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Geometric Programming with SignomiaJs 1 

R. J. DUFFIN ~ AND E. L.  PETERSON 3 

Communicated by G. B. Dantzig 

Abstract.  The difference of two posynomials (namely, polynomials 
with arbitrary real exponents, but positive coefficients and positive 
independent variables) is termed a signomial. 

Each signomial program (in which a signomiat is to be either 
minimized or maximized subject to signomial constraints) is trans- 
formed into an equivalent posynomiat program in which a posynomial 
is to be minimized subject only to inequality posynomial constraints. 
The resulting class of posynomial programs is substantially larger 
than the class of (prototype) geometric programs (namely, posynomial 
programs in which a posynomial is to be minimized subject only to 
upper-bound inequality posynomial constraints). However, much 
of the (prototype) geometric programming theory is generalized by 
studying the equilibrium solutions to the reversed geometric programs 
in this larger class. Actually, some of this theory is new even when 
specialized to the class of prototype geometric programs. On the 
other hand, all of it can indirectly, but easily, be applied to the much 
larger class of well-posed algebraic programs (namely, programs 
involving real-valued functions that are generated solely" by addition, 
subtraction, multiplication, division, and the extraction of roots). 

1. I n t r o d u c t i o n  

Originally developed by Duffin, Peterson, and Zener (Ref. 1), 
geometric programming with posynomials provides a powerful method 
for studying many problems in optimal engineering design (Refs. 2-6). 
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However, many other important optimization problems can be modeled 
accurately only by using signomiats and more general types of algebraic 
functions. Hence, the question of extending the applicability of geometric 
programming to those larger classes of programs has received con- 
siderable attention. 

In particular, Section III.4 of Ref. 1 presents various techniques for 
transforming a limited class of algebraic programs into equivalent 
(prototype) geometric programs, but many of the most important 
optimization problems are not within that limited class. 

Initial attempts at rectifying this situation were made by Passy and 
Wilde (Ref. 7) and Blau and Wilde (Ref. 8). They generalized some of 
the prototype concepts and theorems in order to treat signomial 
programs; but most of the important protoype theorems are not valid 
in that more general setting. Nevertheless, this paper advances their 
work in such a way that those difficulties are at least partially overcome, 
even in the still more general setting of algebraic programs. 

More recently, Avriel and Williams (Ref. 9) have shown how to 
reduce the study of each rational program to the study of a family of 
approximating prototype geometric programs. That reduction forms the 
basis of a potentially useful algorithm for which they have established 
convergence. It seems that similar algorithms have been proposed 
independently by Broverman, Federowicz, and McWhirter (Ref. 10), 
Pascual and Ben-Israel (Ref. 11), and Passy (Ref. 12), but for somewhat 
smaller classes of programs and without convergence proofs. Actually, the 
same ideas can be further exploited both theoretically and computationally 
by reducing the study of each algebraic program to the study of a family of 
approximating linear programs. In fact, a special application of that 
reduction combined with the original duality theory for linear program- 
ming (Ref. 13--14) provides an alternative proof (Ref. 15) of the main 
theorems from the refined duality theory for prototype geometric pro- 
gramming (Ref. 16 or Chapter VI of Ref. 1). However, in overall 
philosophy and approach, all of that work (on reducing the study of 
various programs to the study of other families of programs with nicer 
properties) is not nearly as closely related to this paper as it is to a 
parallel and independent companion paper (Ref. 17). 

Other work of that general type has been done by Charnes and 
Cooper (Ref. 18), who proposed methods for approximating signomial 
programs with prototype geometric programs. However, the errors 
involved in their approximations have never been investigated. 

With the exception of a single isolated theorem whose proof makes 
use of the refined duality theory (Ref. 16 or Chapter VI of Ref. 1), this 
paper is essentially self-contained. 
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2. S ignomia l  P r o g r a m s  T r a n s f o r m e d  into Equ iva len t  
P o s y n o m i a l  P r o g r a m s  

By employing the well-known elementary transformations from 
mathematical programming and by using rather obvious extensions of 
the transformations given in Section III.4 of Ref. 9, each well-posed 
algebraic program can be transformed into an equivalent signomial 
program, and hence ultimately into an equivalent posynomial program 
by exploiting the transformations to be developed in this section. Due 
to the inherent difficulty in giving a general analytical description of the 
class of algebraic programs, we only illustrate their transformation into 
equivalent signomial programs with an example in the appendix. In this 
section, we shall confine our attention to the more easily described, but 
much smaller, class of signomial programs. 

A signomial is a (generalized) polynomial 

N 

f ( t  1 , t 2 ,..., t )  =A ~ q t~i~ t ~ . . .  t ~m 
~ 1  

(with arbitrary real exponents ai~ ) whose independent variables t~ are all 
restricted to be positive. It is convenient to arrange the terms of a 
signomialf(t) so that those with positive coefficients c.~ (if any) appear first 
in the summation. Then, each signomialf(t) is seen to be either a posy- 
nomial (i.e., all coefficients c~ are positive), the negative of a posynomiat, 
or the difference of two posynomials. 

By using the well-know-n elementary transformations employed in 
mathematical programming, one can easily transform each signomial 
program into an equivalent signomial program in which a signomial 
is to be minimized subject only to upper-bound inequality signomial con- 
traints. Moreover, it is clear that each of the resulting constraints can 
be formulated in one of the following three forms: 

f(t) <~ --I ,  f(t) < O, f(t)  ~ 1. (1) 

We now show how to transform each of these signomial programs 
into an equivalent posynomial program in which a posynomial is to be 
minimized subject only to inequality posynomial constraints having one 
of the following two forms: 

g(t) ~ 1, g(t) ~ 1. (2) 

Unless the objective function is already a posynomial, we first 
transform it by introducing a new positive independent variable t o . To 
see how this is done, suppose that we wish to minimize a signomial loft) 
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subject to inequality signomial constraints. The transformation to be 
used depends on the sign of the constrained infimum of fo(t). If this 
sign is nonnegative, we should minimize the positive independent 
variable t o subject to the original constraints and the additional constraint 
fo(t) <~ t o , in which case the constrained infimum o f t  0 clearly gives the 
constrained infimum of fo(t). If the constrained infimum of fo(t) is 
negative, we should maximize t o subject to the original constraints and 
the additional constraint fo(t) + t o <~ O, in which case the negative of 
the constrained supremum of t 0 clearly gives the constrained infimum 
of fo(t). Now, maximizing t o can obviously be accomplished by mini- 
mizing to 1, so in all cases we are left with an equivalent program that 
consists of minimizing a posynomial subject only to inequality signomial 
constraints. 

Of course, the sign of the constrained infimum off0(t ) may not be 
known in advance. In that event, one should probably make an educated 
guess at the appropriate sign and hence the appropriate transformation. 
If  the first transformation is chosen and the resulting infimum turns out 
to be zero, then the second transformation should also be tried in order 
to see whether the desired infimum is actually less than zero. If the 
second transformation is chosen and the resulting program turns out to 
be inconsistent, then the first transformation should also be tried in 
order to see whether the original program is actually inconsistent or just 
has a nonnegative infimum. In any event, it is clear that the additional 
signomial constraint can be formulated in at least two of the three forms 
(1). 

The additional transformations required to obtain an equivalent 
posynomial program, are most easily described within the context of a 
special case in which there are only three signomial constraints, each 
representing one of the three possible forms (1). Thus, suppose that we 
wish to minimize a posynomial go(t) subject to the signomial constraints 

A(t) <~ -1 ,  f~(t) <~ o, f~(t) <~ 1. 

I f f l ( t  ) is a posynomiat, the constraint f l ( t  ) ~< --1 clearly cannot be 
satisfied, so the program is inconsistent. If  fl(t) is the negative of a 
posynomial, this constraint is equivalent to the posynomial constraint 
--fl(t) ~ 1, which already has the second of the desired forms (2). Hence, 
we need to give further consideration only to the case in which fl(t) is 
the difference of two posynomials. 

If f~(t) is a posynomial, the constraint f~(t) <~ 0 clearly cannot be 
satisfied, so the program is inconsistent. If f~(t) is the negative of a 
posynomial, this constraint is automatically satisfied and therefore can be 
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ignored. Hence, we need to give further consideration only to the case 
in which f2(t)  is the difference of two posynomials. 

I f  fa( t )  is a posynomial, the constraint f3( t )  ~< 1 is already a posy- 
nomial constraint that has the first of the desired forms (2). Iff3(t  ) is the 
negative of a posynomial, this constraint is automatically satisfied and 
therefore can be ignored. Hence, we need to give further consideration 
only to the case in which f3( t )  is the difference of two posynomials. 

Thus,  suppose that we wish to minimize a posynomial go(t) subject 
to the constraints 

hl(t ) - -  ha(t ) ~ --1, 

h2(t ) - -  h~(t) <~ O, 

h ~ ( t ) -  h6(t ) ~ 1, 

where the hk(t), k = 1, 2,..., 6, are posynomials and t = ( t l ,  t2,... , t~). 
Introducing three new positive independent variables t,~+l, t~+z,  and 
t.,+. a , we see that t is a feasible solution to these constraints iff there are 
positive values for t~+ x , tin+ 2 , and tin+ 3 such that the augmented vector 
(t, tin+ 1 , t,n+z, t~+a) is a feasible solution to the constraints 

1 + h~(t) ~< t~+~ ~< h~(t), 

h~(t) ~< t~+~ ~< h~(t) + 1. 

But these constraints are clearly equivalent to the constraints 

gx(t ,  t~+ 1 , t~n+2 , t~+3) ~< 1, k = 1, 2, 3, 

g~(t, t~+ 1 , tin+ 2 , tin+3) ~ 1, k = 4, 5, 6, 

where 

gk(t, tm+l , tin+2 , tm+~) t 
t ~ [ 1  + h~(t)], k = 1, 

t~l+(k_3)hk(t), k = 4, 5, 

t~+(k_3~[hk(t ) + 1], k = 6. 

Moreover, it is obvious that these functions gk(t,  t,,+l , t~+2, t~+3) are 
posynomials and that each of the preceding six constraints has one of the 
two desired forms (2). 

I t  is now apparent from the preceding considerations that each 
signomial program can easily be transformed into an equivalent posy- 
nomial program in which a posynomial go(t) is to be minimized subject 
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only to inequality posynomial constraints having one of the two forms (2). 
Hence, there is no loss of generality in restricting our attention to this 
special class of posynomial programs, so we make this simplifying 
restriction in the following sections. 

3. R e v e r s e d  G e o m e t r i c  P r o g r a m s  a n d  T h e i r  E q u i l i b r i u m  
S o l u t i o n s  

The proceeding section shows how to transform each signomial 
program into an equivalent posynomial program having a special form. 
Posynomial programs having that special form have been termed reversed 
geometric programs (Ref. 15), because some of their inequality posy- 
nomial constraints have a direction g(t) >/1 that is the reverse of the 
direction g ( t ) ~  1 required for the (prototype) geometric programs 
treated in Ref. 1 and 16. 

The most general reversed geometric program is now stated for future 
reference as follows. 

P r i m a l  P r o g r a m  A .  
go(t) subject to the posynomial constraints 

gk(t) <. 1, k = 1, 2,..., p, 

and 

Here, 

and 

where 

and 

Find the infimum MA of a posynomial 

gk(t) ~ 1, k = p  + 1,...,p + r &= q. 

(3) 

(4) 

g~(t) ~ ~ ue(t), k = O, 1 ..... q, (5) 
ie[;q 

[ c t~'~t ~2.. .  t ~ i e [k], k = O, 1,..., p, (6) ) ~ ~ ~ , 

ui(t) £ ) 
! c l-a'~t - ~ ' ' "  t - a ~  i ~ [k], k = p + I,..., q, (7) ~. i l  Z m ' 

[k] ~ {m~, m e + 1,..., nzo}, k = 0, 1,..., q, (8) 

1 zx mo .~ no , n o + 1 ~ m 1 ~ n 1 ..... ha_ t + 1 & m a ~ nq A n. (9) 

The exponents aij and --ai~ are arbitrary real numbers, but the eoeffi- 
dents Q and the independent variables tj are assumed to be positive. 
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We have placed minus signs in the exponents for the reversed 
constraint terms (7) in order to obtain a notational simplification in the 
ensuing developments. To  provide other notational simplifications, we 
introduce the index sets 

P 8 { 1 , 2  ..... p), 0o)  

R £ {p ~- 1,..., q}, (11) 

and 

[K] & U [k] for each K C {0} t_) P U R. (12) 
/aeK 

For purposes requiring pronunication, [K] is called block K. 
In terms of the preceding symbols, the primal program A consists 

of minimizing the primal objective function &(t) subject to the prototype 
primal constraints gk(t) <~ 1, k e P, and subject to the reversed primal 
constraints gl~(t) >~ 1, k e R, where the posynomial ga:(t) & ~Mkl ui(t) 
for each k ~ {0} u P U R, the posynomial term ui(t ) & ctt~a t~= ... t ~  
for-each i e [0] v3 [P], and the posynomial term ui(t ) & cit[% tK%=.., tG%~ 
for each i ~ [R]. 

As in prototype geometric programming (Ref. 1), each posynomial 
term ui(t ) in primal program _d gives rise to an independent dual variable 
3i, i G [0] w [P] ka [2?], and each posynomial gk(t) gives rise to a 
dependent  dual variable Ak(8 ) & ~*t~l 8i, k ~ {0} U P v0 R. To define 
the geometric dual of primal program A, it is convenient to extend the 
notation of the preceding paragraph by introducing the symbols 

K(8) ~ (k ~ K l A~(8) =/= 0} 

[Kt(a) £ {i e [~]  I a~ # 0} 

for each KC_{O}UPvoR, (13) 

for each K _C {0} W P W R. (14) 

Then,  corresponding to primal program A is the following geometric dual 
program. 

Dual Program B. 
function 

Find the supremum M~ of the dual objective 

(15) 
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subject to the dual constraints that consist of the positivity conditions 

8i>~0, 

the normality condition 

i e (1, 2,..., n} = [0] u [P] u [R], (16) 

A0(8 ) = 1, (17) 

j = 1, 2,..., m. (18) 

and the orthogonality conditions 

~ a i j 8  i = O, 

Here, 

Ak(8) & ~ 8i, k ~ {0, 1,..., q} = {0} U P w R, (19) 
i~[/¢] 

and the numbers aij and Q are as given in primal program A. 
The  dual constraints are identical to their anaIogs in prototype 

geometric programming; and they are linear, so the dual feasible 
solution set is either empty or polyhedral and convex. The  dual objective 
function differs from its analog only by the presence of minus signs in 
the exponents of the factors corresponding to the reversed primal 
constraints; but those minus signs result in very large theoretical and 
computational differences between reversed and prototype geometric 
programming. 

The  source of those differences is most easily revealed by considering 
the logarithm of the dual objective function. Of course, the monotonicity 
of the logarithmic function guarantees that v(8) can be maximized by 
maximizing log v(8). Consequently, the following theorem shows that, 
unlike prototype geometric programming, reversed geometric program- 
ming is not essentially a branch of convex programming. 

T h e o r e m  3.1. The  trans%rmed dual objective function 

[ ci log 8i)] log v(8) =zx L[o](~l 8i(l°g - -  

+ z log 
[ P(~) 

- - [  ~ 8i(logci--logSi)@ ~ hk(3) logATc(8)] 
[R](~) R(~) 

is concave in the variables 8 i , i c [0] u [P], but convex in the variables 
8i, i e [R]. 
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P roof .  Differentiation shows that the Hessian matrix of second 
partial derivatives for the function 

[[o1<~) ~(log c , -  log 3~)] 

is negative definite, so this function is concave. Differentiation and an 
application of the Cauchy-Schwartz inequality show that the Hessian 
matrix for the function 

[ ~ L  , ,,(log c , -  l og ' s )+  ,(~,~ A~(') log ;~(3)i 1 

is negative semidefinite, so this function is also concave. (For the 
complete details of this step, see page 122 of Ref. 1.) It follows that the 
function 

- - [  ~ ,,(log c, -- log 3,) + ~ A~(3)logAk(,)J 
[R](8) R(6) 

is convex, so the proof of Theorem 3.1 is complete. 
The convex nature of prototype geometric programming is reflected 

in its main lemma (Lemma 1 on page 114 of Ref. 1), which asserts that 
the primal objective function evaluated at each primal feasible solution 
is greater than or equai to the dual objective function evaluated at each 
dual feasible solution, with equality holding iff the primal and dual 
feasible solutions satisfy certain extremality conditions (a term that is used 
in Refs. 19-23 although not in Refs. 1 and 16.) 

With suitable but very weak hypotheses, one of the main duality 
theorems of prototype geometric programming asserts the existence of 
primal and dual feasible solutions that satisfy the extremality conditions, 
in which event the primal infimum equals the dual supremum, and the 
primal and dual optimal solutions (namely, minimizing points for the 
primal program and maximizing points for the dual program) are charac- 
terized as those primal and dual feasible solutions that satisfy the 
extremality conditions. 

The preceding facts and the linearity of the dual constraints lead to 
algorithms for finding primal and dual optimal solutions to prototype 
geometric programs; and it is our ultimate goal to devise such algorithms 
for reversed geometric programming. However, the lack of total con- 
vexity in reversed geometric programming will force us to be content 
with devising algorithms for finding equilibrium solutions that need not 
always be optima1. 
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Thus,  the preceding remarks and the extremality conditions for 
prototype geometric programming help to motivate the following 
definition. 

Definition 3.1. A feasible solution t* to primal program A is 
termed a primal equilibrium solution if there is a feasible solution 8* to 
dual program B such that 

3~*g0(t* ) = us(t* ), i ~ [0], (20-1) 

3i* = ;~k(3*) u~(t*), i e[k], k e P u R, (20-2) 

in which case 8* is termed a dual equilibrium solution. Given corres- 
ponding primal and dual equilibrium solutions t* and ~*, the numbers  
E~ A= go(t* ) and EB ~= v(8*) are said to be corresponding primal and dual 
equilibrium values. 

The rest of this paper is devoted to studying the properties of 
equilibrium solutions. With that goal in mind, the following theorem is 
fundamental  in that it brings out the most elementary properties to be 
repetitively used in subsequent  developments.  

T h e o r e m  3.2. Each primal equil ibrium solution t* and its 
corresponding dual equilibrium solution ~* to programs A and B 
respectively have the following properties. 

(i) The  nonzero components of the vector 3" are positive, more 
specifically, 

3t* > 0 for i e [0] and for i e [P u R](S*). 

(ii) The  nonzero components  of the vector A($*) are positive, more 
specifically, 

(iii) 
conditions 

Ao(~* ) = 1 and ~(~*) > 0 for k ~ (P U R)(~*). 

The  vectors t* and h(3*) satisfy the complementary slackness 

Ak(3*)[g~(t*) -- 1] = 0, k ~ P, 

A~(3*)[1 -- gk(t*)] = 0, k e R. 

Proof.  The  equilibrium conditions (20-I) and the positivity of 
both g0(t*) and u,~(t*) imply that 8t* > 0 for i e [0]; and Definition 3.1 
requires that each dual equilibrium solution 8* satisfy the positivity con- 
ditions (16), so 8i* > 0 for i ~ [P w R](8*). Definition 3.1 also requires 
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(IV) 
conditions 

that 8* satisfy the normality condition (17), so k0(8* ) = 1; and from 
conclusion (i) we see that )k(8*) > 0 for k ~ (P U R)(8*). Finally, we 
sum the equilibrium conditions (20-2) over i to show that ;~k(8*) = 
)k(8*)g~(t*), k ~ P w R. This completes our proof of Theorem 3.2. 

From Theorem 3.2, we might guess that equilibrium solutions are 
intimately related to the Lagrangian for primal program d .  Even though 
they are, we need not, nor do we, make explicit use of those relations in 
this paper. Nevertheless,those relations do serve as a convenient vehicle for 
establishing two illuminating facts that indicate the practical relevance of 
equilibrium solutions: first, the set of all equilibrium solutions to primal 
program d is identical to the set of all those feasible solutions that are 
tangentially optimal in a certain weakly global sense; and, second, almost 
every locally optimal solution to primal program A is also a primal 
equilibrium solution. Thus, we devote the rest of this section to a study 
of those relations so that the practical significance of succeeding sections 
is established. 

Corresponding to primal program d is the following Lagrange 
problem. 

L a g r a n g e  P r o b l e m  C. For the Lagrangian 

L(t, t*) .~ go(t) 4- ~. t%[g~(t) -- 1] q- ~/%[t -- g~(t)], 
P R 

find a critical solution (t*,/**), namely, a vector (t*,/**) ~ R,,~+~ such that 

(I) the vector t* satisfies both the prototype posynomial con- 
straints 

gk(t) -- 1 ~ O, k G P, 

and the reversed posynomial constraints 

1 - -  g~(t) ~ O, k G R; 

(II) the vector/** satisfies the positivity conditions 

t,~>~0, k G P u R ,  

(III) the partial derivatives DjL(t, t*) of the Lagrangian L with 
respect to the tj at (t,/,), j = 1, 2,..., m, satisfy the conditions 

DjL(t*,/**) = O, j ~ 1, 2,..., m, 

the vectors t* and /z* satisfy the complementary slackness 

/xk*[gk(t* ) - -  1] = 0, h e P,  

n ~ * [ t  - -  g~( t*) ]  = 0 ,  k e R .  
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Here, the posynomials gk(t), k ~ {0} w P w R, are, of course, as given in 
primal program .4. 

By characterizing the equilibrium solutions to primal program A as 
the component vectors t* of the critical solutions (t*,/~*) to problem C, 
the following theorem relates the main concepts of this paper to the more 
standard concepts of mathematical programming. 

Theorem 3.3. Each primal equilibrium solution t* and its cor- 
responding dual equilibrium solution 8" to programs A and B respec- 
tively produce a critical solution (t*,/z*) to the Lagrange problem C 
by letting 

t%* & A~*(a*) g0(t*), k ~ P w R .  

Conversely, each critical solution (t*,/z*) to the Lagrange problem C 
produces corresponding equilibrium solutions t* and 3* to primal 
program A and its dual program B respectively by letting 

34* A t[ I/go(t*)] ui(t*)' i~  [0], 
= ~[l~k*/go(t*)] ui(t*), i ~ [k], k e P u R. 

Proof.  First, observe from Definition 3.1 that t* is a feasible 
solution to program A, and hence possesses property (I) of the Lagrange 
problem C. Then note that the positivity of the posynomial go(t) and the 
nonnegativity of Ak(3* ) asserted in conclusion (ii) of Theorem 3.2 show 
that/~* as defined satisfies property (II). Now, write the orthogonality 
conditions (18) in terms of go(t*), ui(t*), and Ak(3* ) by using the equi- 
librium conditions (20) to eliminate 3i*; and then eliminate Ak(3* ) in 
favor of tzk* by using our defining formula for tL*, so that multiplication 
of the resulting conditions by go(t*)/tj*, j = 1, 2,..., m, implies that t* 
has property (lII). Finally, observe from our defining formula for/~* that 
multiplication of the complementary slackness conditions in conclusion 
(iii) of Theorem 3.2 by go(t*) verifies the validity of the complementary 
slackness conditions in property (IV). This completes our proof of the 
first half of Theorem 3.3. 

To prove the second half, observe that property (I) of the Lagrange 
problem C asserts that t* is a feasible solution to program A. 

Due to the positivity of the posynomial terms ui(t), property (II) 
and our defining formulas for 3" show that 3" satisfies the positivity 
conditions (16). Moreover, a summation over i of our defining formula 
for 3~*, i E [0], shows that 3* satisfies the normality condition (17); and 
multiplication of the derivative conditions in property (III) by tj*/go(t*), 
j = 1, 2,..., m, shows that 3" satisfies the orthogonality conditions (18). 
Consequently, 3* is a feasible solution to program B. 
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Now, our defining formula for 8i*, i 6 [0], clearly implies the validity 
of the equilibrium conditions (20-1). Moreover, if/zk* is zero; then 8i*, 
i E [k], must obviously be zero, so Ak(8* ) is clearly zero; and hence the 
validity of the corresponding equilibrium conditions (20-2) is established. 
On the other hand, if/xk* is positive, then the corresponding comple- 
mentary slackness property (IV) implies that g~(t*) = 1, so a summation 
over i of our defining formula for 8i*, i~  [k], shows that Ak(8* ) = 
fzk*/go(t*), which in turn implies that our defining formula for 8i*, 
i ~[k], is identical to the corresponding equilibrium conditions (20-2). 
This completes our proof of Theorem 3.3. 

By characterizing the critical solutions to Lagrange problem C in 
terms of those feasible solutions to primal program A that are tangentially 
optimal in a certain weakly global sense, the following theorem relates 
some of the standard concepts of mathematical programming to more 
practically relevant concepts. 

T h e o r e m  3.4. Suppose that t* is a feasible solution to primal 
program A, and let 

z(t*) ~ {k ~ P u R [ g~(t*) : I}. 

Then, t* is a component vector of a critical solution (t*,/x*) to Lagrange 
problem C iff 

go(t*) <~ go(t) 

for every vector t with positive components tj whose logarithms log tj 
satisfy the linear system 

• AT~j[log tj -- log tg] <~ O, k ~ Z(t*), 
j = l  

where 

A~j z~ ~ ai#i(t*), k ~ Z(t*), j = 1, 2,..., m. 
ie[k] 

P roof .  Performing most of the partial differentiations in the 
equations of property (III) for Lagrange problem C, and then multiplying 
the resulting equations by the positive numbers tj.*, j = 1, 2,..., m, we 
readily see that t* is a component vector of a critical solution (t*, i~*) 
to Lagrange problem C iff there exist nonnegative numbers /%*, 
k ~ Z(t*), for which 

tffDjgo(t*) + ~ t~k*Al~j = O, j = 1, 2,..., m. 
Z(t*) 
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Now, according to the well-known Farkas lemma concerning linear 
systems (for example, see Lemma 1 on page 17 of Ref. 1), such numbers 
t~k*, k ~ Z(t*) are known to exist iff 

0 ~ ~ tj*Djgo(t*)[log tj -- log t~*] (21) 

for every vector t with positive components tj whose logarithms log t~ 
satisfy the linear system 

Akj[log t~- -- log t*j] ~ O, k e Z(t*). (22) 
J=l 

Consequently, to complete our proof, we need only show that Ineq. (21) 
can be replaced by the inequality go(t*) <~ go(t) without disturbing the 
validity of the preceding statement. 

To do so, we make the change of independent variables 

tj ~ exp(zj), j = 1, 2,..., m, (23) 

so that primal program A is transformed into an equivalent reversed 
convex program to which we can apply an elementary theorem from 
convex analysis. This equivalent program clearly consists of minimizing 
the convex function Go(z ) subject to both the prototype convex constraints 

G~(z) << 1, k ~ P, (24) 

and the reversed convex constraints 

where 

G~(z) ~ 1, k e R, (25) 

G~(z) ~ ~ b~(z), k ~ {0} U P u R, (26) 
~[~] 

and 

,~ ~ci exp(aazl q- a~2z2 q- "'" q- ai~z~,), i ~ [k], k ~ {0} u P, (27) 5~(z) 
= ~c i exp(--ailzl -- ai2z~ ai,~z~), i ~ [k], k e R. (28) 

(Of course, the convexity of these functions Gk, k ~ {0} w P u R, follows 
easily from the positivity of the coefficients ct,  i ~ [0] u [P] td [R].) 
In terms of this notation and the inner product notation (.,  -), Ineq. (21) 
is simply 

0 ~ <VGo(z*), z -- z*), (29-1) 
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and Ineqs. (22) are simply 

i <~ O, k ~ P n Z(t*), (30) 
( V a ~ ( z * ) ,  z - z * )  I ~> 0, k e R c~ Z(t*). 

From the convexity of G o we know that 

<va0(z*) ,  z - z*> ~ a0(~) - a0(z*) ,  

so the validity of Ineq. (29-1) implies the validity of the inequality 

Go(z*) <~ Go(z). (29-2) 

On the other hand, the solution set for the linear inequalities (30) is 
obviously a cone with vertex z*, so the validity of Ineq. (29-2) for each 
vector z in that solution cone implies the validity of Ineq. (29-1) for 
each such solution vector z, by virtue of the differential calculus. Finally, 
we observe that Ineq. (29-2) is equivalent to the inequality 

go(t*) <~ g~(t). (29-3) 

This completes our proof of Theorem 3.3. 
The way in which a feasible solution t* = exp(z*) can be tangent- 

ially optimal in a weakly global sense is indicated by the solution cone 
for the linear inequalities (30). The tangential nature is indicated by the 
presence of VGk(z* ), k c P k) R, in (30); the global nature is indicated 
by the fact that this solution cone need not be sufficiently small; and the 
weak nature is indicated by the fact that this solution cone does not 
contain the entire set of feasible solutions to the constraint inequalities 
(24)-(25) unless R n Z(t*) = ~ .  

We now have enough machinery to establish the optimal nature of 
the equilibrium solutions to primal program A. 

C o r o l l a r y  3.1. Suppose that t* is a feasible solution to primal 
program A, and let 

Z(t*) A {k ~ P t.) R [g~(t*) = 1}. 

Then, t* is an equilibrium solution to primal program A iff 

go(t*) • go(t) 

for every vector t with positive components tj whose logarithms log t~ 
satisfy the linear system 

~ A~-[log t~. -- log tj*] <~ O, k ~ Z(t*), 
J=l 

8o91ii/x-2 



18 JOTA: VOL. 1t, NO. 1, 1973 

where 

Ak~ &= ~ aijui(t*), k ~ Z(t*), j = 1, 2,..., m. 
ie[~] 

This corollary follows immediately from Theorems 3.3 and 3.4. 
It is worth mentioning that equilibrium solutions to primal program 

A are also tangentially optimal in an even more weakly global but more 
computationatly exploitable sense, as described in Ref. 17. Moreover, they 
are actually (globally) optimal when primal program A is a prototype 
geometric program (that is, R =- ~ ), as can be seen from the main lemma 
of prototype geometric programming (Lemraa 1 on page 114 of Ref. 1). 
In contrast, they need not even be locally optimal when primal program A 
is not a prototype geometric program (that is, R @ ;~). 

For example, notice that the vector t* zz (1, 1) and the vector 
tz* ~ 1 produce a critical solution (t*,/x*) to the Lagrange problem C 
corresponding to the primal program A that consists of minimizing the 
posynomial go(t) ~= t 1 4- tz subject to the single reversed posynomial 
constraint gl(t) A= (1/2) tl ~ + (1/2) t22 >/ 1. Hence, Theorem 3.3 asserts 
that t* ~ (1, 1) is an equilibrium solution to this primal program; but  
the contours of go and gl obviously show that this equilibrium solution 
is not locally optimal even though it is tangentially optimal. Such 
(undesired) equilibrium solutions are clearly unstable and hence, due to 
round-off error, are possibly less likely to be obtained by most numerical 
algorithms, especially those proposed in Refs. 9 and 17. 

It is worth recalling the well-known fact that every locally optimal 
solution to a general nonlinear program under any of several rather weak 
constraint qualifications is always part of a critical solution to the cor- 
responding Lagrange's problem (for example, see Chapter 5 of Ref. 24 
or Chapter 2 of Ref. 25). Thus,  we infer from Theorem 3.3 that the 
(desired) set of all (globally) optimal solutions to primal program A is 
almost always a subset of the set of all primal equilibrium solutions and 
hence can almost always be found by sharpening the methods to be used 
for computing equilibrium solutions. 

The  initial work on equilibrium solutions for reversed geometric 
programs was performed by Passy and Wilde (Ref. 7) in the setting of 
generalized polynomial programs (i.e., signomial programs); but they used 
the terminology pseudominimum rather than equilibrium solution. Sub- 
sequent work of a more detailed nature on the general relationships 
between locally optimal solutions, stable equilibrium solutions, and 
unstable equilibrium solutions was performed by Avriel and Williams 
(Section 4 of Ref. 9); but they used the terminology quasiminimum 
rather than equilibrium solution. In addition to studying important new 
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questions and phenomena, this paper and its companion paper (Ref. I7) 
present a self-contained alternative approach to almost all of the 
important questions and phenomena studied in Ref. 7 and 9. 

The remaining sections of this paper bring to light some important 
properties of equilibrium solutions, which lead to a family of indirect 
methods for computing them. Other important properties that lead to 
families of direct methods are brought to light in Refs. 9 and 17. 

4. Basic  P rope r t i e s  of  E q u i l i b r i u m  Solut ions 

The last part of the preceding section tended to concentrate on the 
properties of primal equilibrium solutions. In this and the next section, 
the emphasis shifts somewhat toward the properties of dual equilibrium 
solutions. Those properties are more nearly linear in nature, and hence 
dual equilibrium solutions are somewhat more amenable to computation. 

In addition to showing that the nonzero components of dual 
equilibrium solutions occur in blocks, the following fundamental theorem 
also presents a useful extension of an identity that was first obtained by 
Zener in prototype geometric programming. 

T h e o r e m  4.1. If 8" is an equilibrium solution to dual program B, 
then the following results hold. 

(i) For each k ~ P u R, either ~i* = 0 for each i ~ [h] or 8i* > 0 
for each i ~ [hi, with the latter being the case iff Ak(~* ) > 0; hence, 

[P u R](~*) = [(P u R)(~*)]. 

(ii) Given the equilibrium value EA zx go(t* ) for a corresponding 
equilibrium solution t* to primal program A, the identity 

is valid for every vector y that satisfies both the orthogonality conditions 

~.aijYi = O, j = 1, 2,..., m, 
i = 1  

and the condition 

Yt = 0 for each i for which 8i* = O. 
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Proof .  From conclusion (ii) of Theorem 3.2, we know that 
Ak(3*) >~ 0 for k E P W R. Consequently, the equilibrium conditions 
(20-2) and the positivity of ui(t*) imply that either 3i* = 0 for each i z [k] 
or 3~* > 0 for each i ~ [k], with the latter being the case iff Ak($* ) > 0. 
This establishes conclusion (i). 

To prove conclusion (ii), first divide the equilibrium conditions 
(20-1) by c~ and raise both sides to the power Yi to obtain the relations 

(~,*/~,)~'e 2 = ( , , * / c y , ,  i e [o1(~*). 

Then, for each i~  [k](S*) and each k ~ P(S*), divide the equilibrium 
conditions (20-2) by Q and raise both sides to the power y,; to obtain the 
relations 

(,,*/~,)~, = (a~*)~,(.,*/~,) ",, i ~  [k](**), k ~ P ( ~ * )  

Also, for each i c [k](8*) and each k ~ R(8*), divide the equilibrium 
conditions (20-2) by Q and raise both sides to the power --Yi to obtain 
the relations 

(~i*/ci) -~, = (A~*) -~ , ( . i* /cS  ~, i ~ [k](~*), k ~ R(~*). 

Now, multiply all of these relations together, and use the defining 
equations (6) and (7) for ui* , to obtain the relation 

where T ~x { 0 } w P u R  and p~ ~I-Ij~it]~J for each i e [ T ] .  This 
establishes our identity; because the condition that Yi = 0 for each 
i q! IT](8*), the definitionpi ~ 1-[j=x t]~J and the orthogonality conditions 

~b 
~i=1 aij Y~ =- O, j = 1, 2,..., m, imply that 

n Z ~ Z ~ 

[T ] (~* )  i = l  

for each t > 0. Thus, our proof of Theorem 4.1 is seen to be complete. 
The following corollary to Theorem 4.1 extends to reversed 

geometric programming a somewhat weakened version of the important 
prototype geometric programming theorem that asserts the equality of 
the primal program infimum and its corresponding duat program 
supremum. 
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C o r o l l a r y  4.1. Corresponding primal and dual equilibrium 
values E A ~ go(t*) and E B ~= v(8*) are always equal. 

This corollary follows immediately from the identity in conclusion 
(ii) by choosing y to be 3", because 8" is dual feasible and hence satisfies 
the normality condition ~0(8") = 1. 

Other important properties of dual equilibrium solutions can be 
conveniently described in terms of the nullity vectors that were used in 
prototype geometric programming (page 84 of Ref. 1). A nullity vector 
is simply any solution v to the homogeneous counterpart of the normality 
and orthogonality conditions, namely, 

Ao(v) .... o (31) 

and 

~ aijvi = O, j .... 1, 2,..., m. (32) 
i=:l_ 

The following corollary to Theorem 4.t is especially useful because 
it isolates each dual equilibrium solution 3* and the posynomial coeffi- 
cient vector c -~ (q  ,..., %) on the opposite sides of an identity. 

C o r o l l a r y  4,2. If 5" is an equilibrium solution to dual program B, 
then every nullity vector v such that 

v i = 0 for each i for which 8~* = O 

satisfies the identity 

where 

F(a* ,  ~) _= K(c, v), 

This corollary follows immediately from the identity in conclusion (ii) 
by choosing y to be v, because v is a nullity vector and hence satisfies 
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the condition ~o(v)= 0 and because the condition v, = 0 for each 
i ~ [P](8*) k9 [R] (3") implies that 

The following theorem is important  in that it sheds considerable 
light on the nature of the equilibrium identity F(3*, v) .~ K(c, v) by 
providing a fundamental  link between the basic function F(.,  v), the basic 
constant K(c, v), and the directional derivative function Dvv(') of the dual 
objective function v in a given direction v. 

T h e o r e m  4.2. I f  8 is a feasible solution to dual program B, then 
8 + rv is also a feasible solution to dual program B for each scalar r in 
some sufficiently small neighborhood of zero iff v is a nullity vector such 
that 

u~: = 0 for each i for which 3 i = 0, 

in which case the dual objective function v has a directional derivative 
D.v(8) at 8 in the direction v that is given by the formula 

D~v(8) = {log K(c, v) -- logF(8, v) -- Ao(v)}v(3), 

where 

. . . . .  a~(v) 

L[O] J L[P] L[R] -t 

P r o o f .  From elementary linear algebra, we know that 8-{-rv 
satisfies the normality and orthogonality conditions for at least one 
nonzero scalar r iff v is a nullity vector, in which case 8 -~ rv satisfies 
the normality and orthogonality conditions for every scalar r. Moreover, 
it is clear that 8 + rv satisfies the positivity conditions for each scalar r 
in some sufficiently small neighborhood of zero iff v i = 0 for each i for 
which 3 i = 0. This  proves the first assertion in Theorem 4.2. 

The  second assertion can be established under  much weaker 
hypotheses than those that are given. In fact, we see from the defining 
formula (15) for v that, to keep imaginary numbers from being generated 
the domain of v need only be limited to those vectors 8 that satisfy the 
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positivity conditions. Given such a vector 8, we have already observed 
that the vector 8 q- rv is also such a vector for each scalar r in some 
sufficiently small neighborhood of zero iff v i = 0 for each i for which 
8 i = 0. Under  these conditions the defining formula (15) for v shows 
that, at r = 0, the function V(r) zx v(8 q- rv) has the following log- 
arithmic derivative: 

D log  v ( 0 )  = 2 [ log - log  - 1] 
[0](a~ 

-~- E [log c i - -  log 8i -- I] v~ -- E [log A~(8) + 1] Ak(v) 
[P](~) P(~) 

- -  ~ [logc i log3 i - -  1 ] v i  - -  E [logAn(8) ~- 1]A~(v).  
[R](~) R(~) 

Using our defining equation for F(8, v) and the linear homogeneous 
condition on v, we see that 

D log V(0) = Z vi log ci _a Z v, logc~ -- Z v~ log ci --  logF(8, v) -- ,\0(v). 
[o1(~) [e](~) [al(~) 

This  equation establishes the desired formula because of our defining 
equation for K(c ,  v) and the linear homogeneous condition on v. Thus,  
our proof of Theorem 4.2 is seen to be complete. 

The  following corollary to Theorem 4.2 shows that dual equilibrium 
solutions are stationary solutions to dual program B. 

C o r o l l a r y  4.3. I f  8" is an equilibrium solution to dual program 
B, then the identity 

D~v(8*) ~ 0 

is valid for every vector v such that 8* @ rv is a feasible solution to dual 
program B for each scalar r in some sufficiently small neighborhood of 
zero. 

This  corollary follows immediately from choosing 8 to be 8* in 
Theorem 4.2 and then applying Corollary 4.2. 

As indicated by the lack of total convexity brought to light in 
Theorem 3.1, equilibrium solutions to dual program B need not either 
minimize or maximize the dual objective function v, even though they 
are stationary solutions to dual program B. However, dual equilibrium 
solutions are tangentially optimal in a strongly global sense, as explained 
in Ref. 17. 

The  following theorem shows that  dual equilibrium solutions are 
almost characterized by the properties that  have been brought to light in 
this section. 
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Theorem 4.3. If 

(i) 3* is a feasible solution to dual program B, 

(ii) for each k E {0} t.) P u R, either 3i* = 0 for each i ~ [hi, or 
~** > 0 for each i ~ [k], 

(iii) every nullity vector v such that v i = 0 for each i for which 
3i* = 0 satisfies the identity 

where 

F(a*, ~) _= K(c, ~), 

then deletion of the zero components of 3* produces an equilibrium 
solution ~* to the geometric dual program B' corresponding to the primal 
program A' that results from deleting those constraints in primal program 
A for which ;~k(S*) = 0. 

P r o o f .  Primal program A' consists of minimizing the posynomial 
go(t) subject to both the prototype posynomial constraints 

g~(t) <. 1, k ~ P', 

and the reversed posynomial constraints 

(33) 

where the index set 

and the index set 

ge(t) ~ 1, k e R', (34) 

p' =~ P(~*) (35) 

R' ~ R(3*). (36) 

In the following developments, it is notationally convenient to also 
employ both the symbol 

Q' & P'  w R' (37) 
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and the symbol 

r '  =a {0} w Q'. (38) 

Accordingly, the geometric dual program B' corresponding to primal 
program A'  can be described by introducing an independent dual vector 

T' variable ~ whose components ~i, i a [ ], are not consecutively ordered 
unless T ' =  T G {0, 1, 2,..., q}. To give such a description, we also 
introduce the dependent dual variables ~%(~) =A ~i4k] ~i, k ~ T', and 
we adapt our other notation so that 

K'(~) =A {k a K']  o~(~) @ 0} for each K" _C T', (39) 

[K'](~) =zx {i e [K'] I ~i @ 0} for each K' _~c- T'. (40) 

Then, dual program B' consists of maximizing the objective function 

subject to the positivity conditions 

¢~ ~> 0, i e [T'] ,  (42) 

the normality conditions 

~o (0  = 1, 

and the orthogonality conditions 

F, ~'ij~, = O, 
ie[r'] 

where 

(43) 

~%(g) • ~ gi, ha  T'. (45) 
ie[~] 

From hypothesis (i), we easily infer that the vector ~* with com- 
ponents 

~i* z~ 8i*, i e [T'], (46) 

is a feasible solution to dual program B'; and from hypothesis (ii), we 
immediately see that all components of ~* are strictly positive. Thus, 
introducing another independent vector variable v whose components 
vi,  iE [T'], are not consecutively ordered unless T' = T ~ {0, 1, 2,..., q}, 

/ = 1, 2,..., m, (44) 
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we readily deduce from hypothesis (iii) that every nullity vector v for 
program B' satisfies the equilibrium identity 

F'(~*, v) =~ K'(c, v), (47-1) 

where 

K'(c, v) ~= [[oI]l (ci) ~] IEeH ] (ei) ~] [[RI] ] (c~)-~]. (47-3) 

Consequently, ~* inherits from 8* every property relative to program 
B' that 3* has relative to program B. In addition, ~* has important 
properties that 8" need not have; namely, all components of ~* are 
strictly positive, and hence all numbers c%(~*), k ~ T' ,  are strictly 
positive. Using all of these properties of ~*, we shall now carry out our 
proof by demonstrating the existence of a vector t* such that 

~i*go(t*) = u~(t*), i e [0], (48-1) 

~* = oJ~(~*) u~(t*), i ~ [k], k c P'  to R'. (48-2) 

Such a vector t* is automatically a feasible solution to program _d'; 
because relation (48-2) shows that 

wk(~*) ~ ~ ~i* -~ w~(~*) ~ u~(t*) ~ wl~(~*) gk(t*), k ~ P' w R', 
ie[k] i~[k] 

which in turn implies that 

g~(t*) = l, k ~ P' u R', 

by virtue of the positivity of Wk(~*), k ~ P '  U R'. 
The  key to establishing the existence of a vector t* that satisfies 

relations (48) is the application of a powerful existence theorem from 
prototype geometric programming to a certain prototype primal program 
A* and its geometric dual program B*. Corresponding to programs A* 
and B* is a new coefficient vector c* with components 

ci* A t ci' i e  [0] vo [P'], (49-1) 
= i[~,,/%(~,)]2 q-l, i ~ [k], h c R', (49-2) 
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which are clearly positive. Now, the defining equation (49-2) readily 
implies that every vector v satisfies the identity 

R'{~*) [R'] 

because it is easy to verify that R'([*) = R'. Taking account of the 
defining equation (49-1), and multiplying the left-hand and right-hand 
sides of the preceding identity into the left-hand and right-hand sides 
respectively of the equilibrium identity (47) shows that every nullity 
vector v for program B' satisfies the identity 

F*(g*, v) K*(c*, v), (50-1) 

where 

t l[ 1 v) I-I ( c / )  °' 1-I ( c / )  • (50-3) 
I_ [o] a c[O'] a 

This identity suggests that we consider a geometric dual program B* 
which differs from program B' only in that the objective function for 
program B* is 

The fact that programs B* and B' have the same constraints implies that 
they have the same set of nullity vectors v, so our identity (50) is actually 
the equilibrium identity corresponding to program B*. The fact that 
programs B* and B' have the same constraints also implies that [* is a 
feasible solution to program B*, because we have already observed that 
~* is a feasible solution to program B'. Moreover, the defining equation 
(46) shows that each component of [* is strictly positive, so [* is in the 
(relative) interior of the feasible solution set for program B*. 

With the preceding properties of [* at hand, it is now expedient to 
apply to program B* the theory already developed in this paper. To do 
so, we temporarily identify program B* with program B by choosing 
c~ = c,~*, i e IT'], while letting P = Q' and R = 2~. Then, Theorem 
(4.2) along with our equilibrium identity (50) for program B* shows 
that [* is a stationary solution to program B*. Hence, the presence of [* 
in the (relative) interior of the feasible solution set for program B* 
implies that [* is actually an optimal solution to program B*, because 
program B* is convex by virtue of Theorem 3.1 and the relation R = 2J. 
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This same relation R == ~ also shows that program B* is the geometric 
dual of a prototype primal program A*,  so we can now apply the refined 
duality theory of prototype geometric programming (Ref. 16 or Chapter 
VI of Ref. 1). 

First, using the defining equations (49) for the coefficients ci* , we 
observe that primal program A* consists of minimizing the posynomial 
go(t) subject to the standard posynomial constraints 

where 

gk(t) ~ 1, k e P', (52-1) 

g~*(t) <~ 1, k e R', (52-2) 

gl¢*(t) ~ ~ [~i*/wk(~*)]~[ui(t)] -1, k ~ R'. (53) 
[7c] 

Now, programs A* and B* are canonical (see page 169 of Ref. 1), because 
the dual program B* has a feasible solution ~* with strictly positive 
components. Thus, the optimality of ~* along with Theorem 1 on page 
169 of Ref. 1 implies that program A* has an optimal solution t* such 
that go(t*) ~ v*(~*). Then, the main 1emma of prototype geometric 
programming (Lemma 1 on page 167 of Ref. 1) shows that t* and ~* 
satisfy the extremality conditions 

~i*g0( t* )  - - i ( t * ) ,  i e [0] ,  

and 

~i* = I~%(~*) ui(t*)' i ~ [k], k e P', 
(c%(~*)[~t*/oJk(~*)]~[ui(t*)] -1, i E [k], k ~ R'. 

Algebraic manipulation of the second part of the latter relation enables 
us to rewrite the latter relation in the more compact form 

~i* = c%(~*) ui(t*), i ~ [k], k ~ P'  k9 R'. 

This establishes the validity of relations (48) and hence completes our 
proof of Theorem 4.3. 

It is worth nothing that Theorem 4.3 cannot be sharpened by 
strengthening only its conclusion. For example, consider an arbitrary 
pair of primal and dual programs A'  and B' that possess corresponding 
primal and dual equilibrium solutions t* and ~*, respectively; and then 
append to program A'  an additional primal constraint that cannot be 
satisfied. Then, ~* with appropriate zero components appended produces 
a vector 8* that satisfies the hypotheses of Theorem 4.3 relative to the 
resulting pair of primal and dual programs A and B; but programs A and 
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B cannot have an equilibrium solution because program A is clearly 
inconsistent. 

Although computationally oriented, the next (and final) section of 
this paper does shed additional light on the nature of equilibrium 
solutions. 

5. An Ind i rec t  M e t h o d  fo r  O b t a i n i n g  E q u i l i b r i u m  Solut ions  

The theory developed in the preceding section leads to useful 
necessary conditions that help to determine equilibrium solutions. Such 
necessary conditions for dual equilibrium solutions 8" come from 
observing that the set of all those nullity vectors v that satisfy the 8" 
zero-condition (namely, v i ~ 0 for each i for which &~* = 0) forms a 
vector subspace of E~. 

If this nullity subspace corresponding to ~* contains only the zero 
vector, then the elementary theory of linear algebra asserts that the 
normality condition, the orthogonality conditions, and the ~* zero- 
condition have a unique solution ~*, in which case ~* can easily be 
computed by elementary linear algebra, and there are no other dual 
equilibrium solutions that satisfy the 8" zero-condition. 

On the other hand, if the nullity subspace corresponding to 8" 
contains more than just the zero vector, then it has positive dimension 
d >/ 1 and d basis vectors b t, b ~ .... , b ~. Each such basis determines a set 
of d basic constants K(c,  bS), j = 1, 2 .... , d, and a set of d basic functions 
F(. ,  bJ), j = 1, 2,..., d, that give rise to a corresponding set of d equilibrium 
equations 

e(8, bJ) = K(c, b~), j = 1, 2,..., d, (54) 

which (according to Corollary 4.2) must be satisfied by each dual 
equilibrium solution that satisfies the 8" zero-condition. From the 
construction of the nullity vectors b 1, b2,..., b a, we know that n -  d 
linearly independent equations can be selected from the normality 
condition, the orthogonality conditions, and the 8" zero-condition. 
Such a selection will always contain the normality condition; otherwise, 
the elementary theory of linear algebra would imply that the dual feasible 
solution 3" does not exist. Each such set of n --  d linear equations and 
the d nonlinear equilibrium equations (54) provide n necessary conditions 
to help determine the n components of 8*. However, the last part of 
Section 4 shows that these n necessary conditions are not always sufficient 
in that they may have solutions that are not dual equilibrium solutions. 
A conclusive test for a given solution consists of showing the existence 
or nonexistence of a corresponding primal equilibrium solution t*. 
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Before elaborating on a method for constructing corresponding 
primal equilibrium solutions, it is important to note that not all dual 
equalibrium solutions need satisfy our n conditions; but those that do 
not must satisfy a different set of n conditions obtained from equating 
different component blocks of ~* to zero. Only complete component 
blocks of ~* are equated to zero because of the necessary condition given 
in conclusion (i) of Theorem 4.1. The determination of all such sets of n 
conditions is, of course, an elementary (but lengthy) task in combinatorics 
and linear algebra. 

From a computational point of view, it is worth remarking that the 
only nonlinear equations in a given set are the d equilibrium equations 
(54), so such a set is said to have degree of difficulty d. It may be worth 
noting that the equilibrium equations are actually linear in the variables 
log 8 i and log ;~k when the logarithm of both sides of these equations is 
taken. Furthermore, the resulting equations are linear in the parameters 
log ci, so the family of all reversed geometric programs with a fixed 
exponent matrix [aij ] and a given dual equilibrium solution 8" can be 
found by constructing the general solution of this linear system. Of 
course, not every reversed geometric program constructed in this 
manner need have ~* as a dual equilibrium solution, but those and only 
those programs for which there is a corresponding primal equilibrium 
solution t*. 

To obtain the primal equilibrium solutions corresponding to a given 
dual equilibrium solution S* for fixed coefficients ci, Corollary 4.1 shows 
that v(S*) can be substituted for go(t*) into the equilibrium conditions 
(20~1) for the corresponding primal equilibrium solutions t*. After 
making this substitution, one can produce a linear system in log t~* by 
taking the logarithm of both sides of the resulting conditions and those 
other equilibrium conditions (20-2) for which Ak(8*) > 0. A summation 
of these latter conditions shows that ;~k(8*) = )tk(3* ) gk(t*), sogk(t* ) = I, 
and hence the corresponding prototype and reversed primal constraints 
are automatically satisfied by each such solution t*; but the other primal 
constraints [for which ;~k(S*)= 0] need not be satisfied by such a 
solution t*. 

Consequently, the primal equilibrium solutions t* corresponding to 
a given solution 8" of the n necessary conditions that result from 
equating certain component blocks to zero are readily characterized as 
the solutions to a system of linear equations and (usually) nonlinear 
inequalities. (Those inequalities arising from single-term posynomial 
constraints are clearly linear.) Of course, this system may not have a 
solution, in which case the vector 8" is not a dual equilibrium solution 
even though it satisfies the appropriate n necessary conditions. However, 
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Theorem 4.3 shows that such a vector 8" with its zero components 
deleted is always a dual equilibrium solution to the dual of the primal 
program that results from deleting those primal constraints for which 
;~1~(8") = 0 .  

The presence of nonlinear equations and frequently nonlinear 
inequalities is the main difficulty with using the preceding indirect 
method for finding equilibrium solutions, tn Ref. 17, we develop direct 
methods based on solving appropriate sequences of prototype geometric 
programs. 

Finally, it is worth mentioning that when reversed constraints are 
not present (that is, R = ;~ ) and when the primal objective function has 
only a single term (that is, [0] ...... {l}), dual program B is essentially the 
chemical equilibrium problem that consists of minimizing Gibbs' free energy 
function --log v(~) subject to the mass balance equations 

~ aij~i = --a~j , j = 1, 2,..., m, 

to obtain the equilibrium mote fraction Si*/~k* for each chemical species i 
that can be chemically formed from the m elements present in phase k of 
a p-phase ideal chemical system. In this context, the nullity vector 
components are called stoichiometric coefficients, the basic constants are 
termed equilibrium constants, and the equilibrium equations are known 
as the mass action taws. For complete details, see Ref. 26, Appendix C 
of Ref. 1, and the references cited therein. 

6. A p p e n d i x  

We now illustrate with an example how to transform an arbitrary 
algebraic program into an equivalent signomial program, so that it can 
be further transformed into an equivalent posynomial program with the 
aid of the transformations introduced in Section 2. 

Without loss of generality we assume that the independent variables 
are restricted to be positive, a condition that can, of course, always be 
achieved by replacing each unrestricted independent variable with the 
difference of two new positive independent variables. 

Thus, suppose that we wish to minimize the algebraic function 

@{[~/[fl(t)] -fffa(t)l/[~/[f2(t)] -}-f4(t)]}, (55) 

where the fk(t), k = 1, 2, 3, 4, are signomials and t = (t l ,  t 2 ,..., t,,). 
To keep imaginary numbers from being generated and hence make 
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this a well-posed algebraic program, we must obviously include the 
constraints 

0 ~. A(t), (56) 

0 ~< f2(t). (57) 

For the same reason, we must also include either the constraints 

0 ~ ~/[fl(t)] +f3(t), (58-1) 

0 ~< x/[f~(t)] ÷f4(t), (59-1) 

or the constrainsts 
~/[fl(t)] +f~(t) ~< 0, (58-2) 

~/[f~(t)] + A(t) ~< 0. (59-2) 

In general, more than a single program must be solved to solve one 
algebraic program. In our example, we must solve both the program 
P1 with constraints (58-1) and (59-1) and the program P~ with constraints 
(58-2) and (59-2), after which we must choose the smaller of the two 
optimal values. To be concise, we shall illustrate our additional techni- 
ques on only one of these two programs, namely, program/)1 whose 
consistency we shall assume. 

To test for the possible occurrence of the interminatc form ~/(0/0), 
we should first minimize just the numerator C[fl(t)] + f.(t) subject, of 
course, to the constraints (56)-(57), (58-1), and (59-1). This program 
/)1' has an optimal value that is either zero or positive by virtue of 
constraint (58-1). If it is zero, then constraint (59-1) shows that either 
there is a minimizing sequence such that the denominator ~v/[f2(t)] -~ f4(t) 
is bounded from below by a positive number, or ~/[_f~(t)] +fa(t)  
approaches zero from above for each minimizing sequence. In the first 
case, the optimal value of program/)1 and hence the original program P 
is zero; in the second case, there is presumably a common factor that 
needs to be removed from the numerator and denominator, a situation 
that shouldn't arise when the original program P is propertly formulated. 
The remaining possibility is that the optimal value for program PI' is 
positive, in which event the indeterminate form a/(0/0) cannot occur, 
and we must consider both the numerator and the denominator simul- 
taneously, that is, program P1 • 

Before proceeding, we should observe that program PI'  is generally 
not a signomiat program; but, for the sake of conciseness, we shall not 
carry out its transformation into an equivalent signomial program. 
Instead, we assume that its optimal value is positive so that we must 
actually come to grips with the more complicated program Pt  • 
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Introducing an additional positive independent variable to, we see 
that program P1 consists essentially of minimizing the posynomial 

~/t o (60) 

subject to both the constraints (56), (57), (58-1), (59-1) and the additional 
algebraic constraint {~/[f~(t)] + f~(t)}/{~/[f2(t)] -t-f4(t)} ~ to, which 
can conveniently be rewritten as 

0 <~ --%~Ill(t)] + t o v~[fz(t)] --f3(t) -~- tJ~(t), (61) 

by virtue of constraint (59-I). To achieve our goal, we must  still 
transform the algebraic functions in constraints (58-1), (59-1), and (61) 
into signomials. Toward that end, we introduce two additional positive 
independent variables t~+ 1 and tin+ ~ so that (58-1) and (59-1) can be 
replaced by 

0 ~ %/t~+l +f3(t), (62-1) 

t~+ 1 < f~(t), (62-2) 

and 

0 ~< ~/t~+~ +f4(t), (63-1) 

t~+~ ~< f~(t). (63-2) 

Finally, we introduce another positive independent variable tin+ 3 so that 
(61) can be replaced by 

o ~< -v/t,.+~ + to v % ~  - L ( t )  + toA(t), (64-1) 

(64-2) 

Thus,  program P1 actually reduces to minimizing the posynomial (60) 
subject to the signomial constraints (56)-(57) and (62)-(64). This 
program is obviously a signomial program, and hence can be further 
transformed into a posynomial program with the aid of the techniques 
given in Section 2. 

The  variety of optimization problems that can be expressed as well- 
posed algebraic programs is worth stressing. For example, by virtue of 
the Stone-Weierstrass approximation theorem, each program involving 
continuous functions with bounded domains can be approximated with 
arbitrary accuracy by a rather limited class of algebraic programs, 
namely, the class of polynomial programs. 

8o9/Ix/x-3 
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