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Cutting Planes for Programs 
with Disjunctive Constraints 1 

G. OW~N ~ 

Communicated by M. Avriel 

Abs t rac t .  A type of program is considered in which, apart from 
the usual linear constraints, it is required that at least one variable 
from each of several sets be equal to zero. Applications include 
complementary pivot theory and concave minimization problems. 
Cutting planes are generated for the solution of such programs. 
A geometrical description of the cutting planes explains their 
meaning. 

1. I n t r o d u c t i o n  

We consider here the nonlinear program which is given by the linear 
system 

maximize 2 7 c j x j ,  (1) 

subject to  X a i j x  j = bi  , i = 1, . . . ,  m ,  (2) 

xj ~> 0, (3) 

plus additional constraints the form 

H x j  = 0 ,  
~ J 1  

. . . . .  ' ( 4 )  

H xj = o, 
j~.r k 

etc., where J1 ,  J~ ,..., Jk are subsets of the index set N = {1, 2,..., n}. 
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The constraints (4) are more easily interpreted as disjunctions, i.e., 
the constraint 

H Xj ~- 0 
J~J~ 

may be rewritten as follows: 

there is at least one J ~ J1 such that x~ = 0. (5) 

Many types of programs can be given this form. 
Such a problem might occur in the case of a minimization program 

with concave costs. For example, suppose that the cost associated with a 
variable x is 

t(x) = V x -  

Analytically, the graph z --~ ~/x,  can be defined as the envelope of 
the tangents which have the equation 

z = (x + p ) / 2 V p ,  

where p is a nonnegative parameter. By concavity, the curve lies below 
the tangents, and so 

t(x) = min (x + p)/2~/p. 
~ o  

Let us, therefore, write 

y~ ~ --2~/p t + x + p ,  

and we know that y ;  ~ 0 for each p ~ 0, but yp =- 0 for at least one 
value of p. We thus obtain an infinite collection of variables Y~o, one of 
which at least must vanish. In practice, of course, we would choose only 
a finite number of values for p. This would correspond to a polygonal 
approximation for the cost function t = N/x, which can be made as 
accurate as desired, by choosing sufficiently many values for p. 

Additionally, constraints such as these arise in the complementary 
programming problems, where, from each of several pairs of variables, 
at least one must vanish. Lemke (Ref. 1) has given algorithms for such 
programs which, however, do not attempt to maximize a function. 

2. Cu t t ing  Planes  

We will approaeh this problem by generating cutting planes. In 
general, let us suppose that we have solved the linear program (1)-(3) by 
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the simplex algorithm. I f  the solution satisfies the nonlinear constraints 
(4), then it is of course the solution to the original program. 

Suppose,  then, the contrary. The  linear solution has positive values 
for the variables x j  , . . . ,  x k ,  one of which (at least) must be zero. 

For simplicity of argument, we shall assume that only two variables 
are concerned: one of xj and x~ must  vanish. The  simplex tableau then 
has the rows 

Yl  Y~ "'" Yn 1 
"1 

ajl a~2 "'" aj~ --b~ / - - - - x j  (6) 
akl ak2 "'" a lcn --b~ j ---xtc, 

where b j ,  bt~ are both positive. 
The  two rows will give us the equations 

(a~l/bJ) Y l  -J- (aj2/b~) Y2 "~- "'" + (as./bJ) Y,~ = 1 - -  (xj/b~), (7) 

(akl/b~) y 1 + (ak2/bk) y 2 -+- .. .  + (a~,/b~) y ,  = 1 - -  (xk/b~). (8) 

The  disjunctive constraint means that the left-hand side of one of 
the equations (7) and (8) must  be equal to 1 ; thus, the right-hand side of 
one of the equations must  equal 1, and so 

max{Z(a~, /b , )  y~ , Z(akf fbk)  y , }  == 1. (9) 

Let  us set 
oq = max{a~i/bj  , a~i/bk). (10) 

The  nonnegativity of the y~ then guarantees that  

and so 

or 

°qYi "-- max{(a~i/b~) Yi  , (a~i/b~) Yt},  

z~iy ,  > {Z(aj,/b~) y, , 2:(a~,/b~) yS, 

X o q y  i >~ 1. 

We thus obtain the new constraint 

- - % Y l  - -  % Y 2  . . . . .  c%y n + 1 . . . .  v, (11) 

where v must  be nonnegative. Thus,  the new constraint is given by the row 

Yl y~ "'" y~ 1 

where ~1 is given by (10). 

(12) 
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In  the more general case, where Je contains more than two indices, 
we will still have the new constraint given by  (t2),  where 

% = max {a~j/b~}. (13) 

In  any case, it is clear that the tableau with the new row represents an 
infeasible point, inasmuch as it gives a negative value for the new 
variable v. 

3. E x a m p l e  

Maximize 2xl + 3xz, subject to 

xl ~<8, 

x ~ 5  , 

xl + x~ ~ 10, 

x l ,  x2 .>10, 

xlx2 -- O. 

Solving the linear program (i.e., without the disjunctive constraint) 
by the simplex algorithm, we obtain the tableau 

u3 u~ 1 

- - 1  1 ~ --u 1 
0 1 = --x2 
1 - - 1  = - - X  1 , 

Here,  both x I and x~ are positive. We therefore generate the new row 

 11t  vl. 
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We solve the new expanded program, and get 

U I 

1 
2 

t 5 
2 2 
1 5 
2 
1 0 
1 5 
2 2 

% 1 

I 
'i 19t .... 

t 
-1  1 = - u s  

- 1 = - - X ~  

- 8 t  = - %  

- -4  = - -Ug  . 

= 5  . . 

X~. =0 

X 2 = 0 

(5 5) 

:ons t ra in t  set. T h e  trial so lu t ion  Is 

x 1 = 8  

at (5, 5). T h e  dot ted  line Fig.  1. T h e  original  
r ep re sen t s  t he  cons t ra in t  % >~ 0. 
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We find that x 1 and x 2 are still both positive, and generate the row 

1 
8 

I ] ~ --V 2 • 

With this new constraint, the program is solved to give the result 
xl -~ 8, x~ = 0, ~ -- 16. This  satisfies the nonlinear constraint and is 
therefore the solution of the original program. 

I t  may be of interest to look at the geometry of the situation. In  
essence, the idea is to extend the edges which begin at the trial solution 
until they meet one of the hyperplanes xj = 0, j ~ Jk • In the general 
n-dimensional case, there are n such edges, which will give us n points. 
These n points determine a hyperplane, which is the new constraint. 
For the example above, the linear constraint set is shown in Fig. 1. 
The  trial solution is (5,5), and the two edges starting here meet the 
xl- and x2-axes at (10,0) and at (0,5). The  constraint v 1 > / 0  is equivalent 
to x 1 + 2x 2 ~< 10, which is determined by the line through (0,5) and 
(10,0). The  second trial solution (Fig. 2) is at (8,1), and the two rays 

Fig. 2. 

xl=0  

xz=8 

(8,J.) 

~=o I " 

I 
T h e  constraint  set after the  addit ion of the constraint  vl  >/- 0. T h e  new trial 
solution is at (8, 1). T h e  dot ted line represents the constraint  v,  /> 0. 
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through (8,1) give us the points (8,0) and (0,5). The new constraint 
v 2 ~> 0 is equivalent to 5x t q- 8x 2 ~ 40, which is determined by the 
points (8,0) and (0,5). 

Admittedly, the algorithm given here is quite primitive; no finiteness 
proof can be given, and it would of course be of interest to test its 
effectiveness as against, say, an integer program. 

Similar results have been published by Glover (Ref. 2), Balas 
(Ref. 3), and Young (Ref. 4). The discussion in Young (Ref. 5) is to the 
point and could be repeated here. 

Finally, it has been pointed out by a referee that Glover and 
Klingman in Ref. 6 obtain a more general class of cuts, for which the 
the cuts considered in this paper are a special example. 

References 

1. LEMKE, C. E., On Complementary Pivot Theory, Mathematics of the Decision 
Sciences, Part 1, Edited by G. B. Dantzig and A. F. Veinott, American 
Mathematical Society, Providence, Rhode Island, 1968. 

2. GLOVe, F., Convexity Cuts, University of Texas, School of Business, 
Working Paper, 1969. 

3. BALAS, E., Intersection Cuts A New Type of Cutting Planes for Integer 
Programming, Operations Research, Vol. 19, No. 1, 1971. 

4. YOUNG, R. D., New Cuts for a Special Class of 0-1 Integer Programs, Rice 
University, Research Report, 1968. 

5. Youzq% R. D., Hypercylindrically Deduced Cuts in Zero-One Integer Programs, 
Operations Research, Vol. 19, No. 6, 1971. 

6. GLOV~aL F., and KLINGMA~, D., The Generalized Lattice Point Problem, 
University of Colorado, Management Science Report Series, 7t-3, 1971. 

Additional Bibliography 

GOMORY, R. E., An Algorithm for the Mixed lnteger Program, RAND Corpora- 
tion, Report No. P-1885, t960. 

GOMORY, R. E., An Algorithm for Integer Solutions to Linear Programs, 
Recent Advances in Mathematical Programming, Edited by R. L. Graves 
and P. A. Wolfe, McGraw-Hill Book Company, New York, 1963. 

TuI, H., Concave Programming Under Linear Constraints, Soviet Mathematics, 
Vol. 5, No. 6, 1964. 


