JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 36, No. 3, MARCH 1982

About Differentiability of Order One of
Quasiconvex Functions on R"

J. P. CROUZEIX'

Communicated by M. Avriel

Abstract. This paper is devoted to the study of the different kinds of
differentiability of quasiconvex functions on R". For these functions,
we show that Giteaux-differentiability and Fréchet-differentiability
are equivalent; we study the properties of the directional derivatives;
and we show that if, for a quasiconvex function, the directional deriva-
tives at x are all finite and two-sided, the function is differentiable at x.
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1. Introduection

Let f be any function from R" to [~0, +00], and let x be a point where
f is finite. The (one-sided) directional derivative of f at x with respect to
a vector h is defined as the limit

f(x, h)= lim (f(x +AR) = f(0)]/A.

If the directional derivative f'(x, &) exists for all & of R" and verifies
—00<~f'(x, ~h)=f{x,h)<o0, foreachheR",

then f is said to be weakly Giteaux-differentiable at x.
If the directional derivative f'(x, h) exist for each & of B”, and if the
function f'(x, - ) is linear, i.e., if there exists a vector ¢ such that

f(x,h)={c, h), foreachheR",

then the function f is said to be Géiteaux-differentiable at x; the unique
vector ¢ for which the above relation holds is denoted by f/{x) and is called
the Géteaux-derivative of f at x.
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If there exists a vector d € R” such that

Lim(1/||RIDLf (x + ) = f(x) = (d, 1)] =0,

then f is said to be (Fréchet)-differentiable at x. One easily sees that f is
also Gateaux-differentiable at x and that

d=f'(x).

All norms being equivalent on R”, we shall choose the norm which will
suit us best.

In Section 2 of the present paper, we show that both concepts, Giteaux-
differentiability and Fréchet-diferentiability, coincide for quasiconvex
functions on R". Section 3 is devoted to the study of the function f'(x, -},
f being quasiconvex, when it exists. We show that, if f'(x, ) exists and is
finite for each A, the function f'(x, - ) is a positively homogeneous quasicon-
vex function and, under a continuity condition, can be expressed as the
minimum of two support functions. We show also that, if f is weakly
Giteaux-differentiable at x, it is also Giteaux-differentiable, and thus
Fréchet-differentiable as well.

Throughout this paper, we shall use the following notations.

Let A be a set of R". We denote by A° the complement of A, by A
the closure of A, by 64 and 8% the indicator function and the support
function of A, respectively, i.e.,

0, ifxeA,
+00, ifx£A,

8% (y) =supl[(x, y)lx e Al

The relative interior of a convex A, denoted by ri(A), is the interior
of the set A, regarded as a subset of its affine hull. The set difference
A\ri(A) is called the relative boundary of R".

We set e, €2,...,¢, to be the n coordinate vectors of R", and we
define the norm [|x|j; of the vector

5400 =1

xz(xlaxZ:v"-’xn)

as

el = % [l

Let f be a function from R" to Ru{+0o0}. Its domain is the subset
of R”

dom(f)={x e R"|f(x) < +o0}.
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A function f from R" to R is said to be quasiconvex iff
flx+t(y —x)) <= max[ f{x), ()],

for every x,yeR", and te[0, 1], or equivalently if, for every A eR, the
subset of R”

Si={x[fx)=<a}

is convex.

2. Giteaux-Differentiation and Fréchei-Differentiation

It is well known and easy to prove that a convex function on R" which
is Gateaux-differentiable at x; is also Fréchet-differentiable at x¢. Indeed,
if the Géteaux-derivative f’ of a function f on R" exists in a neighborhood
of xo and is continuous at xo, f'(xo) is also the Fréchet-derivative of f at
xo. A convex function f which is differentiable at x, is not necessarily
differentiable in a neighborhood of xo, but its subdifferential 3f (an extended
concept of the derivative) is a multivalued mapping which is upper semicon-
tinuous at xo. Quasiconvex functions have no similar properties. Indeed,
for these functions, the existence of the first derivative in a neighborhood
of a point does not imply the continuity of the derivative in this point. In
order to establish our theorem, we shall first prove two lemmas.

Lemma 2.1. Let § be a convex set with a nonempty interior. If 0
belongs to the boundary of §, then there exist x* and A <0 such that
88 (x*) =0 and Ax* e int(S).

Proof. Let
K ={x*|85(x*)=0}={x*|8§ (x*) <0}

K is a nonempty convex cone. If

int($H) " [~-K]=,
there exists x* # 0 and o such that
sup[(x, x*)|x e S]< a <inf[{y, x*)|y e K.

Clearly, « = 0. The first inequality implies that x* € K, but then the second
implies that o <0.
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Lemma 2.2. Let 8 be a convex function on R with 8(0)=0 and
6{x)>0if x #0, then

MILIEI sup[|t][6(t) —u < u|t[]=0.

Proof. Let
h(w)=sup|t]|0(2) — u < ult]];
h is nondecreasing on R*. Let
f=1lim h(u).
pn>0.4
Hence,
min[6(/2), 0(—{/2)1sut/2+pu, Yu>0,

implies that 7 =0.

Theorem 2.1. If a quasiconvex function on R" is Giteaux-differenti-
able at x, it is also Fréchet-differentiable at xg.

Proof. Without loss of generality, we assume that x, = 0 and f(xo) = 0.
Denote by f/(0) the G-derivative of f at 0; We shall distinguish two cases,
depending on whether f(0) is zero or different from zero.

Case C1. where f'(0)=0. Let
hi=e¢; and h...=—e, fori=1,...,n.

For each vector x of R”, x # 0, it follows that
2n

x =|lx]ly _; thi,
where, fori=1,2,...,n,
t; = x,-/llxlll al’ld hei= 0, if X; = 0’
t;= 0 and v = —xg/ﬂxﬂl, if X; <q0.

Clearly, x is a convex combination of the 2n vectors x|k, and the
quasiconvexity of f implies that

flx)< max [F(lxlluho).

=1, 2n
Hence,
. fx) . flixllsh:)
< L =0,
i sop = pa, [1m
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It follows that, if f is nonFréchet-differentiable at 0, there exists u <0 and
a sequence {x'} in R” converging to 0, such that

ey <ull ieN, XA > kY>>0
Let
§={x|f(x)<0}

We can assume, without loss of generality, that the interior of S is nonempty.
Since 0 belongs to the boundary of S, according to Lemma 2.1, there exist
x* and a <0 such that

Ix*l=1, 8%(x*)=0, ax*eint(s).
Without loss of generality, we assume that 1™ = ¢,. Therefore,

i) fx)=0,if x;>0;
(if) there exists 8 > such that

m =max[ f(ae+(~1)Be)|j=2,...,n,i=1,2]<0.
Now, the function
6(t) = f(tey)

is quasiconvex and, for some foe o, Of, it is nondecreasing on [#, 0].
Furthermore, there exists /e N such that

wlle*| > max(m, 6(t)].
For each > [, there exists ' € Jt,, 0[ such that
iy <ullx'l<6(y<0, iffo<r<i<r<o. (1)
Let
Si={x|f)=plx'l}.

Since t'e; belongs to the relative boundary of the convex set §1, there exists
y' # 0 such that

sup[(x, y)lx e S1=<tes, y').
It follows that

a(yl)1+(”1)iﬁ(yl)jgl‘l(yl)b ]‘32:" .y 1y i=1523 (2>
RO T = 3

Inequality (2) implies that (y! )1 >0, and so we can take

=1
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Choosing the norm

Ieli=max] xsl, % ],
i=2
we obtain
IyYl=<@' —a)/B,
—|x'l[1+ (' - a)/B]< ",
lx'|=-t'/(B+1' ~a).
Associate with 8 the function 6 defined by

6(1), ife#t, 1> 1,
plxl,  ifr=r1>1.

6(t)= {
It follows from (1) that
lim 6(t)/t=1lim 6(z)/t = 6'(0) = 0.
t->Q >0

On the other hand, from (4c), we have
8¢/t = ulx'l/t' > —Bu/ B+t —a).

(4a)
(4b)
(40)

(5)

When [ > +00, t' > 0. The limit of the last term is then strictly positive, and

this contradicts (5).

Case C2. where f(0)#0. Without loss of generality, we assume

f(0)=e,
(A) First, we shall prove that

f)={f'(0), x) _

lim sup =0.

x>0 flxl
Let

h,‘ =¢; and hn,q.”‘ =€ fori= 1, 2, Y 1.

For x eR", take

n-1

00)= T |ul,  lxll=max{0(x), [x[)
If 8(x)#0, then let

t=x/0(x), tho1:=0, ifx; =0,

=0, fpe1wi = =%/ 0(x), if x; <0,

fori=1,2,...,n—1;and, if 6(x) =0, then let
=1, t=0, fori=2,...,2n—-2.



JOTA: VOL. 36, NO. 3, MARCH 1982 373

Hence,

2n—2
x= Y LX)+ x,e.).
=1

Since x is a convex combination of the 2n —2 vectors 8(x)h; + x,.¢e,, the
quasiconvexity of f implies that

fx)={f0),x) _ max {f(ﬁ(x)hﬁxnen)—xnj
Jlx] Cimte2n-2l max[8(x), [x.]] 1

Hence, it is enough to prove that, if g is a quasiconvex function on R?
Giteaux-differentiable at (0, 0), and such that

g0,0)=0, g'(0,0)=(0, 1),

then

={. (6)
=0 1 I
Let

S={(x, y)|g(x, y)=<0}

(i) Suppose that there exist x €10, 1] and a sequence {x’,y'} in §
converging to (0, 0) such that

gx, v~y = u max[jx'], Iy}, I=1,2,.... N
Then,
—y'=pulx, I=1,2,...,
and the quasiconvexity of g implies that

!} [N 1 { ( E
gi{fx(x‘y;*’)ggy NPT max[g(~=y'/u, y)~y', g1, ) —y').

Since
g'(0,0)=(0, 1),

the second term tends to 0 when / tends to +00, and this contradicts (7).
Thus,

. glx, y)*y]
lim su [..___..___._, =(. 8
(0.0} fiCe, I ®
x,y)es

(if) Letee€]0,1[. Since
g'(0,0)=(0, 1),
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there exists u >0 such that

glu, —1)<0,  gl-p, —u)<0,

g0, &)< +e), for every £ €[0, 2u].
Denote by T the convex hull of the three points

(e, =), (po—w),  O,u),

and consider the function 6,
O(x*)=8%~r(x*,1).

Clearly, 6 is convex,

6(0)=0, 8(x*>0, ifx*#0.
For each (x, v)e T, let

, if (x, y) eint(S),
k(xa Y) = {(1 -+ 6) Sup[xx* 4 v le(x*) = xx* + }’}, otherwise.

For a geometric interpretation of &, note that, if (x, y)e T n S°, the straight
line passing through the points (x, y) and (0, xx™*+ y) for the optimal value
x* is tangent at T'N S.

It is easy to see that

O=k(x,y)su(l+e), forevery (x, y)e T.

Now, let (x, y)e T n8°, and let any A such that
kx, )<A(l+e)<2u(l+e¢).

The straight line passing through the points (x, y) and (0, A) has a nonempty
intersection with int(S); i.e., there exists (%, y)eint(S) such that (x, y)
belongs to the segment joining (0, A) with (%, 7). The quasiconvexity of
g implies that

glx, y)smax[g(%, 7), g(0, )]s A(l+e).
Since this result is true for all A such that
kix,y)<A(l+e),
then
k(x,y)=g(x,y), onTnS"
Choosing for norm in R>

ICe, ) = max[|x, |y[],
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Gf‘;'}‘)

Fig. 1
it follows that
- kix,y)—y
A=hmsup[————}<ﬁ 1/u) sup [(1+e€)xx*+ey|0(x*) <xx*
Y B (EAD ;L->0+( /m) x*’fy [(1+e) y|8(x*)
(x,y)eS (1,058

1+ .
A<e+ lim [( E)sup{xx*io(x*)—p. =xx*, Exlgg}},
122 x,x*

>0,

A<e+(l+e) lim supl|x*] |0(x*) — u < ulx*(].
[ e
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Lemma 2.2 implies that
A<e.
Consequently,
lim sup [M] S, for every e > 0.
w00k | )l

(x,y)£S

By combining this result with (8), we see that (6) follows.
(B) Now, we shall prove

f&) = {f(0), x)

lim inf =0. 9

x0 flxl
Let
U= €+ e, Up141 = —€; + ey, fori=1,2,...,n—1,

and let € €]0, 3. Since f(0)=e,, there exists vo>0 such that, for each
v €[—vy, vo), v #0, we have

—e<[flrvy)—v]/v<e, j=1,2,...,2n-2,
—e<[flve,)—v]/v<e.

Let
6(A)=A/(1—€) and 6'(A)=Ar/(1+e), if A <0,
6(A)=A/(1+€) and 6'(A)=A/(1-e), ifA=0,
A=-w(l+e), A=wo(l—e).
Let
Sy={x|flx)=A},
and let
reld, Al A#0.
Hence,

—vo<sOA)I<O(A) vy,
and, since 6'(A)e. € S,, there exists x*(A) # 0 such that
sup[{x, x*(A))] x € Si]<(0'(V)en, x* (M) =0'A)x 7 (A).
Furthermore,

8{A)v; €Sy, forj=1,2,...,2n—2,
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and so
D)+ <o WxEQR),  j=1,...,n-1,k=1,2.
Clearly, x5 (A)>0, and so we can assume that x(A)= 1. It follows that:
() ifrea,0f
XF)<2e/(1+e)<2e/(1—€), forj=1,2,...,n—1,
and so, for all x € S,,
2e/1-N'S, b +an A/ (1 +e);
then, define ~
T, ={x|—[2¢/(1-e)] L ;] +x, <A/(1+ )}
(i) if A €]0, Al,
xF)=<2¢/(1~¢), forj=1,2,...,n—1,

and so, for all x e §,,
n—1
26/(1=e)] T I5|+x <a/(1-e);
=

then, define
To={x|—[2¢/(1~&)] L |5l + x, <A/ (1—-e€)}.

Let also
T,\ = Té’ for A <A,

T.=R", fori>j},
and define a function g from the sets T, by
glx)=inflA|lxeT,].

Since Sy CT, for each A, then g=</f. Computing g, we obtain, in a
neighborhood of 0,

(1450~ 21 +6/ (=] T [x, i (1—ex,—2¢ 5 P
i=1 j=1

glx)= et
(1-e)x,—2¢ ¥ lxl, otherwise.
i=1

Choose, for norm in R”,
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Then,
n-1
~elx[1+2(1+e)/(1-€)],  if(1-€)x,—2¢ ¥ |x]=<0,
g(x) —Xp F =1
~3elx|, otherwise.
Recall that
0<e<3.
Then,
1+2{1+e)/{(1—€)=<7,
and thus
fim inf F 5 iy 8E) En
w0kl xe0 x|

This implies (9) and completes the proof.

3. Directional Derivatives and Positively Homogeneous Quasiconvex
Functions

If f is a convex function and if xo belongs to int(dom f), the function
f'(xo, ) is a positively homogeneous convex function from R” to R and can
be related to the subdifferential of f at xo. If f is a quasiconvex function,
then xo can belong to int(dom f) and f'(xo, -) may not exist; however, if
we assume the existence of f'(xo, #) for all h€R", then f'(xo, ) has some
interesting properties.

Theorem 3.1. Let f be a quasiconvex function on R", and assume
that f'(xo, h) exists for every i € R". Then, the function f'(xo, - ) is a positively
homogeneous quasiconvex function.

Proof. Let A1, h,€R”, and let A €10, 1[. Since f is quasiconvex,

flxo+ t(Ahy +(1—A)h2)]— fxo0)
t

< max[f(xo +thy)—f(xo) flxo+ths) "f(xo)]
f ’ t ’

for every £ > 0. If we take the limit when ¢ tends to 0, then
f'(x0, Ay + (1= A)h2) <max[f'(xo, k1), f(x0, h2)].
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Positively homogeneous quasiconvex functions which are either positive
or negative on their domain are well known; see, for instance, Refs, 1
and 2. Recall the following result.

Proposition 3.1. lLet g be a positively homogeneous quasiconvex
function from R" to R u{+0}. Denote by D the domain of g, and assume
D to be nonempty. If g is lower semicontinuous at every point of D, and
if one of the two following conditions is true:

(Cy) g(x)=0, VYxeR",
(Cy) gx)<0,  Vxeri(D),

then g is convex.
Let 6 be a lower semicontinuous positively homogeneous quasiconvex
function from R" to R, and let

D ={x/60(x) <0}

D is a convex cone, and 6(x) =<0 on the relative boundary of D. Define
the functions 6" and ¢ as follows:

o( )_{ﬁ(x), ifxeD,
= +00, ifxgD,
10, itxeD,
i (x)'"{a(x), if xg D,

Clearly,
#=min[8, 0"

The functions 8 and §~ are positively homogeneous quasiconvex functions
and verify the assumptions of the above proposition. Hence, 8" and ¢~
are convex functions, and @ is the minimum of two Ls.c. convex functions.
Furthermore, there exist two closed convex sets C* and C~ of which "
and 6~ are the support functions. Note that C" is a compact set, since 8
is defined on the whole space R” and that, if I is empty, then ™ =R" Let
C=C"'nC” and K=|JaAC,
Az=0

i.e., K is the convex cone generated by C~. We shall now study the
relationships between C*, C™, C, K.

Proposition 3.2. Under the above assumptions and, if DD is nonempty,
we have
(a 0eC’,0eC,;
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b C'= U rac’,Cc = ArC;
A_is[(),l] A=l

() C'CK

Proof. By definition,
Sc+(x)=supl(x, y)=67(»),  67(y) =supl(y, x)|xe C"],

Sc-(x)= Sl;p[(x, =0l 6 (y)=sup[(y, x)[xeC].

(a) If 0 C™, then we should have 8 (y)=0 for every y; and, if
0¢ C", there should exist some y such that 6" (y)<0.
(b) LetAel0, 1] Then,

8 (Ay) =187 (y)=9"(y),
and so
8c-(Ay) =sup[(Ay, x) =67 (x)]=sup[A(y, x) = A6 " (x)]= A8 (y).
Now, let A €[1, +oo[. Then,
8~(Ay)=A0"(y)=67(y), foreveryyeD,
and so
Sc-(Ay)=A8c-(y).
(c) LetyeC”,y#0.We have
8c+(y) = supl(x, y) = 6" (x)] =supl(x, y) = 0" (x)]= supl(x, y)]. -

Furthermore, 8k is the positively homogeneous convex function generated
by 8c-. And it follows from a theorem of Rockafellar (Ref. 3, Theorem
13.5) that

sug[<x, wi=sup[{x, y)|6 (x)=0]=8z(y).

Example 3.1, Let x>0. Consider the following function from R?
to R:
—uvxy), ifx=0,y=0,
9(%)’): —X, ifXSO,andyzx,
~¥ ify=0,andx=y.
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The function @ is continuous, positively homogeneous, and quasiconvex.
C™ and C™ are defined as follows:

C™={(x* yMx*=<0, y*=0,x*+y*=p?/4},
CT={x* y")x*=0,y*=0,x*+y*=~1}.
Note that we have C" C K, but not C™ C K ; and note that, for a convenient

value y, the set C"nC ™ is empty.
Conversely, we have the following proposition.

Proposition 3.3. Let C;, C, be two closed convex sets of R” such that:
(a) 0e(y,0£C,, C is compact;
by Ci= U AC, C=U AC;

Aef0,1] Azl
{c) Cyiscontained in the closure of the convex cone generated by .
It we define the function 6 by

8(x)=min[8¢, (x), 85, (x)],

then @ is a l.s.c. positively homogeneous quasiconvex function from R" to
R, and the sets C* and C~ defined from ¢ as above coincide respectively
with C; and C..

Proof. let
8;=8%, i=1,2.
The functions 6; and @, are positively homogeneous and lower semicon-

tinuous; ¢, is nonnegative on R"; and 6, is strictly negative on ri(dom 6,).
In order to show that # is quasiconvex, it is enough to show that

f:1(x)=0, if x edom(8,);

this follows from the already quoted theorem of Rockafellar,
We shall now study conditions on C™ and C~ which are related to
the convexity of the function 6.

Proposition 3.4. Let the function § and thesets C*, C, C D, K
be defined as above; let D be nonempty. The function 8 is convex iff we have

C'= U aC C =JaC (10)

Aef0,1] A=1

Furthermore, if ¢ is convex, then C"CK and 8 =8%
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Proof. Assume 6 to be convex. From the expression of the conjugate
function of 8,
0*(x*) = sup[{x, x*) —min[5E~ (x), §&- (x)]],
it follows that
6*(x*)=max[dc+(x*), Sc-(x*)] =8 c+nc- (x¥).

Since the domain of 4 is the whole space R”, 8 is continuous and so coincides
with its biconjugate function 8**; hence, 6 is the support function of C.
Let ye C*. Then,

dcy)=0;
and, since 47 is nonnegative and positively homogeneous, it follows that
sup[(y, x)| 6 (x) =1]=1;
and, by convex duality,
min sup[(y, x)+4 —A0(x)]=1,

min[A +sup[(y, x) - 6(Ax)]}=1,

min[A +6*(y/A)]=min[A +8cly/M)]=1.

Consequently, there exists A €{0, 1] such that y €AC; on the other hand,
ccc.
Let ye C . Then,

dc-(y)=0.
Since 6 is convex, then
D={x|6(x)=0},
and so

sup[{y, x)— 8~ (x)|0 (x)]=0]= Sgp[(y, x)—8(x)|8(x)=0]=0,
min sgp[@, x)=(1+A)8(x)]=0,

gl?i_xll[e*(y/ w)}= r:laig[éc(y/ w)]=0.
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So, there exists u = 1 such that y € uC, and consequently

C = AC
A=l
It follows that C* C K.

Conversely, assume that (10) holds. Define 6 to be the support
function of the nonempty closed convex set C; 8 is obviously a positively
homogeneous lower semicontinuous quasiconvex function. Associate with
it the convex sets C* and €. These sets coincide, respectively, with C*
and C; consequently, é coincides with #, which is then convex.

A quasiconvex positively homogeneous function from R” to R is not
necegsarily lower semicontinuous. Consider, for example, the function
6:R° =R,

~2(xy), if0sx<y,
8(x, y)=4-v, ifO0sx=y,
G, otherwise,

@ is not lower semicontinuous or upper semicontinuous at (1, 1). However,
the following result holds.

Proposition 3.5. Let ¢ be a positively homogeneous quasiconvex
function from R" to R, and let

D={x]6(x)<0}

Then, 8 is continuous on (D)° and lower semicontinuous on ri(D); further-
more, if int(D) is nonempty, then @ is also continuous on int(D).

Proof. Let £ be the greatest lower semicontinuous function which is
bounded above by 8. £ is also a positively homogeneous quasiconvex
function. Associate with 6 and ¢ the functions

- a(x), fxeD,
0 (x)= { .
+00, otherwise,
{0, fxeD,
§7x)= {G(x}, otherwise,
o _[€), ifxeD,
&)= {+oo, otherwise,
vy 10, ifxeD,
&)= {f {x), otherwise.
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The functions £~ and ¢ are the greatest lower semicontinuous functions
which are bounded above by 6~ and 6", respectively. Hence, the closures
of the epigraph of 8~ and 6" are convex sets. The restrictions of the
functions 8" and 6 to the relative interior of their respective domain are
convex, and so lower semicontinuous on the relative interior. Moreover,
if this coincides with the interior, the function is also continuous on it.

Proposition 3.6. Let ¢ be a positively homogeneous quasiconvex
function from R” to R satisfying

O(h)+6(—~h)=0, for every heR",

Then, 6 is linear.

Proof. Excluding the trivial case where 4 is the null function on
R" let
D ={x/6(x)<0}.

The function 4 is also quasiconcave. Hence, D is also a convex cone, and
D is a half space. The function 8 is continuous, convex, and concave such that

0(x)=(x, x™, if x e int(D) U (—int(D)).

It easily follows that 6(x) =0 on the boundary of D.
Now, we return to the study of the function f'(xo, -). Assume this
function to be lower semicontinuous. Let

6= f ’(-x()a ‘ ),
and define 3 f(xo) and §" f(xo) as
3 flxg)=C", I flx)=C".
If f is convex, then the function f'(xo, *) is known to be the support
function of the subgradient of f at x,; but, if f is quasiconvex, we have

just shown that f'(xo, - ) must be expressed as the minimum of two support
functions. Moreover, if the function f is convex,

3f(xo) =8 f(x0) ~ 8" f(x0).
If f is a convex function which admits partial derivatives at xo, i.e.,
—00(f'(xo, &) = ~f'(x0, ~€;)<+00,  fori=1,2,...,n, (11)

then f is differentiable at x,. Indeed, xo belongs to the interior of the
domain of f, and 50 8f(xo) exists; it is enough to note that 3f(xo) is a singleton.

For quasiconvex functions, things are not the same. First, even if the
existence of all partial derivatives at x, implies the upper semicontinuity
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of f at x,, it does not imply the lower semicontinuity of f at x, (for a
counterexample, see Ref. 4, p. 15) and, a fortiori, the differentiability of f
at xo. Moreover, even if f'(xq, ) exists and is lower semicontinuous for all
h, the digerentiability of f at xo is not ensured. To see this, consider the
sets of R

CT={(x,y)|0=x=y=1},
C ={kxy)|lsx<y=2x},

and the positively homogeneous quasiconvex function 6 defined from C™
and C". The function ¢ admits directional derivatives and partial derivatives
at (0, 0), but is not differentiable at this point.

However, the following proposition establishes that the differentiability
at xo of the restriction of a quasiconvex function f to each line passing
through x, implies the differentiability of f at x.

Proposition 3.7. Let f be a quasiconvex function which is weakly
Giteaux-differentiable at x. Then, f is Giteaux-differentiable and Fréchet-
differentiable at x.

Proof. Apply Proposition 3.6.

Finally, we conclude this study on differentiability of quasiconvex
functions by relating it with the quasidifferentiability developed by
Pshenichnyi (Ref. 5) and Borwein (Ref. 6), If f'(xq, -} is a convex function
from R" to R (f is then said to be quasidifferentiable at x), then f'(xg, *)
is the support function of the set 3 f(xo) N8 f(xo), which is the so-called
quasigradient of f at x,.
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