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About Differentiability of Order One of 
Quasiconvex Functions on R" 

J .  P.  C R O U Z E I X  ~ 

Communicated by M. Avriel 

Abstract. This paper is devoted to the study of the different kinds of 
differentiability of quasiconvex functions on R % For these functions, 
we show that Gfiteaux-differentiability and Fr~chet-differentiability 
are equivalent; we study the properties of the directional deri,¢atives; 
and we show that if, for a quasiconvex function, the directional deriva- 
tives at x are all finite and two-sided, the function is differentiable at x. 
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1. Introduction 

Let f be any function from ~ ~ to [ - ~ ,  + ~ ] ,  and let x be a point where 
f is finite. The (one-sided) directional derivative of f at x with respect to 
a vector h is defined as the limit 

f'(x, h ) =  lira (f(x + Ah)-f lx)]/ /L 
h-~O+ 

If the directional derivative f'(x, h) exists for all h of ~" and verifies 

- ~ < - f ' ( x , - h ) = f ' ( x , h ) < ~ ,  for each h ~ ~ , 

then f is said to be weakly G~teaux-differentiable at x. 
If the directional derivative f'(x, h) exist for each h of ~'~, and if the 

function f '(x, .  ) is linear, i.e., if there exists a vector c such that 

f'(x, h) = (c, h), for each h ~ ~ ,  

then the function f is said to be G~teaux-differentiable at x; the unique 
vector c for which the above relation holds is denoted by f'(x) and is called 
the G~teaux-derivative of f at x. 
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If there exists a vector d ~ R" such that 

limo (1/llhll)[f(x + h) - f ( x )  - (d, h)] = 0, 

then f is said to be (Fr6chet)-differentiable at x. One easily sees that f is 
also Ofiteaux-differentiable at x and that 

d = / ' (x ) .  

All norms being equivalent on ~", we shall choose the norm which will 
suit us best. 

In Section 2 of the present paper, we show that both concepts, Gfiteaux- 
differentiability and Fr4chet-differentiability, coincide for quasiconvex 
functions on R". Section 3 is devoted to the study of the function f ' ( x , . ) ,  
f being quasiconvex, when it exists. We show that, if f '(x, h) exists and is 
finite for each h, the function f ' (x,  • ) is a positively homogeneous quasicon- 
vex function and, under a continuity condition, can be expressed as the 
minimum of two support  functions. We show also that, if f is weakly 
Ofiteaux-differentiable at x, it is also Gfiteaux-differentiable, and thus 
Fr6chet-differentiable as well. 

Throughout  this paper, we shall use the following notations. 
Let  A be a set of R ~. We denote  by A c the complement of A, by X 

the closure of A, by 3A and 8 "  the indicator function and the support 
function of A, respectively, i.e., 

0, if x c A ,  
8A(X) = +00, i f x ;~A ,  

6 "  (y) = sup[Kx, y)lx ~ A]. 

The relative interior of a convex A, denoted by ri(A), is the interior 
of the set A, regarded as a Subset of its affine hull. The set difference 
fi~\ri(A) is called the relative boundary of ~". 

We set el, e2 . . . . .  e,  to be the n coordinate vectors of ~", and we 
define the norm IIx111 of the vector 

x = (xl, x2, • . . ,  xn) 

a s  

tlxLll= txiL. 
i ~ l  

Let  f be a function from R n to • w{+oo}. Its domain is the subset 
of R ~ 

dora(f)  = {x ~ R n If(x) < +oo}. 
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A function f from N" to ~ is said to be quasiconvex iff 

f ( x  + t(y - x ) )  ~< max[/(x) ,  f(y)],  

for every x, y s R ~, and t ~ [0, 1], or equivalently if, for every h ~ N, the 
subset of ~"  

& ={xtf(x)<~,~} 

is convex. 

2. G~teaux-Differentiation and Fr~chet-Differentiation 

It is well known and easy to prove that a convex function on N" which 
is G~teaux-differentiable at xo is also Fr6chet-differentiable at Xo. Indeed, 
if the G~teaux-derivative f '  of a function f on ~ exists in a neighborhood 
of x0 and is continuous at xo, f '(xo) is also the Fr6chet-derivative of f at 
x0. A convex function f which is differentiable at x0 is not necessarily 
differentiable in a neighborhood of x0, but its subdifferential Of (an extended 
concept of the derivative) is a multivalued mapping which is upper semicon- 
tinuous at Xo. Quasiconvex fur~ctions have no similar properties. Indeed, 
for these functions, the existence of the first derivative in a neighborhood 
of a point does not imply the continuity of the derivative in this point. In 
order  to establish our theorem, we shall first prove two temmas. 

Lemma 2.1. Let  S be a convex set with a nonempty interior. If 0 
belongs to the boundary of S, then there exist x* and 2t < 0  such that 
8* (x*) = 0 and hx* ~ int(S). 

Proof. Let 

K = { x ' l  S* (x*) = 0} = {x* 16" (x*) ~< 0}; 

K is a nonempty convex cone. If 

int(S) c~ I - K ]  = ~ ,  

there exists x* # 0 and a such that 

sup[(x, x * ) I x  ~ S] <~ a ~ inf[(y, x*) ly  c - K ] .  

Clearly, a = 0. The first inequality implies that x * s  K,  but then the second 
implies that a < 0. 
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L e m m a  2.2. Le t  0 be a convex funct ion on  N with 
O(x)  > 0 if x # 0, then 

Proof. Let  

lim sup[It[ I o ( t ) - ~  ~ ~ltl]  = O. 
~---~ O+ 

h (t~) = s u p [ l t l l o ( t )  - t~ ~ t~ itl]; 

h is nondecreas ing  on  ~+. Let  

? = lira h (/~). 
tx~O+ 

0(0) = 0 and  

Hence ,  

min [0 ( t /2 ) ,  0 ( -  t / 2 ) ]~< /z t / 2+ /z ,  V/x > 0 ,  

implies that  ? = 0. 

T h e o r e m  2.1. If a quas iconvex funct ion on R" is G~teaux-different i -  
able at x0, it is also Fr6chet-different iable  at x0. 

Proof .  Wi thou t  loss of  general i ty,  we assume that  xo = 0 and f ( x o )  = O. 
D e n o t e  by if(0) the  G-der iva t ive  of  f at 0: W e  shall distinguish two cases, 
depend ing  on  whe ther  if(0) is zero or  different f rom zero.  

Case C1. where  f ' (0)  = 0. Let  

hi = ei and hn+i  = - e i ,  for  i = 1 , . . . ,  n. 

For  each vector  x of  R ", x ¢ O, it follows that  
2n 

x = ttxll~ E hh,, 
i = 1  

where ,  for i = 1, 2 . . . .  , n, 

ti = x d l l x l l l  

h = 0 and 

and tn+ i = O, if Xi >I O, 

t~+i = --Xi/I[XlI1, if Xi < O. 

Clearly, x is a convex combina t ion  of  the 2n vectors  Iixlllhi, and the 
quasiconvexi ty  of  f implies that  

f ( x ) <  max [f([[x[llhi)]. 
i =  1,...,2n 

Hence ,  

" f ( x ) ~  [ , .  f(llxlIlhi)-[ 
l m s u p ~ - ~  max ! l !m  ~ q = O .  

o llxil 1 ~=1....,2,L~ o lIxill J 
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It follows that, if f is nonFr&het-differentiable at 0, there exists ~ < 0 and 
a sequence {x t} in N" converging to 0, such that 

f(x~) < ~llx~ll, t eN,  kit!  > tlx211> . . .  > tlx~ll > , , .  >0 .  
Let 

S ={xIf(x)<O}. 

We can assume, without loss of generality, that the interior of S is nonempty. 
Since 0 belongs to the boundary of S, according to Lemma 2.1, there exist 
x* and a < 0 such that 

IIx*l} = 1, 6" (x*) = o, ~x* e int(S). 

Without loss of generality, we assume that x* = el. Therefore, 

(i) f ( x ) ~ 0 ,  if x l > 0 ;  
(ii) there exists/3 > 0 such that 

m =max[f(ael+(-1)~[3ej)lj = 2 , . . . ,  n, i =  1, 2 ] < 0 .  

Now, the function 

O(t) =[(te,) 
is quasiconvex and, for some toe ]a, 0[, it is nondecreasing on [to, 0]. 
Furthermore, there exists lo e N such that 

txllx'olt > max[m, 0(to)]. 

For each l > lo there exists t ~ ~ ]to, 0[ such that 

O(t)~lxltx~ll<O(t')<O, i f to<t<t~ <t'<O. (1) 

Let  

s~ = {x If(x) ~ ~tIx~lt}. 

Since ttel belongs to the relative boundary of the convex set S~, there exists 
y ~ # 0 such that 

sup[(x, yZ)}x e St] ~ dKe~, y~). 
It follows that 

u (yZh + (-1)'B(y~)j ~< t~(y~)l, j = 2  . . . . .  n, i =  t, 2, (2) 

(x~)~(y~ h + ~ (x~)Ay~) ~/(yZ)~. (3) 

Inequality (2) implies that (y ~)1 > O, and so we can take 

(yr)l = 1. 
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Choos ing  the n o r m  

we obta in  

Ilxll = max[Ixll, j~  Ixjl], 

I(y/)j[ ~ ( t t -  ot ) / f l ,  (4a) 

-IIx'll[1 + ( t '  - ~)/t3] ~< t',  (4b) 

tlx ~11 I> -~t~/ (~  + t' - ~). (4c) 
Associa te  with 0 the funct ion ff defined by 

f O(t), if t # t ~, l > lo, 
if(t) = ]/zllx,l[, if t = t t, l > lo. 

I t  follows f rom (1) that  

lira f f ( t ) / t  = lira O(t)/ t  = 0'(0) = 0. (5) 
t-~O t'~0 

O n  the o ther  hand,  f rom (4c), we have 

O(tt)/t  l = t~llxll[/t t> - & M ( B  + t I -  a).  

W h e n  l ~ + ~ ,  t t ~ 0. T he  limit of the last t e rm is then  strictly positive, and 

this contradicts  (5). 
Case C2. where  f ' ( 0 ) #  0. Wi thou t  loss of generali ty,  we assume 

f'(O) = e.. 
(A) First, we shall p rove  that  

f ( x ) -  ( f (o) ,  x) 
limsup 1Ix II ~< 0. 

Let  

hi = ei 

For  x • R ", take  

and h n - l  +i = --ei, for  i = 1, 2 . . . . .  n - 1. 

n-1 
0 ( x ) =  ~, Ixil, t lxll=max[o(x),  txnt]. 

i=1 

If  O(x) # O, then let 

t~ = x#O(x),  t~-l+i =0 ,  

t~ = O, t~-l+i = - x i / O ( x ) ,  

for  i = 1, 2 , . . . ,  n - 1; and, if O(x) = 0, then let 

t1=1, ti=0, for  i = 2  . . . . .  2 n - 2 .  

if xi >- O, 

if xl < O, 
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Hence,  
2n-2 

x=  ~., ti(O(x)hi+x,e,J. 
i=1 

Since x is a convex combinat ion of the 2 n - 2  vectors O(x)h~+xnen, the 
quasiconvexity of [ implies that  

f(x )-(f'(O), x) [ f( O(x )hi + x . e . ) -  x.'l 
[[xl] ~< max . . . . .  . i=1,...,2n-2[ max[O(x),]xn]] J 

Hence,  it is enough to prove that,  if g is a quasiconvex function on N2 
G~teaux-differentiable at (0, 0), and such that  

g(O, O) = O, g'(O, O) = (0, 1), 

then 

lira sup g(x, y) - y ~< O. (6) 
(~,y)-~(o,o) ll(x, y)ll 

Let  

s ={(x, y)Ig(x,  y) ~ o}. 

(i) Suppose that  there exist /x a ]0 ,  1[ and a sequence {x ~, yt} in S 
converging to (0, O) such that  

g(x t, y , ) _ y i  ~>~ max[[x~l, !yZl] ' 1 = i ,  2 . . . . .  

Then,  

- y t > ~ l x f  [, I= 1, 2 . . . . .  

and the quasiconvexity of g implies that  

g(x l, y l ) _ y i  1 
< ~ ~ m a x [ g ( _ y l / t z ,  y~)_ yl, g(yl/l~, y l ) _  yZ]. l~(x', yZ)] t tltx, Y )11 

Since 

(7) 

g'(O, o) = (o, 1), 

the second term tends to 0 when l tends to +0o, and this contradicts (7). 
Thus,  Thus, 

r [g(x,  y ) -  y] ~< nn sup / ~ -f ~ u. (8) 
<~,~>-~(o,o)l_ ]l(x, Y)I[ J 

(x,y),~S 

(ii) Let  e ~ ]0, 1[. Since 

g'(O, 0) = (o, 1), 



374 JOTA: VOL 36, NO. 3, MARCH I982 

there exists/z > 0 such that 

g(~, -tz) < 0, g(-tz, - ~ )  < 0, 

g(0, ~)<~(1  +~), for every ~ ~ [0, 2Ix]. 

Denote  by T the convex hull of the three points 

(~, -~) ,  (-~,  -~) ,  (0, ~), 

and consider the function O, 

O(X*) = ~:~S~Tk[X~, 1), 

Clearly, 0 is convex, 

0(0) = O, O(x*) >0,  if x*~O. 

For each (x, y) ~ T, let 

if (x, y) ~ int(S), {0, 
k(x, y) = ( l + e ) s u p [ x x * + y I O ( x * ) ~ x x * + y ] ,  otherwise. 

x* 

For a geometric interpretation of k, note that, if (x, y) ~ T n S c, the straight 
line passing through the points (x, y) and (0, xx* + y) for the optimal value 
x* is tangent at T •  S. 

It is easy to see that 

0 ~  k(x, y) ~ t x ( l +  e), for every (x, y) ~ T. 

Now, let (x, y) ~ T n S c, and let any A such that 

k(x, y) < A ( I + E )  < 2 ~ ( 1 + e ) .  

The straight line passing through the points (x, y) and (0, A) has a nonempty 
intersection with int(S); i.e., there exists (i, f )~ in t (S)  such that (x, y) 
belongs to the segment joining (0, A) with (~, ~). The quasieonvexity of 
g implies that 

g(x, y) ~< max[g(~, f) ,  g(O, h)]~<h(1 +e) .  

Since this result is true for all h such that 

k(x, y) < h ( l + e ) ,  

then 

k(x, y)>~g(x, y), on T ~ S  ~. 

Choosing for norm in R 2 

II(x, Y)[I = max[lx[, lYl], 
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(-p,-?) 

c%/) 

(r,-?) 

Fig. 1 
it follows that 

li [k(x,  y ) - y ]  A =  m s u p  ~< l im(1 / /x )  sup [(l+e)xx*+eylO(x*)~xx* (~,~)-~(o,o)]- [](x, y)]] ~,o+ ~*,x,, 
(x,y)~S (x,y)~S 

+y, Jxl<~,JyJ~], 

A ~<e + lim [(1 +e____~)sup{xx,lO(x,)_p~ <~xx*, lxl-~.t~}], 
~ ° + L  ~ x,x* 

A < e  + ( l + e )  lira sup[tx*t ]a(x*)-~ <~tx*H. 
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Lemma 2.2 implies that 

Consequently, 

A~<e. 

[g(x,y) - y] ~ .  
l i m s u p /  ~ ] ~, 
(~,,) (o,o)L II(x, y)IL 

(x,y)~S 

By combining ibis result with (8), we see that (6) follows. 
(B) Now, we shall prove 

lim inf f(x) - (f'(0), x)/> 0. 
x~o Ilxtt 

Let 

for every E > O. 

(9)  

Let 

O ( h ) = M ( 1 - e )  and O ' ( h ) = h / ( l + e ) ,  i f h < O ,  

O ( h ) = h / ( l + e )  and O ' ( h ) = h / ( 1 - e ) ,  ifh>~O, 

_~ = - ~ ' o ( 1  + E), X = . o ( 1  - ~). 

and let 

Hence, 

- u o ~  < 0(X)< 0'(~)<~ Uo; 

and, since O'(h)e.~ Sx, there exists x*(h) ¢ 0 such that 

sup[(x, x*(h))/x ~ Sx]<~(O'(h)en, x*(h))= 0'(h)x* (h). 

Furthermore, 

O ( h ) v i e S x  , f o r ] = l , 2  . . . . .  2 n - 2 ,  

& ={x I/(x) <,~}, 

Let 

v i = e i + e n ,  vn_l+i=--e i+en,  for i = 1,2, . . . .  n - l ,  

and let ~ ~ ]0, ½[. Since f'(O)= e,, there exists uo > 0 such that, for each 
u ~ [-uo, Uo], v ~ O, we have 

- E < [ f ( u v i ) - u ] / u < e  , j = l , 2  . . . .  , 2 n - 2 ,  

- e  < [f(uen) - u] /u  < e. 
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and so 

(-1)ko(A)x*(A)+O(A)x*O.)-<.8'(A)x*(A), ] = l , . . . , n - l , k = l ,  2. 

Clearly, x~(A)>0,  and so we can assume that x~*(A)= 1. It follows that: 

(i) if A ~[A, 0[, 

tx*(A)t<~2e/(l+e)~2e/(1-e), f o r j =  1, 2 , . . . ,  n - 1 ,  

and so, for all x ~ S~, 

- [ 2 e / ( 1 - e ) ]  X txil+xn ~<~/( l+e) ;  
?=1 

then, define 

T~ = {x I - [2e/(1 - e)] Y Ix /+  x~ ~ A/(1 + e)}; 

(ii) ifA~]O,X], 

]x*(Z)l<~2e/(1 -E), 
and so, for all x ~ Sx, 

ra--1 

--[2E/(1--E)] X 
i=1 

then, define 

Let also 

for j = 1, 2 . . . . .  n - 1, 

lxjt + x,  ~< M(1 - E); 

Tx = {x I - [2e/(1 - e ) ]  Z I x / + x ,  ~ A / ( I  -e)}.  

T~ = T~, for A < .A., 

T~ = R  '~, forA > 5 ,  

and define a function g from the sets TA by 

g(x) = inf[A Ix ~ Tx]o 

Since Sx C T~ for each A, then g~f. Computing 
neighborhood of 0, 

n--1 

(t +~)x. -24(1+~)/(1-~)3 X IC, 
i= l  

g ( x )  = . - 1  

(1-- E)X~ -- 2E X Ix/, 
i= t  

Choose, for norm in ~", 

g, we obtain, in a 

n--1  

i f ( 1 - E ) x n - 2 e  Z lxjt~<0, 
j=l  

otherwise. 
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Then, 

[-eltxll[t + 2(1 + e)/(1 - e ) ] ,  

g ( x ) -  xo >I ~ [-3Et[xl[, 

Recall that 

0 < ~ < ½ .  

Then, 

and thus 

1 + 2(1 + e ) / ( 1 -  e) ~< 7, 

n-1 
i f ( 1 - E ) x , - 2 e  ~ Ixjl~0, 

i=1 

otherwise. 

lira inf f (x )  - x ,  >i lim g (x) - x,  >I _ 7 e. Ilxtl llxll 

This implies (9) and completes the proof. 

3. Directional Derivatives and Positively Homogeneous Quasiconvex 
Functions 

If f is a convex function and if x0 belongs to int(dom f), the function 
f '(xo," ) is a positively homogeneous convex function from R" to R and can 
be related to the subdifferential of f at Xo. If f is a quasiconvex function, 
then x0 can belong to int(dom f) and f ' (xo , ' )  may not exist; however, if 
we assume the existence of f'(xo, h) for all h E R ", then f ' (xo , ' )  has some 
interesting properties. 

Theorem 3.1. Let f be a quasiconvex function on R ", and assume 
that f'(xo, h) exists for every h ~ ~". Then, the function f'(xo, • ) is a positively 
homogeneous quasiconvex function. 

Proof. Let hi, h2~ •", and let h ~ ]0, 1[. Since f is quasiconvex, 

flXo + t( ahl + (1 - h)h2)] - f(xo) 
t 

<~ max[f(x°+thl)t  - f (Xo), f (xo + tht) - f (xo) ] , 

for every t > O. ff we take the limit when t tends to O, then 

f'(Xo, hhl + (1 - h)h2) ~< max[fl(Xo, hi), f'(xo, h2)]. 
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Positively homogeneous quasiconvex functions which are either positive 
or negative on their domain are well known; see, for instance, Refs. t 
and 2. Recall the following result. 

Proposition 3.1. Let  g be a positively homogeneous quasiconvex 
function from R" to R w{+oo}. Denote  by D the domain of g, and assume 
D to be nonempty.  If g is lower semicontinuous at every point of D, and 
if one of the two following conditions is true: 

(C~) g(x) >_ O, Vx e R ~, 

(C2) g (x )  < O, Vx e ri(D), 

then g is convex. 
Let  0 be a lower semicontinuous positively homogeneous quasiconvex 

function from R" to R, and let 

D = {x/O(x)  < 0}. 

D is a convex cone, and O(x)<~0 on the relative boundary of D. Define 
the functions 0 ÷ and 0 -  as follows: 

Clearly, 

0_(x) = f0(x), i fx~6 ,  
t+oo, if x~LS, 

0+(x) = x), if x~L~. 

0 = min[0- ,  0+]. 

The functions 0 + and 0 -  are positively homogeneous quasiconvex functions 
and verify the assumptions of the above proposition. Hence,  0 + and 0-  
are convex functions, and 0 is the minimum of two 1.s.c. convex functions. 
Fur thermore,  there exist two closed convex sets C + and C -  of which 0 + 
and 0-  are the support  functions. Note that C + is a compact set, since 0 + 
is defined on the whole space ~"  and that, if D is empty, then C -  = ~". Let  

C = C + c ~ C  - and K = L _ J A C - ,  
A~0 

i.e., K is the convex cone generated by C- .  We shall now study the 
relationships between C +, C- ,  C, K. 

Proposition 3.2. Under  the above assumptions and, if D is nonempty, 
we have 

(a) 0E C + , 0 ~  C - ;  
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(b) C += U AC + ,C -=  U AC-; 
A~[0,1] X~l 

(c) c+c£. 

P r o o f .  B y  definition, 

6c+(x) = sup[(x, y>-  O+(y)], 
Y 

0+(y) = sup[<y, x)lx • C+], 

8c(x) = sup[<x, y > -  0 (y)], 
Y 

0-(y) = sup[(y, x)lx • C-]. 

(a) If 0 • C- ,  then we should have 0-(y)1>0 for every y; and, if 
0 ~ C +, there should exist some y such that 0+(y) < 0. 

(b) Let A • ]0, t]. Then, 

o+(xy) = ,~o+(y) <_ O+(y), 

and so 

8c+(Ay) = sup[(Ay, x) - 0+(x) ] -  sup[A (y, x) - AO+(x)] = A6c+(y). 

Now, let A • [1, +co[. Then, 

and so 

0-(Ay) = A0-(y) --< O-(y), for every y • E3, 

8c-(ay) -< hSc-(y).  

(c) L e t y • C  +, y # 0. We have 

8c+(y) = sup[(x, y ) -  O+(x)]>--sup[(x, y ) -  O+(x)] = S UDP_[(X, y)]. 

Furthermore, 6K is the positively homogeneous convex function generated 
by 8c-. And it follows from a theorem of Rockafellar (Ref. 3, Theorem 
13.5) that 

sup_[(x, y)] = sup[(x, y)] 0-(x) -< O] = 6g(y). 
x ~ D  x 

Example 3.1. Let iz > 0 .  Consider the following function from •2 
to ~: 

- tx ~/(xy), if x - 0, y - 0, 

O(x, y) = i - x ,  if x - 0, and y -> x, 
( - y ,  if y <-- 0,  and  x -> y. 
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The function 0 is continuous, positively homogeneous,  and quasiconvex. 
C ÷ and C -  are defined as follows: 

C - =  {(x*, y*)Ix*-< 0, y*-<0, x*+y*>-izz/4}, 

C+={(x  *, y*)Ix*_<0, y*_<0, x * + y * _ > - l } .  

Note that we have C + C/£, but not C ÷ C K ;  and note that, for a convenient 
value ix, the set C + ~ C -  is empty. 

Conversely, we have the following proposition. 

Proposition 3.3. Let  C1, C2 be two closed convex sets of R n such that: 
(a) 0 ~ (2i, 0 ~ Ca, CI is compact; 

(b) C1= U AC,,C2= MAC2; 
A ~[0,1] x ~ l  

(c) 6"1 is contained in the closure of the convex cone generated by (72. 
If we define the function 0 by 

O(x) = min[&*~ (x), 6* c2(X)], 

then 0 is a 1.s.c. positively homogeneous quasiconvex function from N~ to 
R, and the sets C + and C -  defined from 0 as above coincide respectively 
with CI and C2. 

Proof. Let 

0i = ~*,, i = 1, 2. 

The functions 01 and 02 are positively homogeneous and lower semicon- 
tinuous; 01 is nonnegative on lt~"; and 02 is strictly negative on ri(dom 02). 
In order  to show that 0 is quasiconvex, it is enough to show that 

01(x) = 0, if x ~ dora(02); 

this follows from the already quoted theorem of Rockafellar. 
We shall now study conditions on C ÷ and C -  which are related to 

the convexity of the function 0. 

Proposition 3.4. Let the function 0 and the sets C +, C-, C, D, K 
be defined as above; let D be nonempty.  The function 0 is convex iff we have 

c += U ac, c - =  U ac. (lo) 
x~[0,1] x->1 

Furthermore,  if 0 is convex, then C + C K  and 0 = 6*. 
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Proof. Assume 0 to be convex. From the expression of the conjugate 
function of 0, 

O*(x*) = sup[{x, x*) -min[8*+ (x), 8"-(x)]] ,  

it follows that 

O*(x*) = max[6c+(x*), 6c-(X*)] = 8c+~c - (x*). 

Since the domain of 0 is the whole space R ", 0 is continuous and so coincides 
with its biconjugate function 0"*; hence, 0 is the support function of C. 

Let  y e C +. Then, 

6c+(y) -< 0; 

and, since 0 + is nonnegative and positively homogeneous, it follows that 

sup[(y, x)]O(x) <-- 1] <--- 1; 

and, by convex duality, 

min sup[(y, x) + A - A0(x)] ~ 1, 
A ~ O  x 

mion[* + s~p[(y, x ) -  o(,x)]]-< 1, 

min[A + O*(y/A)] = min[A + 6c[y/A)] <- 1. 
A - - O  A ~ O  

Consequently, there exists h ~ [0, 1] such that y e-hC; on the other hand, 
C C C  +. 

Let y 6 C- .  Then, 

Since 0 is convex, then 

ac-(y) -< O. 

15 = {x I 0 (x) - 0}, 

and so 

sup[(y, x) - 0-(x)10-(x)] ~ 0] = sup[(y, x) - 0 (x) l 0 (x) <- 0] <- 0, 

rain sup[(y, x ) -  (1 + A)0(x)] --< 0, 
A ~ O  x 

mint [O*(y//z)] = min[Sc (y//~)] --< O. 
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So, there exists/~ >-- 1 such that y e/~C, and consequently 

c-=  U 
A.>_I 

I t  fol lows that C + C K. 
Conversely, assume that (10) holds. Define 0 to be the support 

function of the nonempty closed convex set C; 0 is obviously a positively 
homogeneous lower semicontinuous quasiconvex function. Associate with 
it the convex sets C+ and C-.  These sets coincide, respectively, with C + 
and C- ;  consequently, 0 coincides with 0, which is then convex. 

A quasiconvex positively homogeneous function from R" to R is not 
necessarily lower semicontinuous. Consider, for example, the function 
O: R2~R,  

O(x, y) = -0 ,  i fO~x  = y, 
[ otherwise. 

0 is not lower semicontinuous or upper semicontinuous at (1, 1). However, 
the following result holds. 

Proposition 3.5. Let 0 be a positively homogeneous quasiconvex 
function from N" to N, and let 

D ={x I o(x) < o}. 

Then, 0 is continuous on (D) c and lower semicontinuous on ri(D); further- 
more, if int(D) is nonempty, then 0 is also continuous on int(D). 

Proof. Let ~ be the greatest lower semicontinuous function which is 
bounded above by 0. ~: is also a positively homogeneous quasiconvex 
function. Associate with 0 and ~: the functions 

8-(x) = ~ O(x), if x ~ D, 
t +oe, otherwise, 

0, i fxeD,  
0+(x) = O(x),  otherwise, 

U(x) I dx) '  if x ezS, 
= t +0% otherwise, 

0, if x ~/~, 
~+(x) = ((x), otherwise. 
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The functions ~- and ~÷ are the greatest lower semicontinuous functions 
which are bounded above by 0-  and 0 ÷, respectively. Hence,  the closures 
of the epigraph of 0-  and 0 ÷ are convex sets. The  restrictions of the 
functions 0 ÷ and 0-  to the relative interior of their respective domain are 
convex, and so lower semiconfinuous on the relative interior. Moreover ,  
if this coincides with the interior, the function is also continuous on it. 

Proposit ion 3.6. Let  0 be a positively homogeneous quasiconvex 
function from R n to R satisfying 

O(h)+O(-h)=O, f o r e v e r y h e N  n. 

Then, 0 is linear. 

Proof.  Excluding the trivial case where 0 is the null function on 
]~n, let 

D = {x/O(x)  < 0}. 

The function 0 is also quasiconcave. Hence,  D c is also a convex cone, and 
/ )  is a half space. The function 0 is continuous, convex, and concave such that 

O(x) = (x, x*), if x s int(D) u (- int(D)) .  

It easily follows that O(x) = 0 on the boundary of D. 
Now, we return to the study of the function f (xo,  "). Assume this 

function to be lower semicontinuous. Let  

o = f ( x o , ' ) ,  

and define O-f(xo) and O+f(xo) as 

o-f(xo) = C - ,  0+f(x0) = C +. 
If f is convex, then the function f'(xo, • ) is known to be the support 

function of the subgradient of f at x0; but, if f is quasiconvex, we have 
just shown that f'(xo," ) must be expressed as the minimum of two support  
functions. Moreover ,  if the function f is convex, 

of(xo) = o-f(xo) c~ oV(xo).  

If f is a convex function which admits partial derivatives at xo, i.e., 

--o0(f'(Xo, el) = --f'(xo, - e i )<  +co, for i = 1, 2 . . . .  , n, (11) 

then f is differentiahle at Xo. Indeed, x0 belongs to the interior of the 
domain of f, and so Of(xo) exists; it is enough to note that Of(xo) is a singleton. 

For  quasiconvex functions, things are not the same. First, even ff the 
existence of all partial derivatives at x0 implies the upper semicontinuity 
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of f at x0, it does not imply the lower semicontinuity of f at xo (for a 
counterexample, see Ref. 4, p. 15) and, a fortiori, the differentiability of f 
at x0. Moreover, even if f'(xo, h) exists and is lower semicontinuous for all 
h, the differentiability of f at x0 is not ensured. To see this, consider the 
sets of N 2 

C + ={(x,  y ) t 0 - < x  : y-< 1}, 

C = { ( x ,  y ) l l -<x  <-y-<2x}, 

and the positively homogeneous quasiconvex function 0 defined from C + 
and C- .  The function 0 admits directional derivatives and partial derivatives 
at (0, 0), but is not differentiable at this point. 

However, the following proposition establishes that the differentiability 
at x0 of the restriction of a quasiconvex function f to each line passing 
through x0 implies the differentiability of f at Xo. 

Proposition 3.7. Let f be a quasiconvex function which is weakly 
G~teaux-differentiable at x. Then, f is G~teaux-differentiable and Fr6chet- 
differentiable at x. 

Proof. Apply Proposition 3.6. 
Finally, we conclude this study on differentiability of quasiconvex 

functions by relating it with the quasidifferentiability developed by 
Pshenichnyi (Ref. 5) and Borwein (Ref. 6). If f'(xo, • ) is a convex function 
from R" to N ( f  is then said to be quasidifferentiable at Xo), then f'(xo, .) 
is the support function of the set O-f(xo)c~ O+f(xo), which is the so-called 
quasigradient of f at x0. 

References 

1. NEWMAN, P., Some Properties of Concave Functions, Journal of Economic 
Theory, Vol. 1, pp. 291-314, 1969. 

2. CROUZEIX, J. P., Conditions for Convexity of Convex Functions, Mathematics 
of Operations Research, Vol. 5, pp. 120-125, 1980. 

3. ROCKAFELLAR, R. T., Convex Analysis, Princeton University Press, Princeton, 
New Jersey, 1970. 

4. CROUZEIX, J. P., Contribution d l'Etude des Fonctions Quasiconvexes, Univer- 
sit6 de Clermont 2, Thbse de Docteur des Sciences, 1977. 

5. PSHENICHNYI, B. N., Necessary Conditions for an Extremum, Marcel Dekker, 
New York, New York, 1971. 

6. BORWEIN, J. M., Fractional Programming without Differentiability, Mathemati- 
cal Programming, Vol. 11, pp. 283-290, 1976. 


