint open sets G and H with 

G n A ~ ( X ) ¢ O ,  H n A ~ ( X ) ¢ ~ ,  A~(X)C_GwH. 
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Let  

x(O)~Gc~AS(X) and x(1)~HnAS(X). 

The definition of strictly admissible points implies that there are vectors 

p ( 0 ) ~ P s  + and p (1)~P~ +, 

so that, for 0 = 0 and 1, x(O) solves 

max{p(0),  x: x EX}, (7) 

where p(O) ~ P~ is defined (as above) as 

p(O) = 0p(1) + (1 - O)p(O). 

Since the set of optimal solutions X(O) to problem (7) is nonempty  and 
connected, each X(O) is either contained in G or contained in H. In 
particular, 

X(0)  C_ G and X(1)  C_H. 
Let  

0 ' = s u p { 0 : 0 ~ < t ~ < l  and X(O)C_G fora l l  0~<0~<0}. 

By the previous lemma, 0' > 0. Now, X(O') must be contained in either G or 
H. But either assumption leads to a contradiction. For, if X(O') C_ G, then 
X(O) C_ G for every 0 ~< 0' + 6 and some 6 > 0, by L e m m a  3.2, contrary to the 
definition of 0'; and, if X(0 ' )  C_H, then by L e m m a  3.2 again, X(O) C_ H for 
every 0 I> 0' - 6 and some S > 0, contrary to the definition of 0'. 

Therefore,  our  assumption that As(X) is not connected is untenable,  
and the theorem has been proven. []  

The following version of this theorem is probably more  useful in 
applications. 

Theorem 3.3. Let  P be a strictly supported convex cone, let X be a 
closed convex set, and suppose that 

4_ 
- P 2  n RC(X)s  ~ 0 .  

Then, A'(X) is connected. 
+ + 

Note that the condition on - P s  n RC(X)2  states that, for some ps 
P,+, p2 • y < 0 for every element y in the recession cone of X. That  is, the 
solution set to the optimization problem 

sup{p2" x: x e X} 

must be bounded for some, but not necessarily all, strict supports p+ to P. 
This weakening of the hypothesis of Theorem 3.2. is offset by the stronger 
assumption that X is convex. 
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With slight modifications, the proof of Theorem 3.2 proves Theorem 
3.3 as well. Without loss of generality, we may select x(1) in the proof as the 
solution to 

max{p(1), x: x eX},  

where - p ( 1 ) e  RC(X) +. Then, we invoke the following result, instead of 
Lemma 3.2. Observe that each solution set X(0) ,  0 ~< 0 ~< 1, to problem (7) is 
convex, and hence connected. 

Lemma 3.3. Let  X be a closed convex set in R". Assume that the 
solution set X(O) to the problem 

v(O) = sup{[0p(1) + (1 - 0)p(0)] • x: x e X} 

is nonempty for 0 = 0 and nonempty and compact for 0 = 1. Then, X(O) is 
nonempty and compact for all 0 < 0 ~< 1, and the point-to-set mapping 
0 + X(O) is upper semicontinuous. 

This lemma is proved in Appendix B (Section 7). 
When X is compact, 

RC(X) = {0}, 

and every point in R" is a strict support to RC(X);  consequently, the 
hypothesis 

- P :  c~ R C ( X ) :  ~ ® 

of this theorem is valid whenever P is strictly supported. Therefore,  we have 
the following corollary. 

Corollary 3.2. Let  P be a strictly supported convex cone, and let X be 
convex and compact. Then, A s (X) is connected. If, in addition, P is closed or 
P\{0} is open, then A(X) is connected. 

Proof. As we have just noted, Theorem 3.3 shows that As(X) is 
connected. Whenever  P\{0} is open, P + = P [ ,  and so A(X)=A~(X) is 
connected. By Corollary 3.1, whenever P is closed, A(X) is connected, 
since it is contained in the closure of the connected set As(X) and contains 
As(X). [] 

The next two examples show that the strictly supported condition 
imposed upon P in this corollary is indispensable, as is the condition 

of Theorem 3.3. 
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Example 3.6. Let X be the closed unit ball in R 2, and let 

P = {(0, x)~ R2: ;~ ~R}. 

Then, P is closed and convex, but P~ = 0. Since the only admissible points 
are (-I, O) and (i, 0), A(X) is not connected. 

Example 3.7. Let 

S={(X1, X2, X3) ER3".xI=O, x3~O, and exp(x3)- l ~< x2 ~< 0}, 

and let T be the half line 

{(1, 0, )t) ~ R3: X ~<0}. 

Define X, which is closed (Ref. 38, Corollary 9.8.1), as the convex hull of S 
and T; and let P2 be generated by nontrivial nonnegative combinations of 

p(0) -- ( -1,  0, 0) and p(1) = (1, -1 ,  0). 

Since the third component of every element of P2 is zero, a point in X is 
strictly admissible iff it is a translation by negative values of x3 at some point 
y that is strictly admissible in the set obtained by projecting X onto the 
xlx2-axis. 

The solutions to problem (7) are (see Fig. 4) 

I:: i 00 
X(O) = if 0 < 0 < 1, 

lT ,  if 0 = 1 .  
In this case, 

and 

is not connected. 

RC(X) + = {(xa, x2, x3) ~ R3:x3 < 0}, 

- P ~  c~ RC(X)~ + = ~ ,  

A~(X) = S ~ T 

T 

Al ternat ives  X 

(o, O) ( h o )  

/ /  X 2 
/ 

Xi / 

( o , - l )  
D X 3 

Project ion on x I - x  2 Plane 

Fig. 4. Set of strictly admissible points that is not connected. 
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To show that A ( X )  is connected, without assuming that the underlying 
preference cone P is closed or that P\{0} is open, requires additional 
argument. For any vector y c R n, let 5~(y) and S~(y) ± denote the subspace 
generated by y, and its orthogonal subspace. 

Lemma 3.4. Let P and X be a cone and arbitrary set in R ~. Suppose 
that p+ belongs to P+ and that y solves 

max{p +. x : x c X} .  

Then, the following conditions are equivalent: 

(i) y c A ( X ) ;  
(ii) y c A(X),  where )~ = X n (y + ~(p+)±); 

(iii) y is admissible in X n (y +~(p+)±)  with respect to P c~ S£(p+) ±. 

Proof. Suppose that 

z = y + p c X ,  for some p c P. 
By definition of y, 

p+.  z = p  + . y + p +  . p<.p+,  y. 

But, since p+ • p i>0, then p÷ • p = 0; that is, 

pcoL, O(p+) ± and z c ( y + ~ ( p + ) ± ) n X .  

Consequently, y is not admissible with respect to P, that is, p can be chosen 
to be nonzero, iff condition (ii) is violated and iff condition (iii) is 
violated. [] 

Corollary 3.3. Let p÷ c P÷\P~, and let y solve the problem 

max{p +. x: x c X}. 

Then, either y c A ( X )  or y +p  c X for some p contained in the boundary of 
Bz. 

Proof. Apply the previous lemma, noting that any point p c  
P c~ 5~'(p+) ± belongs to the boundary of IP. [] 

Corollary 3.4. Let p+ c P+, let 

Y~" ={x c X :  p+- x ~>p+. z for all z ~X}, 

and let p~ c P~+. Then, any solution y to the problem 

max{p ~. x: x ~ 2~} 
belongs to A ( X ) .  
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Proof.  Since y belongs to AS(J() CA(J£)  and, by Lemma 3.3, A(Jf)  = 
A(X) nJ~', then y belongs to A(X) .  [] 

These results and the representation Theorem 3.1 provide ingredients 
for proving that the set of admissible points is connected, without requiring 
P to be closed or P\{0} to be open. 

T h e o r e m  3.4. Let  P be a strictly supported convex cone, and let X be 
a closed convex set satisfying 

-P,+ n RC(X)~ + # 0 .  

Then, A ( X )  is connected. 

ProoL We use induction on the dimension k of X. Whenever  k = 1, 
A ( X )  is an interval, and hence connected; so, assume that the theorem is 
valid for all closed convex sets with dimension less than k and that X has 
dimension k. 

Note, first, that no generality is lost by assuming that X has full 
dimension. For, suppose (by translation, if necessary) that the origin belongs 
to X. Then, X is connected in R n iff it is connected in L, the smallest linear 
subspace containing X. The definition of admissibility implies that x belongs 
to A (X) iff it is admissible in X with respect to P n L, which we assume is 
nonempty;  otherwise, A ( X ) = X  is connected. Moreover,  expressing any 

as 

where 

+ + 4- p~ eP~ ,  -p~ ~RC(X)  2 

4- + + 

P~ =PL +P±, 

4-  
PL ~ L and p+, e L ±, 

L z denoting the orthogonal subspace of L, shows that 

Q=--(IP nL)+~ n L  

is nonempty, as is 

i.e., if 

then 

- O  n [RC(X) 2 n L ] ;  

p ~ P n L, p # O, y ~ RC(X),  

4-  4-  4-  4_ 

P~ "P=PL'p>O and P~ " Y = P L ' y < O -  
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Thus, 
+ + + 

PL C O and --PL ~ RC(X)s c~L. 

Consequently, the hypothesis of the theorem is valid in L, and we may 
assume that X is an element of R k. 

Let  y be any element of A(X). Then, y solves 

max{p +. x: x 6 X} 

for some nonzero p+ ~ P+. Let  J (  denote the set of optimal solutions to this 
problem. If (i) A(X)nY(  is connected and (ii) c l  As(X)c~A(X)nf(  # 0 ,  
then by Theorem 3.3 the set of strictly admissible points in X, together with 
the admissible points in )~', is connected. Since y c A(X) was chosen arbi- 
trarily, the set A(X) will be connected as well. 

Consequently, we will establish the theorem by verifying conditions (i) 
and (ii). Since ) (  C_X, 

RC(X) C_ RC(X) and RC(X) 2 C_ RC(J~)2. 

Therefore  
+ A + 

- P ,  n R C ( X L  # Q;  

and, since J f  has dimension less than k, the inductive hypothesis implies that 
A(Jf )  is connected. By Lemma 3.4, 

A(X) n X  = A(X), 

and condition (i) is satisfied. 
To establish condition (ii), let x ° solve 

max{p2, x : x ~ X} 

for some p2 ~ P2. By Corollary 3.4, x°e A(X). Since 

- P 2  n RC(X)2 # 0 ,  
then 

cl  P ~ RC(X) = {0}, 

since any vector q and nonzero vector p, with 
+ + 

q~-Ps c~ RC(X)s and p ~ c l  P n R C ( X ) ,  

would satisfy 
q.p<~O and q.p>O. 

Thus, the representation Theorem 3.1 applies and x ° can be represented as 
x °=  x*- /5 ,  where x * e  cl  As(X) and either 

,6 = 0 or /~ ~ cl  P\P. 
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Therefore,  

and 

p+" X ° = p+'  x* - p + ' / ~  ~<p+" x* 

+ ' X  0 + ' X *  + ' f f ~  + P~ =Ps - P s  p~ "x*, 

and so x* ~ .~  and x* solves 

max{p ~. x: x ~ J(}. 

As a result, 

x * ~ A ( X ) n c l  As (X) ,  

and condition (ii) is satisfied. [ ]  

4. Local Characterization 

Studying properties of an underlying set by applying convex analysis to 
approximations of the set has been a recurring and fruitful theme in 
optimization. In this section, we adopt this viewpoint, assuming that the set 
of alternatives X is defined as the intersection of a convex set C with a set D, 
not necessarily convex. By approximating D at a given point x ° to form an 
approximation to X, we investigate admissibility in X via the approxima- 
tion. We show, with appropriate hypotheses, that strict admissibility in X is 
equivalent to admissibility in the approximation. We also establish a 
Kuhn-Tucker  theory in the setting of cone dominance, which (when speci- 
alized) becomes the Kuhn-Tucker  theory of nonlinear programming. 

General  Setting. Let  us call a set L(x °) a cononical approximation to 
D at x ° if 

L(x  0) _ x o _ {(x - x o): x ~ L (x o)} 

is a closed cone. If, in addition, D C L(x°), we say that L(x  °) is a support to D 
at x °  A support to D at x° is said to be finite if it is a polyhedron. In this case, 
L(x  °) is the intersection of a finite number of half spaces, each supporting D 

0 
a t x  . 

In many applications, the set D is defined by a system of nonlinear 
inequalities, 

D ={x: hi(x)>~O, i = 1 . . . . .  m}. 

In this case, two cononical approximations to D predominate in the opti- 
mization literature. When each function hi(x) is differentiable at x ° with 
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gradient Vhi (x°), then 

L(x  °) = {x E R": Vhi(x°)(x - x  °) >- 0 for all i with hi(x °) = 0}; (8) 

and, when each function hi(x) is concave with supergradient & at x °, i.e., sl 
satisfies the supergradient inequality 

hi(x) <~ hi(x °) +&(x - x°), for all x E R", 

then 

L ( x ° ) = { x  ER": &(x -x° )>-O for all i with hJx°)  = 0}. (9) 

When the functions h~(x) are both differentiable and concave, the finite 
supports (8) and (9) coincide. 

As a preview of the results to be presented in this section, we begin with 
the following example. Let  

C = R " ,  

X = D = { x  ER2: x~ +x2 2 -< l ,  xx - 0, x2 -> 0}, 

P=RL 
Then, 

0 x =(0, 1) 

is admissible for the cone D over X, but not over the linear approximation (8) 
to X at x °, while 

1 x = ( 1 / ~ ,  1 / ~ )  

is strictly admissibl~ over X as well as over its linear approximation (8) at x 1. 
In the remainder of this section, we will formalize these observations. 

Our first result relates admissibility in L(x  °) to strict admissibility in D. 
We will apply some simple, but useful, observations concerning admissible 
points in cones. 

L e m m a  4.1. Let  P and Y be closed convex cones in R", and suppose 
that P is supported strictly. Then, for any x°E R", 

(i) either x° E A ( x ° +  Y)  or A ( x ° +  Y ) =  ~ ;  
(ii) x ° e A S ( x ° +  Y)  iff P,+c~ Y* ~ ~ ;  

(iii) x ° E A s (x ° + Y) whenever x ° ~ A ( x  ° + Y).  

Proof.  Conclusions (i) and (ii) are immediate consequences of the 
definitions. If x ° ~ A S (x ° + Y),  then P7 n Y* = ~ by (ii), and A (x ° + Y)  = 
by Proposition 3.2. This observation, coupled with part (i), establishes 
conclusion (iii). [ ]  
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In the next two propositions, we assume that C = ~n in the definition 
X = C ~ D  of X. 

Proposition 4.1. Let  P be a strictly suppor ted  closed convex cone, and 
let x o~ X _  ~ .  Then, x ° ~ A ~ (X) iff x ° is admissible in some support  L ( x  o) 
to S at x°. 

Proof. Whenever  x ° is strictly admissible, it solves the problem 

max{p, +. x: x ~ X} 

for some p~+ c P~+. The set 

L(x° )  = {x " +. _< + ~ :Ps x ~ p , . x  °} 

supports X at x °, and x ° is admissible in L(x°) .  
If x ° is admissible in some support  L ( x  °) to X at x °, then by the previous 

lemma,  x ° is strictly admissible in L(x°) .  But, since x ° ~ X C L ( x ° ) ,  the 
definition of strict admissibility implies that x ° ~  A s ( X ) .  [] 

Examples  3.3 and 3.4 show that the closedness of P is necessary in the 
previous lemma and proposition. Let  

x ° =  V = (0, 1, 1), 

and let X and Y be defined as in these examples.  Then, x ° is not strictly 
admissible in either x ° + Y or X, even though it is admissible in both of these 
sets and L ( x  °) = Y is a support  to X at x °. 

Certain features of Proposition 4.1 are worth noting. First, the 
conclusion does not state that, whenever  x ° is strictly admissible, it is 
admissible in every support  L ( x  °) to X at this point. For example,  let X be 
the unit square in R 2 and P = R2+. Although 

L ( x  °) = {x = (xl ,  x2): X1 ~ 1} 

is a support  to X at the strictly admissible point x ° =  (1, 1), x ° is not 
admissible in this support.  In fact, the support  

~Rn + ~< + 
L(x° )  = {x : p s " x ~ p s -x °} 

to X chosen in the proof  of the proposit ion depends upon knowledge of a 
strict support  p+ 6 P+ for which x ° maximizes p+ • x over  X. More  useful 
would be a support  that depends only upon local information at x °, such as 
the supports specified in expressions (8) and (9). Our  next results delineate a 
wide class of problems where such supports are possible. 

Proposition 4.2. Let  D be a strictly supported closed convex cone and 
let X be a polyhedron. Then, every admissible point x ° ~ S  is strictly 
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admissible. Moreover,  any admissible point x ° e  X is strictly admissible in 
the support  L(x °) defined by (8) with D = X. 

Proof.  Let  

hi(x) = aix -bi ,  for i = 1, 2 . . . . .  m, 

denote linear-affine functions defining X, and suppose that x°~  A ( X )  and 
that L(x °) is defined by (8). We first note that x ° is admissible in L(x°), for 
otherwise some z # x ° belongs to L(x °) ~ (x°+ P). But then, 

a ~. z>-bi and y = - x ° + O ( z - x ° ) ,  

where 0 >0 ,  satisfies 

for all indices i with 

Choosing 0 small enough, 

for every i with 

as well. Therefore,  

y s X ,  

contradicting x ° ~ A ( X ) .  

i a • y >t bi, 

i . x O =  a b/. 

a i" y >i bl, 

a i . x °>b i  

y # x  °, y ~ x ° + P ,  

Since x ° is admissible in L(x °) and L(x °) - x  ° is a closed convex cone, 
x ° ~ AS(L(x°)), by Lemma 4.1, and consequently x ° ~ A s ( x ) .  [] 

Previously, Evans and Steuer (Ref. 25) have shown that 

A ( X )  = A s ( x )  

when P, as well as X, is polyhedral. 
We next consider instances when X is nonpolyhedral.  If x ° is strictly 

admissible in X = C c~ D, then it solves the optimization problem 

max p~+. ( x - x ° ) ,  (10) 
x ~ C ~ D  

for some p~+ e P~+. Replacing D by L(x°), a support  at x °, and dualizing with 
respect to u ~ [L(x °) - x ° ]  + removes L(x °) from the constraints and gives 

sup (p+ + u)" (x - x°). (11) 
x ~ C  
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Note  that ,  when  L(x °) is def ined by (8), 

L(x °) - x  ° = {y ~ R":  Vhi(x°)y/> 0 for  all i with hi(x °) = 0}; 

and,  by  Fa rkas '  l emma ,  

[L(x  °) - x ° ]  + 

= { u  ~ R " :  u =A • ~h(x °) for  some  vec tor  A />0  with A • h(x°)  = 0}. 

In  this case,  the  objec t ive  funct ion in (11) is a l inear  app rox ima t ion  to the  
Lagrang ian  funct ion of (10). 

Recal l ing the  usual t e rmino logy  of nonl inear  p r o g r a m m i n g  for  this 
example ,  we call x ° a Kuhn-Tuckerpoint in X = C n D  with respec t  to the 
cone  P and  suppor t  L(x °) to D at x °, if x ° ~ D  and 

m a x  (p+ + u)(x - x  °) = O, 
x E C  

for  s o m e  Kuhn-Tucker multipliers 

p+ ~ P+ and u ~ [L(x °) - x ° ]  +. 

The  fol lowing propos i t ion  character izes  such K u h n - T u c k e r  points.  

P ropos i t ion  4.3. x ° is a K u h n - T u c k e r  poin t  in X with respec t  to the 
cone P and  suppor t  L(x °) to D at x ° itI the fol lowing condi t ions  are  satisfied: 

(i) x ° is strictly admissible  in C c~L(x°), that  is, x ° solves 

v = max{p +.  (x - x ° ) :  x ~ C ~ L(x°)}, 

for  s o m e  p~+ ~ P~+; 

(ii) for  this p~+, we have  

v = min{v (u): u ~ [L(x °) - x ° ]  +, 

where  

v(U) = sup{(p + + U)(X --X°): x ~ C}. 

Proof. T h e  validi ty of  condi t ions  (i) and  (ii) implies  that  

0 =  v = max{(p  + +u)(x - x ° ) :  x ~ C}, 

for  some  u s [L(x °) - x°] +, so x ° is a K u h n - T u c k e r  point .  Converse ly ,  if x ° is 
a K u h n - T u c k e r  po in t  with associa ted K u h n - T u c k e r  mul t ip l iers  p~+ and u, 
then  v(u) = 0. Since u ~ [L(x°)-  x°] +, 

u . (x-x°)>~O, 
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and consequently, 

p+~. (x - x  °) <~ (p+~ + u)(x - x  °) <- v(u)  

whenever  x ~ C n L(x°) .  These inequalities imply that 

v<-v (u )=O.  

Since x°~  C ~L(x ° ) ,  

Therefore,  

v~>0. 

v = v ( u ) = 0  

satisfies conditions (i) and (ii). []  
Whenever  L(x  °) is polyhedral,  as in (8) or (9), and 

ri(C) ~ L(x  °) ~ Q ,  

the duality condition (ii) is fulfilled (Ref. 38, Corollary 28.2.2). In particular, 
if C = R ~, then condition (ii) becomes superfluous, and we may sharpen 
Proposit ion 4.1 by specifying necessary conditions for strict admissibility in 
terms of easily computed  supports.  

Corollary 4.1. Let  P be a strictly supported convex cone, let 

X = D  ={x ~R~: hi(x)>>-O, i = 1, 2 . . . . .  m}, 

and assume that each constraint function h~ is differentiable at a strictly 
admissible point x ° solving 

max{p~ .x:  x ~X},  (12) 

where p~ ~ PT. If problem (12) satisfies any constraint qualification, 9 then x ° 
is strictly admissible in the support  L(x  °) defined by (8). 

Corollary 4.2. Let  P be a strictly supported convex cone, and let 
X = C ~ D, where C is a convex set and 

D = { x ~ R n :  hi(x)>~O, i =  1, 2 . . . . .  rn} 

is defined by concave functions. Then, if X satisfies the Slater condition 

hi(x*) > 0 ,  for i = 1 , 2  . . . . .  m, for some x* e C, 

x ° is strictly admissible in the support  defined by (9). 

9There are conditions, like linear independence of the vectors Vhi(x °) for indices i with 
hl (x °) = 0, that ensure that x ° satisfies the Kuhn-Tucke r conditions of nonlinear programming 
for problem (12), 
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Vector Maximization Problem. T o  il lustrate the  p rev ious  results in a 
s o m e w h a t  m o r e  concre te  setting, let us consider  the  vec tor  op t imiza t ion  
p r o b l e m  in t roduced  in Sect ion 2 with a cri ter ion funct ion 

f ( z )  = ( f l (Z )  . . . . .  £ ( z ) )  

and a set  of  a l ternat ives  Z C R n-k. Le t  

X = {(y, z)  c R":  z ~ Z and  y -</(z)},  

and  suppose  tha t  Z is def ined by Z -- C n D,  where  

D = { z  ~ R" -k :  hi(z)>.O, i = 1, 2 . . . . .  rn}. 
Le t  

={(y,  z): y e R  k, z e C}. 

For  any  z 6 D,  let h, (z )  deno te  the  subvec tor  of  

h(z) = (hi(z), h2(z) . . . . .  hn(z)) 

res t r ic ted to those  c o m p o n e n t s  with hi(z) = 0. As  we no ted  in Sect ion 2, z ° is 
efficient in the  vec tor  max imiza t ion  p r o b l e m  itt 

x ° = ( f ( z ° ) ,  z °) 

is admiss ible  in X with respec t  to  the  p r e f e r ence  cone  P = Pk- Note ,  in this 
case,  tha t  

P+ = {()t, y)~g~kxg~"-k:h > 0  and y = 0 } .  

If each  of the funct ions /~(z)  and hi(z) is different iable ,  then  the  l inear  
app rox ima t ion  to X at x ° co r respond ing  to  (8) b e c o m e s  

L(x °) - x  ° = {(y, z)  ~ R ~: y ~< Vf(z°)  - z and  V h ,  (z°) - z I> 0}. 

Since any  admiss ible  poin t  (y*, z*)  in L ( x ° ) n  ~ w~th respec t  to Pk mus t  
satisfy 

y * =  V f ( z ° ) .  z *, 

x o = (yO, z 0) is strictly admissible  in L(x °) n cg wheneve r  it solves 

v = m a x { A V f ( z ° ) . ( z - z ° ) :  z c C a n d V h , ( z ° )  • ( z - z ° ) ~ 0 } ,  (13) 

for  some  posi t ive k - v e c t o r  A. 
As  we have  no ted  previously ,  Fa rkas '  l e m m a  implies tha t  the  po la r  to 

the po lyhedra l  cone  L(x °) - x  ° is given by 

[L(x° ) -x°]  + ={(u  1, u2) ~ ~ " :  u 1=  - A  

and 

u z = AVf(z  °) + t xVh , ( z  °) for  s o m e  h >t 0 and  ~ >I 0}. 
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Therefore,  (y0, z o) is a Kuhn-Tucker  point if it solves 

max{[h Vf(z°) +/x Vh,  (z o)]. (z - z o) + (o- - h) .  (y - y o)}, 
y ~ R  k 

z ~ C  

for some positive k-vector  o-. The value of this optimization problem is +ce, 
unless or = h. Thus, (/(z°),  z °) is a Kuhn-Tucker  point, or z ° is a Kuhn-  
Tucker point in the vector maximization problem, whenever 

max{[h Vf(z °) +/xVh,(z°)]  • (z - z°)} = 0, (14) 
z~,C 

for some positive k-vector  ),. 
Note that, for z o to be a Kuhn-Tucker  point to the vector maximization 

problem, a choice of positive weights ,~ is required for the vector criterion 
function f(z) ,  so that z ° is a Kuhn-Tucker  point to the nonlinear program 

max{hf(z): z e C and h(z)  ~> 0}. (15) 

Proposition 4.3 shows that necessary and sufficient conditions for z ° to be a 
Kuhn-Tucker  point are that: (i) z ° solves the first-order linear approxima- 
tion (13) to (15) at z°; and (ii) the inequality constraints of (13) can be 
incorporated within the objective function by an appropriate choice of 
weights/z, so that the optimal value to the problem remains unaltered. That  
is, Kuhn-Tucker  points are associated with (i) a regularity condition guaran- 
teeing that a linear approximation inherits certain solutions from a nonlinear 
program, as well as (ii) a duality condition guaranteeing dualization of the 
linear approximation problem. 

When k = 1, ihe vector maximization problem becomes a nonlinear 
program, and condition (14), with the positive scalar h normalized to value 
1, reduces to the usual Kuhn-Tucker  conditions. Consequently, the 
regularity and duality conditions for characterizing Kuhn-Tucker  points 
subsume all of the numerous constraint qualification conditions of nonlinear 
programming (see, for example, Mangasarian, Ref. 42). Fiacco and 
McCormick (Ref. 43) seem to have first stated this fact when C -- g~n and the 
duality condition is not required. In a section of an unpublished report,  
Magnanti (Ref. 44) introduced the duality condition in the context of 
nonlinear programming. Halkin (Ref. 45) presents related results in the 
context of nonlinear programming. More recently, Robinson (Ref. 46) 
derived first-order necessary conditions for a general vector optimization 
program in infinite dimensions by studying preference orderings in the 
image of certain multi-valued maps. 

When specialized to the vector maximization problem, Corollary 4.1 
shows that, if C = R n and the regularity condition is fulfilled, then a necesary 
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condition for z ° to be strictly admissible [i.e., z ° solves problem (15) or, 
equivalently, (f(z°), z °) is strictly admissible in X ]  is that 

x ° = ( f ( z ° ) ,  z °) 

is admissible in L(x°). The last condition is equivalent to z 0 being efficient in 

ZL--{Z e R"-k:  Vh,(z°)  • (z - z ° )  ~> 0}, 

with respect to the vector criterion Vf(z°) • z. Therefore,  efficiency in the 
linear approximation to the vector optimization problem is necessary for 
strict admissibility in the problem itself. 

Remark  4.1. These results are related to the notion of proper  
efficiency introduced by Geotir ion (Ref. 12); see also Kuhn and Tucker,  Ref. 
10. By definition, z ° is a proper efficient point in the vector maximization 
problem if there is a scalar M > 0 with the proper ty  that, for every z ~ Z and 
each index i satisfying 

fi(z)>fi(z°), 
the inequality 

[fi(z) - f i  (z°)]/[fi(z °) - f1 (z)] ~< M 

is valid for some index/" such that 

fj(z) <~(z°). 
As Geoffrion shows, whenever  Z is a convex set and each function fj(z), for 
] = 1, 2 . . . . .  k, is concave, proper  efficiency of z ° is equivalent to z ° solving 
problem (15) for some A > 0 .  As we have noted, this last condition is 
equivalent to (f(z°), z °) being strictly admissible in X. If C = R n, then we 
may restate our comment  made just prior to this remark  as follows: if z ° is 
strictly admissible in the vector maximization problem and the regularity 
condition is fulfilled, then 

z ° e  Z is a proper  efficient point in Z L, with 
(16) 

respect to the vector criterion Vf(z°) • z. 

We might also note that, if f ( .  ) and h(-)  are concave, then condition (16) 
implies that z ° is a proper  efficient point in the vector maximization 

0 problem. To  establish this fact, we note that condition (16) implies that z 
solves problem (13) for some positive k- vector h. Therefore,  z 0 satisfies the 
Kuhn-Tucker  conditions (14) with C e R" and, because of our concavity 
hypothesis, z ° solves the Lagrangian maximization 

max {Af(z) + / z h ,  (z)}. 
Z E R  n -  
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Since, by definition, 

t zh , ( z  °) = O, 

the optimal value to this problem equals Af(z°); and, since z ° e  Z, it must 
solve I° the optimization problem 

max{A/(z): h ( z )  >- 0}; 

hence, it must be a proper efficient point in the vector maximization 
problem. 

We should point out, though, that a proper efficient point z ° need not 
satisfy condition (16). As an example, let 

z ° = (0, 0) 

in the vector maximization problem with criterion 

f l (Z)=Zl ,  A(z)=z2, 
and constraints 

hi ( z )  = z2-z21 >t0, h2(z) = - Z z - Z  2 >-0. 

In this instance, the regularity condition fails, since the origin is not 
admissible in 

ZL ={(zl, z2)~ R2:z2 = 0}. 

In a recent paper, Borwein (Ref. 47) presents, for more general 
topological spaces, several results intimately related to our local charac- 
terizations of efficient points. He defines a point z ° e Z to be proper efficient 
with respect to a closed convex cone S, if z ° is efficient and the tangent cone 
to the set 

{y: y =f (z ) ,  z ~ Z } - S  

at y0 = f ( z  0) intersects 8 only at the origin. In the absence of convexity, strict 
efficiency implies this notion of proper efficiency (Ref. 47, Theorem 1), while 
under convexity assumptions these definitions are equivalent (Ref. 47, 
Theorem 2). This last result shows that, with convexity, equating L ( x  °) - x  ° 
with the tangent cone fulfills the support condition guaranteed by Pro- 
position 4.1. 

5. Discussion 

In the previous sections, we have studied structural properties of 
admissible points with respect to a convex cone. Our results provide global 

lo Here, we use the standard weak duality arguments of nonlinear programming. 
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characterizations of admissible points in terms of strictly admissible points 
and local characterizations in terms of linear approximations. We have also 
shown, with appropriate hypotheses imposed upon the problem structure, 
that the sets of admissible and strictly admissible points are both connected. 
In this section, we discuss briefly a few potential extensions and applications. 

First, we might comment  on the frequently evoked assumption that the 
underlying preference cone is strictly supported. According to Proposition 
6.2, this assumption rules out grass is greener preferences, in which each of 
two alternatives is preferred to  the other. More generally, it does not permit 
situations in which x > y  and y / > x ,  for ] =  1, 2 . . . . .  for some points yJ 
converging to y. As an example, lexicographic orderings define preference 
cones that are not strictly supported. 

Whenever  underlying preferences are described by a closed convex 
indifference cone px, i.e., y ~x  +px iff y;~x,  the set 

P = { x ~ P X : O ~ x }  

describes a strictly supported preference cone. This cone is strictly suppor- 
ted; for, if p e P belongs to the tineality space of c l  P, i.e., 

- p ~ c l P ~ c l P Z  =px, 
then 

O = p - p ~ p + P  z or 0 ~ p ,  

a contradiction. We should emphasize, however, that, even though this 
construction provides strictly supported cones, our development does not 
presume the existence of any weak preference relation 9 .  

There are several ways in which our results might be extended. Replac- 
ing the preference cone P by a convex set C or, more generally, by a family 
of convex sets Cx, Cx denoting the set of points preferred to x, would add 
possibilities for broader  applications. Another  line of investigation would be 
to retain our  hypothesis and to see what additional assumptions might lead 
to stronger conclusions. For  example, Arrow and Hahn (Ref. 4) show that, if 

P = {x ~ R"  : x = 0 or all xi > 0}, 

then the following restrictions on the convex set of alternatives X:  

(i) 0 belongs to the interior of X, 
(ii) ""  X c~ • + IS compact, 

(iii) free disposal, i.e., x - y ~ X for any y ~ R 2 whenever x ~ X, 

imply that A ( X )  c~ • ~ is homeomorphic  to an (n - 1)-dimensional simplex. 
This substantial strengthening of connectedness is possible, with similar 
hypothesis, for other  convex cones as well. In general, it may be that the set 
A ( X )  is homeomorphic  to a union of simplices with some special structure. 
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In a paper not yet available to us, Naccache (Ref. 48) has initiated 
investigations of another nature. He studies stability of the set of admissible 
points with respect to perturbations in X and P. He has also studied 
connectedness of A(X) ,  but with assumptions that may be related to free 
disposal. 

There are a number of ways in which the structural properties discussed 
in this paper and these extensions aid decision making. Consider, for 
example, the vector optimization problem. In practice, it is convenient to 
generate strictly admissible points by solving 

max A~(z): z e Z , (17) 
j 1 

with positive weights )ti associated with the criterion functions. By varying 
the weights, decision makers can generate all strictly admissible points; or, 
by choosing a sequence of positive weights appropriately, they might move 
toward some admissible point that is best with respect to some auxiliary 
criterion (see, for example, Ref. 27). Considering, as before, the vector 
maximization problem in terms of the set 

X = {(y, z) c P": y <-f(z) and z c Z }  

and the preference cone P = Pk, we see from the representation theorem 
that every admissible point (y°=f(z° ) ,  z °) is a limit point of solutions 
(y*=f(z*) ,  z * ) t o  (17) or a translation of such limit points by vectors 
(0, z) ~ cl  Pk \Pk. That is, 11 in the space ~k, the image f( .  ) of elficientpoints is 
contained in the closure of the image of the proper efficient points (see 
Geoffrion, Ref. 12). In this context, the representation Theorem 3.1 shows 
that the solutions to (17) delineate all potential values of the criterion 
function when evaluated at efficient points; connectedness of the admissible 
points shows that, in order to move from any (proper) efficient point to 
another, we can restrict ourselves to local movements among (proper) 
efficient points only, such as local changes in the coefficients Aj of (17). 

We would expect similar benefits from the structural properties of 
admissible points in general, especially when solving for strictly admissible 
points is attractive computationally. 

One application of admissibility that might be explored profitably 
concerns the optimization of monotonic functions h(x), where, say, h (x) is 
strictly increasing in each component xj of the vector x. In this instance, any 

11 Some assumption,  such as the hypothesis c l  P c~ RC(X)  = {0} of Theorem 3.1, is required for 
this s ta tement .  For example,  let V and Y be defined as in Example 3.4; let Z = V +  Y; and 
let [ l ( z )  = z l  and f2(z) = z2. The efficient set is the half line from V passing through the point 
K (see Fig. 1). Every efficient point is nonproper ,  though,  so that  the s ta tement  is not  valid in 
this instance. 
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optimal solution to the problem 

max{h(x): x ~ X} 

is admissible for X with respect to P = ~ 7-. This observation suggests that 
optimization algorithms might restrict their search to the admissible points 
A(X), especially once any algorithm first identifies a point in this set. 

Do mathematical programming algorithms have this property? The 
answer, at least in terms of the simplex method is negative. In the following 
example: 

max 2xl + x2, 

subject to 4xl + 7x2 -> 18, 

X1 "}- 2X2 ~ 5, 

Xl ~ 0, X2 ~" 0, 

the admissible set is the line segment joining the points a = (1, 2) and the 
optimal solution c -- (5, 0). Starting from the extreme point a, the simplex 
method moves off the admissible set to the point b = (4.5, 0). In a number of 
experiments conducted on larger problems (Ref. 36), we have never ob- 
served this same phenomenon.  In these examples, once the simplex method 
first encountered an admissible point, it always generated an admissible 
pgint at each successive iteration. Our understanding of the simplex method 
might be enhanced if we could explain this behavior. 

6. Appendix A: Characterization of Strictly Supported Cones 

The following rather intuitive propositions characterize the strictly 
supported condition for a convex cone. Recall that the lineality space L of 
any cone C is the set of lines contained in C, i.e., L = C ~ ( - C ) .  

Proposition 6.1. Let  L be the lineality space for the closure of the 
convex cone P. Then, P is supported strictly iff P n L = {0}. 

Proof. 
Then, 

Let  L ± denote the orthogonally complementary subspace to L. 

c l  P = L O ( c l  Pc~L ±) 

is a direct sum representation, and 

(cl P)+ = L ± c~ (cl P c~L±) +. 
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Now, p~ ~ L ± whenever 

and 

Consequently, 

+ + 

p, ~ P~ __c_ (cl P)+ 

+ 

p~ . p = O ,  for all p ~ P n L .  

To establish the converse, note that, since cl  P c~ L ~ is convex, closed, 
and pointed, its positive polar (cl P n L * )  + has full dimension (Ref. 38, 
Corollary 14.6.1). Any point y belonging to the interior of (cl  P ~ L-L) + must 
satisfy y -p > 0 for all nonzero p e (cl P c~ L±). Expressing y as 

y = yL+y  ±, 

with yL ~ L and y2-~ L ±, we note that 

( y L + y ± ) . p  = y2-.p > 0 ,  fo r  all nonzero p ~ cl  P n L  ±. 

If p e P and P c~ L = {0}, then 
k 

P =PL+P- 

for some pL ~ L and some nonzero p±~ cl  P ~ L  ±, and 

2. y .p = y ± . p ± > O .  

Therefore,  P ~ L = { O }  implies that y ± . p > O  for all p e P ;  that is, P is 
supported strictly. []  

The proof of this proposition shows that, whenever P n L = {0}, any 
point contained in both L2. and the interior of (cl P ~L±)  ÷ is a strict support  
to P. We next establish the converse to this statement. 

Proposition 6.2. 
convex cone P. Then, 

Let  L be the lineality space for the closure of the 

ri(P +) C_ P,+ 

iff L ~ P = {0}. Moreover,  if c l  P m L l = P m L ±, then 

-4- . + 
P~ C_n(P ); 

consequently, 

i f f L ~ P = { O } .  

ri(P +) = p+ 
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Proof. Let 

cl  P = L ( ~ ( c l  Pc~L ±) 

be a direct sum representation. Then, 

P+= (cl P)+ = L ~ n ( ~ l  Pc~LI)+; 

and, since L ± is a subspace and (cl P c~ L±) + has a nonempty interior I which 
intersects L ±, 

ri(P +) = L ± n L 

By the remark preceding the proposition, 

implies that 

Conversely, if 

then 

by the previous proposition. 
Finally, suppose that 

P~L={0} 

ri(P +) _C P~+. 

ri(W) C_ P+, 

and L c~ P = {0} 

cl  P~LZ=P~L l, 

and let y belong to the relative boundary of P+. Then, there are vectors 
yJ E L ± converging to y satisfying yi .  pi < 0 for some pJ E [P ~ L ±, which we 
scale to unit norm. Any limit point p of the sequence {pi}j~>l belongs to 

cl  PnL±=P~L±C_P 

and satisfies y .  p ~ 0. Consequently, 

y~ P+ and P+ _C ri(P+). [] 

When combined, these propositions establish Proposition 2.1 of the 
text. Note that the example following Proposition 2.1 shows that 

ri(IW) # P+ 

is possible. 
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7. Appendix B: Proof of Lemma 3.3 

We prove the continuity l emma required for Theorem 3.3. 

Proof of Lemma 3.3. Let  y be any recession direction of X. Since 
X(0)  is nonempty  and X(1)  is nonempty  and compact ,  

p (0) .  y<~0 and p(1)-  y < 0 .  

Therefore ,  

[0p(1) + (1 - 0)p(0)]. y < 0, 

for all 0 < 0 ~< 1, implying that X(O) is nonempty  and compact.  
According to L e m m a  3.2, the mapping O-~X(O) is upper  semicon- 

tinuous on the interval [e, 1] for any 0 < E ~< 1. Consequently,  to complete  
the proof,  we must show that this mapping  is upper  semicontinuous at 0 = 0. 

This indeed is the case if, for some 6 > 0, the set 

S~- w{X(O): 0<0~<8} 

is bounded.  For, if the mapping 0 ~X(O) is not upper  semicontinuous at 
0 = 0, then there is an open set G containing X(0)  and points x j ~ X(Oi)\G 
for some real numbers  0 i > 0 approaching 0. Since 

p(Oi).xJ>~p(Oi).x, for all x ~X,  

any limit point  x* (such a limit point exists since the x j eventually lie in the 
bounded set S~) to the sequence {xi}j~l satisfies x* ~ G and 

p (0)- x* 1> p (0). x, for all x ~ X. 

But then 

contradicting 

x* ~X(O)\G, 

x(0) c_ G. 

Therefore,  to establish the theorem, we only need to show that S8 is 
bounded for some 6 > 0. For  notational simplicity, suppose (by translation if 
necessary) that 0 ~ X(0) .  Then,  by definition, 

p(O). x(O) ~<p(O)-x(0) -  0, (18) 

for any x (0) c X(O), 0 < 0 ~ 1. Since 0 e X, 

[Op (1) + (1 - O)p(O)]. x(O) >1 O, 
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implying from (18) that 

p(1)-x(O) >! O, (19) 

Now, if S~ is unbounded for every 0 < 8  ~< 1, then there are 0 j 4 0  and 
points x(O i) ~ X(O ~) whose Euclidean norms ?,i approach + ~ .  Since 0 ~ X, 
any limit point y to the sequence {x (0J)\hj}j~l is a direction of recession of X. 
But Ineq. (19) implies that 

p(1)-y  >~0, 

contradicting the hypothesis that X(1)  is bounded. Consequently, $8 must 
be bounded for some c5 > 0, and the proof is complete. []  
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