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Second-Order and Related Extremality Conditions 
in Nonlinear Programming 1 
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Communicated by M. Avriel 

Abstract. This paper is concerned with the problem of characterizing a 
local minimum of a mathematical programming problem with equality 
and inequality constraints. The main object is to derive second-order 
conditions, involving the Hessians of the functions, or related results 
where some other curvature information is used. The necessary condi- 
tions are of the Fritz John type and do not require a constraint 
qualification. Both the necessary conditions and the sufficient conditions 
are given in equivalent pairs of primal and dual formulations. 
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1. Introduction 

In this paper, we derive local optimality conditions for the following 
nonlinear programming problem [Problem (NLP)]: 

(NLP) min f°(x), 

subject to f f  (x) ~< 0, k ~ I ~ { 1, 2 . . . . .  P}, 

hi(x) = O, / 6 J ~ { 1 , 2  . . . . .  m}, 

x ~ R  ~ 

No special assumptions, other than differentiability, are imposed on the 
problem's functions. In particular, a constraint qualification is not needed 
for the validity of our necessary condition. The main object is to derive 
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Table 1. Second-order conditions for Problem (NLP). 

Primal form Dual form 

Necessary 
conditions 
for local 
minimum 

For every d e D(x*), there is no z 
such that (z, d) # 0 and 

vfk(x*)z + d'V2fk(x*)d < O, 
k ~ A*(d), 

Vhi(x*)z +d'V2hi(x*)d = O, 
/~J. 

Here, it is assumed that {Vh/(x*)}j~j 
are linearly independent. 

For every d e D(x*), there exist 
nonnegative y e R P+I, p. e R m 
(y,/~) # O, such that 

VL(x*, y, Ix)= 0, 

d'V2L(x *, y, Iz )d >1 O, 

yJ'k(x*) = O, k e I*, 

ykVfk(x*)d = O, k e I*. 

Sufficient For everyd e D(x*), there is no z 
conditions such that (z, d) # 0 and 
for (isolated) V fk(x*)z + d'V2fk(x*)d <- O, 
local k ~ A*(d), 
minimum Vhi(x*)z +d'V2hl(x*)d = 0, 

]EJ. 

For every nonzero d • D(x*), there 
exist nonnegative ,y ~ R p÷I, tz 
R ' .  (y, tz) # O, such that 
VL(x*, y,/,) = 0, 

d'~TZL(x *, y,/z)d > O, 

ykfk(x *) = O, k e l l  

ykVfk(x*)d = O, k ~ I~. 

second-order conditions, involv ing  the  Hess i ans  of  the  p r o b l e m  funct ions ,  o r  
de r ive  r e l a t e d  resul t s  w h e r e  s o m e  o t h e r  cu rva tu re  i n fo rma t ion  is u sed  (see, 
e.g.,  Co ro l l a r i e s  2.1, 2.3, 2.4). 

To  i l lus t ra te  the  d i s t ingu i shed  cha rac t e r  of  the  s e c o n d - o r d e r  cond i t ions  
o b t a i n e d  here ,  and  to discuss the i r  r e l a t ions  to  the  classical  resul ts ,  we col lect  
t h e m  in T a b l e  1. T h e  fo l lowing  func t ions  and  sets a re  used  in this  t ab le  and  
t h r o u g h o u t  the  p a p e r :  

w h e r e  

(i) the  Lagrangian function L:  R "  x R P+I x R "~ ~ R ,  

L ( x , y , / z )  ---a Y y k f k ( x ) + ~  /zj-hJ(x); 
k~{O}~l j~J 

(ii) the  set o f  critical directions at x*,  

D (x*) a__ { d ~  R ": V f  k ( x )d  <~ O, k ~ I *  ; V h i ( x* )d  = O, ] ~ Y}, 

I *  =a { 0 } ~ I * ,  I * & { k ~ I : f f ( x * ) = O } ,  
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and 

A*(d) ~{k c I~  : Vfk(x*)d = 0}. 

We write VL(x*, y,/z) for the gradient of L(. ,  y, ~z) evaluated at x- -x* .  
Gradient vectors are always row vectors. All other vectors (such as x, d, etc.) 
are column vectors. Row vectors will be denoted by primes, e.g., x', d', etc. 

The following conclusions may be drawn from Table 1. 
(i) The dual necessary conditions include the first-order result of 

Mangasarian and Fromovitz (Ref. 1) and in particular (for problem without 
equality constraints, i.e., J = O) the Fritz John conditions (Ref. 2). 

(ii) For an unconstrained problem, i.e., I =  O, J =  O,  both the 
primal and the dual conditions reduce to the well-known sufficient 
condition [Vf°(x *) = 0, Vef~(x *) positive definite] and necessary condition 
[Vff(x*) = 0, V2ff(x *) positive semidefinite]. 

(iii) For problems with equality constraints only (I = 0 ) ,  the dual 
results reduce to the necessary and the suffÉcient conditions given by 
McShane (Ref. 3). 

The reader wilt notice that the dual conditions do not speak about the 
existence of fixed multipliers, but rather about the existence of multipliers 
which are functions of the critical directions d ~ D(x*). This is in contrast to 
the Kuhn-Tucker type second-order necessary conditions (e.g., Ref. 4) or 
the commonly used sufficient conditions of Penissi (Ref. 5) or McCormick 
(Ref. 6); see also Ref. 4. The latter are special cases of our dual sufficiency 
result. Under certain constraint qualifications, the dual necessary conditions 
reduce to some classical Kuhn-Tucker type conditions, e.g., Theorem 3.2. 
Moreover, new types of constraint qualifications can now be formulated (see 
Proposition 3.1). 

Historically, optimality conditions were derived first for equality con- 
strained problems. It was a common practice in later years to handle 
inequalities by considering only active constraints and treat them as equali- 
ties (e.g., Refs. 7-9). This approach, however, cannot produce the type of 
results given in Table 10. See Example 3.2 and Remark 3.1. Our approach is 
to treat programs with inequalities only, first. Programs with equalities are 
then treated by solving the equations, eliminating part of the variables, and 
reducing the original problem to one with fewer variables and with inequal- 
ities only. This is essentially the approach taken by Mangasarian and 
Fromovitz (Ref. 1) in extending the Fritz John condition to problems with 
equality constraints. They also observed that the naive approach of writing 
an equation h(x) = 0 as two inequalities [h (x) ~< 0, - h  (x) ~ 0] is useless as far 
as necessary conditions are concerned, because the resulting conditions are 
trivially satisfied at any feasible point. The same is true for second-order 
conditions; see Section 3. 
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2. Necessary Conditions for Problems with Inequalities Only 

Ill this section, we study a special case of Problem (NLP), where J = O.  
Thus, we consider the following problem [Problem (P)]: 

(P) rain f°(x), 

subject to i f (x )  ~< 0, k ~ L  

First, we recall the following definition: a differentiable function 
g : R" -~ R is pseudoconcave on the convex subset S at x if 

~Tg(x) (z -x)~O~g(z)<-g(x) ,  for all z ES. 

The function g is strictly pseudoconcave if 

~Tg(x)(z - x )<~O~g(z )<g(x ) ,  z #x .  

In particular, a function 3/: R ~ R is pseudoconcave at 0 + if, for some T > 0, 
3'(0 is pseudoconcave on [0, T] at t = 0. For a fixed vector x*~ R"  and 
d ~ R ~, let 

O* (d) a= {z : (z, d) ~ O, f f  (x * + td + ½t2 z ) is pseudoconcave at 0 ÷ as a 
function of t}, k # 0; 

O,o(d) a_{z:(z ,d)~O,f~(x ,+ i 2 td + 5t z) is strictly pseudoconcave at 0 + 
as a function of t}. 

The following lemma is a convenient tool to derive a variety of primal 
necessary conditions. 

Lemma 2.1. Let the functions {ff:  k ~ {0} ~ 1} be differentiable, and 
let x* be a local minimizer of Problem (P). Then, for every d satisfying 

~k(x*)d<~O, k~l*o, (1) 

it follows that O*(d) = 0 ,  where 

O*(d) a= 0 O~(d). 
kEA*(d) 

ProoL Let d b e  a vector satisfying (1), and assume that O * ( d ) ¢  Q.  
Let t l~n ~ ~ O*(d). For k ~ I \ I*,  i f(x*) < 0; hence, by continuity, for some 
Tk > 0 ~Ufli¢ientty small, 

fk(x*+td+½t2~)<~O, t~[0 ,  Tk], k ~ I \ I * .  (2) 

For every k ~ I*  \A*(d), we have that Vf  k (x*)d < 0, but 

0>Vf~(x*)d  =~(d/dt)f f  (x* + -+ 1 2- td ~t z)],=o, 

showing that fk (x* + td + ½t2~) is strictly decreasing; hence, for some Tk > O, 



JOTA: VOL. 31, NO. 2, JUNE 1980 147 

ff(x~'+td+½t25)<O, re [0 ,  Tk], keI*\A*(d); (3) 

and, if 0 ~ A*(d), also 

f°(x*+td+½t2£)<f°(x*), t e [0 ,  To], for some To>0.  (4) 

For every k e A*(d), we have Vff(x*)ff = 0; hence, since 5 ~ O*(d), for some 
Tk>0 ,  

ff(x*+tff+½t22)<-ff(x*)=O, te[O, Tk],keA*(Y),k#O; 
and, if 0 e A*(d) also, 

f°(x*+td+½t2Z)<f°(x*), t e [0 ,  To], for some To>0.  (5) 

One infers from (2)-(5) that a small movement from x* along the curve 

e(t) = x* + d+½t2  

decreases the value of the objective function at x*, while maintaining 
feasibility. This of course violates the assumption that x* is a local mini- 
mizer. [] 

Lemma 2.1 is a source to derive both first-order and second-order 
optimality conditions. First, we derive the following refinement of the Fritz 
John condition obtained by Mangasarian (Ref. 10, Theorem 10.2.2). We 
recall that a function h is locally pseudoconcave at x if, for some neighbor- 
hood N of x, h is pseudoconcave on N at x. Let us define also the following 
index set: 

N* & {k c I :  f f  is not locally pseudoconcave at x*}. 

Corollary 2.1. Under the assumptions of Lemma 2.1, a necessary 
condition for a feasible point x* to be a local minimizer of Problem (P) is that 
the system [System (I)] 

VfO(x*)d < O, 

Vff(x*)d<O, keN*, 
Vff(x*)d<~O, k~I*\N*, 

has no solution d ~ R n or equivalently that the system [System (II)] 

ykVff(x*) = 0, 
ke;~ 

y ~ O ,  keI~, 
{Yk: k ~ {0} w N*} are not all zero 

has a solution {Yk : k e [* }. 
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Proof .  Only the inconsistency of System (I) has to be shown, since 
the equivalent statement, on the consistency of System (II), follows from 
Motzkin's theorem of the alternatives (e.g., Ref. 10). Note that, for k~ N*,  
the corresponding function fk is locally pseudoconcave at x*; hence, in 
particular, fk(x  +td)  is pseudoconcave at 0 +, as a function of t, for every 
d ~ R". This implies that 

0 ~ (-') Q~ (d), for every d. 
kc~ N* 

If System (I) has a solution, say d, then 

A*(d) c I* \N*;  

and so, from the previous relation, 

oc f) O~(d)~Q, 
A*(d) 

violating the necessary condition of Lemma 2.1. 
Let {N* (d)} be subsets satisfying 

D 

N~ (d) C Q* (d), k ~ A*(d). (6) 

Then, the condition Q*(d) = O clearly implies that 

( ]  N * ( d ) =  0 ;  
k~A*(d) 

hence, replacing the set O*(d) by n N*  (d) in Lemma 2.1 results in a valid 
necessary condition. This idea can be exploited in various ways. Perhaps, the 
most natural way is the one used to obtain the following primal necessary 
condition. 

Corollary 2.2. Let {fk: k ~ {0} u I} be twice continuously differenti- 
able, and suppose that x* is a local minimizer of Problem (P). Then, for every 
d satisfying (1), it follows that no z e R n solves the system 

• fk (x*)z  + d 'V2fk (x*)d  <2 0 ,  k ~ A*(d). (7) 

Proof .  Note that (7) is the same as 

1 2 [(d2/dt2)fk(x * + td +~t z)]t=0 < 0, 

the latter implies that fk (x*+ td + ltZz) is strictly concave in the neighbor- 
hood of t = 0; hence, it is strictly pseudoconcave at 0 +. Therefore, the set 
N*  (d) of all z 's  solving (7) satisfies (6). [] 

The dual necessary conditions follow. 
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Theorem 2.1. Let {ff:  k E {0} ~ I} be twice continuously differenti- 
able functions, and suppose that x* is a local minimizer of Problem (P). 
Then, corresponding to every vector d satisfying (1), there exist multipliers 

Yk ~> 0, k ~ I*,  not all zero, (8) 

satisfying 

ykVff(x*) = 0, (9) 
kel~ 

ykVfk(x*)d = O, k e Z*, (10) 

d'[ ~,ykV2fk(X*)Jd~O. (11) 
k~Io 

Proof. Let ff be a fixed but arbitrary vector satisfying (1). Consider the 
matrix A whose rows are 

{Vff(x*) : k ~ A*(d)}, 

and consider the vector b whose components are 

{ -d ' v2 f f  (x*)d : k ~ A*(d)}. 

With these notations, Corollary 2.2 states that the linear system 

{Az < b} 

has no solution. This is equivalent to saying that the linear program 

max(,~ : Az + £~<b} 

has optimal value A* ~<0; here, £ is the vector (& A . . . . .  )t)', with obvious 
dimensionality. Thus, the dual program 

min{b'y: A'y = 0, Y~Yk = 1, Yk/>0} 

has a nonpositive optimal value, i.e., the system 

A 'y  =0 ,  b'y<~O, y~>0, y # 0 ,  (12) 

has a solution 

f = {;k: k ~ A*(~)}. 

If we define also Yk = 0 for every k s I*  \A*(d), we see from (12) that 

{h :  k e I * }  

satisfy (8)-(11). 
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It should be emphasized that the multipliers are not fixed constants, but 
rather functions of the critical directions [i.e., those d 's  which satisfy (1)]. In 
the following example, we illustrate a situation where, at an optimal point, 
there are no fixed multipliers satisfying (8)-(11). This means, in particular, 
that none of the Kuhn-Tucker  type second-order conditions are valid for 
this example. 

The point 

Example 2.1. Consider the problem 

=2XlX2+~X3, rain f° 1 2 

subject to f~ 1 2 = 2xlx3 + ~X2 ~ O, 

f2 = 1 2 2X2X3 +gX 1 ~'~ 0. 

x* = (0, 0, 0)' 

is an isolated local (in fact, global) minimizer. This can be easily verified as 
follows. If there is an x # 0 at least as good as x* = 0, then it must satisfy 
i f (x)  <~ O, in addition to 

fl(x) O, f2(x) 0. 

If one of the components of x is zero, say xl = O, then it follows, from 

f l  ~ O, f2 ~< O, 

that x2 = x3 = O, hence x = O. Thus, xl # O, x2 # O, x3 # O; this implies that 

X1X2"~O, X I X 3 ~ 0 ,  X2x3~O, 

which is impossible, since multiplication of these three inequalities yields 
2 2 2 

XlX2X3 < 0 .  

Note that here 

Vff(x*) = 0, i = 0 ,  1,2; 

hence, (1) is satisfied by every d ~ R ~ and (9), (10) are satisfied by arbitrary 
multipliers. Thus, only (8) and (11) need checking. We show now that no 
fixed multipliers satisfying (8) can satisfy condition (11), which is here 

2 

(dl, d2, d3) Yo 

L2yl 

Indeed, for 

d a = (0, 1, -1) ' ,  

2yo 2yqFd q 
Yl 2y2|1 d21 ~ 0  , 

2y2 yo JLd3J 
d ~ R n. (13) 

d B = (1, 0, -1) ' ,  d c = (-1 ,  1, 0)', 
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(13) become, respectively, 

which upon adding yieId 

contradicting (8). 

y 0 + y l - 4 y 2 > ~ 0 ,  

y o + y 2 - 4 y l / > 0 ,  

yl +y2-4yo~>0 ,  

2(yo + Yl + Y2) ~-~ 0, 

However,  (8) and (11) do hold with 

I 
(1, 0, 0), if did2>~O, 

(yo, yl, y2) = (0 ,1 ,0) ,  if did3 >- 0, 

(0, 0, 1), if d2d3 >t- O, 

showing that Theorem 2.1 is valid. 
Another consequence of Lemma 2.1 is the following first-order result 

which, in certain special cases (to be discussed below), may do better than 
the second-order results. 

Corollary 2.3. Under  the assumptions of Lemma 2.1, a necessary 
condition for a feasible point x* to be a local minimizer of Problem (P) is 
that, for every 07# 0 satisfying (1), 

where 
k~A*(d) 

, a f {d: i f (x* + td) is concave at 0+}, k > O, 
Lk =]. {d: f°(x + td) is strictly concave at 0+}, k = O. 

Proof. Suppose that d is a nonzero vector satisfying (1) and also 
d c  ~Lk*. Then, 0 c  O*(d),  violating the necessary conditions of Lemma 
2.1. 

To illustrate this last result, consider the following example. 

Example 2.2. 

rain f f  = xl, 

subject to f~ = - (1  - xl) 3 + x2 ~< O, 

f2 = - x l  <~ O, 

f3  = --X2 ~.~ O. 
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This is the famous example used to demonstrate the failure of the Kuhn-  
Tucker conditions in the lack of constraint qualification. The second-order 
condition in Theorem 2.1 does not help much, because these conditions are 
trivially satisfied here, regardless of the objective function. In particular, 
they are satisfied at x* = (1, 0), which is not a local minimum here (in fact, a 
global maximum). At this point, the active constraints are the first and the 
third, so 

I* = {0, 1, 3}. 

In applying Corollary 2.3, note that fo and f3 are concave and that the 
inequalities 

Vfl(x*)d<O, Vf3(x*)d<O 

are contradictory. Thus, we are left to check whether there exists (dl, d2) ¢ 
O, such that 

d2 = O, t3d 3 is concave at 0 +, -d2  ~ O; (14) dl~<O, 

since 

(dl, d2) ¢ 0, dz = 0, 

it follows from the first constraint that dl < 0; hence, t3d 3 is strictly concave 
for t > 0, and hence the system (14) is consistent, showing that x* is indeed 
nonoptimal. 

Note that, if fk is a convex function, then, for every d ~ R n, 

L* =~{d: F(x*  + td) is linear at 0+}, k > 0, 
( •,  k = 0. (15) 

Moreover, for 0 ~ k ~ A*(d), 

L* = {d:fk(x*+td)  is constant at 0 +} =a D~ . (16) 

The set D* was introduced in Ref. 11, where it was called the cone of 
directions of constancy of fk at x*. It was shown there that this cone is also 
convex and is in general quite easy to compute. In fact, for analytic convex 
functions, it can be described by a system of homogeneous linear equations. 

Thus, for a convex programming problem, Corollary 2.3 reduces to the 
following result, which was first obtained in Ref. 11. 

Corollary 2.4. Let  {fk : k s {0} u I} be differentiable convex functions, 
and let x* be a minimum point of Problem (P). Then, for every d satisfying 

Vf°(x*)d < O, 

Vfk(x*)d <~ 0, k e I * ,  
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it follows that 

d~ n D~. 
A*td) 

Remark 2.1. The optimality conditions in Corollary 2.4 are also 
sufficient, the reason being that, for a convex feasible set, it is enough to 
check improvement of a given solution only along straight lines. 

Another important case where Corollary 2.4 gives a necessary and 
sufficient criterion for local minimum is when the feasible set F of (P) is 
locally starshaped at x*; i.e., there exists a neighborhood N of x*, with 
N n F ~ 2~, such that 

x ~ N n F ,  O<~h <~t~(1-A)x*+hx~Nc~F.  

F is called locally starshaped if it is locally starshaped at every x E ~: Any set 
which can be represented as a finite union of convex sets has this property. 
Examples of functions f for which the constraint f ~< 0 generates a locally 
starshaped set are 

k 

f ( x ) =  l~ (a~x+{3), f(x)=-(a'x+t3)z+~2(x); 
i=1  

here, ~b is a convex function. 

3. Necessary Conditions for Problem (NLP) 

In principle, an equality constraint hi(x)= 0 can be expressed as two 
inequalities: 

hi(x)~<0, -hi(x)<~O. (17) 

However, this does not help much as far as the necessary conditions are 
concerned, because the conditions in Theorem 2.1 will be trivially satisfied 
at an arbitrary feasible solution. In the primal version of Theorem 2.1 
(Corollary 2.2), we will have the following pair of contradicting inequalities, 
which result from (7) when applied to (17): 

VhJ (x*)z + d'V2 hJ (x*)d < O, 

-Vhi(x*)z - d'VZhi(x*)d < O. 

The approach adopted here instead is to eliminate the equality con- 
straints by solving the equations 

{h:(x)  = o , / ~ 1 } ,  
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thus expressing some of the variables in terms of the others. This reduces 
Problem (NLP) to Problem (P) with fewer variables and with inequalities 
only. The gradients and Hessians of the reduced functions are computed by 
using the implicit function theorem. 

First, we extend Corollary 2.2. 

Theorem 3,1. Primal Necessary Condition. Consider Problem (NLP) 
with twice eontimmusly differentiable functions 

{f f :kE{O}uI},  {hi : /~J} ,  . 

and suppose that x* is a local minimizer of Problem (NLP). Assume further 
that the gradients {Vhi(x*): ] ~ J} are linearly independent. Then, for every 
critical direction d, i.e., for every d satisfying 

Vff(x*)d<~O, k ~ I * ,  (18) 

VhJ(x*)d=O, j~J,  (19) 

it follows that no z ~ R n solves the system 

Vff(x*)z + d'V2fk(x*)d < O, k ~ A*(d), (20) 

Vhi(x*)z+d'V2hJ(x*)d=O, j~J.  (21) 

ProoL If m = card J is equal to n (number of variables), then d = 0 is 
the only solution of (19), and so z = 0 is the only solution of (21); hence, (20) 
cannot hold. Thus, for this case, the optimality conditions are trivially 
satisfied. Therefore, we assume that m < n; and so, by the assumption that 
{VhJ(x*): ]~J} are linearly independent, it follows that there exists a 
partition 

L u B = { i ,  2 . . . .  ,n}, cardB = m, 

such that the matrix H whose (i, j) th element is 

t 0xi 

is nonsingular. Therefore, by the implicit function theorem, applied to the 
system 

{hi(x) = 0, h ~J}, 

we conclude that, for some neighborhood N of x*, there exists a twice 
continuously differentiable vector-valued function O : R  n - m  --, R '~, with 
components {0': r ~ B}, such that 

xo = O(XL), for all x = (XL, Xn) ~ N, 
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i,e., 

hi(XL, O(XL))--O, j ~Y. (22) 

Problem (NLP) is then reduced to the following inequality constrained 
problem with n - m variables [Problem (P)]: 

(f') min{f°(XL): subject to fk(XL) <~ O, k ~ I}, where 

f(XL) Afk(XL, O(XL)), k ~ {0}~/, (23) 

and our assumption implies that x~ is a local minimum for Problem (P). 
Suppose now that the conclusion of the theorem is false, and let d, z be a 

pair of vectors satisfying (18)-(21). To proceed, we first introduce some 
notations: V L h  J is the r e x ( n - m )  matrix whose ]th row, ]~Y, has 
components 

Likewise, VBh" is the row vector with components 

3xi " 

Also, 

02~k kAO0k , ka__Z,_  ~ , , ,  
Oi = ~ (XL), O, -- OXiOXj tXL ), 

h~ and h~ have similar meanings. 
With the above notations, (19) can be rewritten as 

H d .  + V L h  Jd L = O, 

from which 

dB = -H-~(VLhl)dL.  

Implicit differentiation of (22) gives 

VO = -H- I (VLhJ) ,  

SO 

V f  k = VLf  ~ + (vBfk)vo,  

V f  k = VL[ k -- (VBfk)H-t(VLh •), 

hence, by (18) and (24), 

by (23), 

by (24); 

(24) 

(25) 

"k ( V t f  )dE ~ O, k ~ t*o. (26) 
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Rewriting (21) as 

HZB + VLhJZL = -- W, 

where w is a vector whose rth component is 

w~ A d 'V2h"(x*)d,  

one infers that 

(27) 

zB = - H -  1 w - H -1 (VLh J)zt .  (28) 

Twice differentiation of (22) gives 

h i i + Y ,  s k ~ t . . . . .  s hikO] q- ~ htiOi+ Y~ h,.mOi Oi+ ~ hrOi]=O, i , j ~ L , s ~ J .  
k~B t~B r,m~B reB 

Multiplying these equations by dldj, summing over all i, ] ~ L, using the fact 
that 

dk= E dio , k B, 
]eL 

which follows from (24) and (25), one obtains 

(VBh~)a = -d ' (VEhS)d ,  s ~J,  (29) 

where a is the vector rth component is 

A d'  tw20r a,.= L~" )dL. (30) 

Similar to the derivation of (29), we derive from (23) 

d'ttIVz gk"dr_s l t = d ' (V2fk)d  + (VBfk)a. (31) 

But, from (29) and (27), 

a = - H - l w  = zB + H - l ( V t h ' r ) z t ,  

by (28), so that (31) becomes 

d '  IV2 ~'k d Lk L f  ) L = d ' (V2 fk )  d + ( v B f k ) z B  + ( ~ B f k ) H - l ( ' ~ L h J ) z L  

= d'(V2fk)d + (VBfk)zB + (VLfk)zL -- (VLfk)ZL, 

by (25); or, rearranging terms, 

(V.~k)ZL + d'L(V2tfk)dL = d ' (V2fk)d  + ( v f k ) z  < 0, for k e A*(d), 

by (20). The latter inequalities, together with Ineqs. (26), show that 
dE, ZL ~ R '~-m are vectors violating the necessary conditions for X*L to be a 
local minimum of Problem (P), a contradiction. [] 



JOTA: VOL. 31, NO. 2, JUNE I980 157 

The dual result of Theorem 3.1 is an extension to second-order 
conditions of a result due to Mangasafian and Fromovitz (Ref. 1) and, for 
J = Q~, of the classical Fritz John conditions. 

Theorem 3.2. Dual Necessary Conditions. Consider Problem (NLP) 
with twice continuously differentiable functions 

{fk: k e{O}c~ I}, {hi: f ~ ] } ,  

and suppose that x* is a local minimizer of Problem (NLP). Then, cor- 
responding to every critical direction d, there exist multipliers 

Yk i> 0, k ~ I* ,  fz i ~ R, ] ~ o r, not all zero, (32) 

satisfying 

~zg ykVfk(x*) + ~. l~iVhi(x *) = 0, (33) 
k ]~Y 

ykVff(x*)d = O, k 6 I*o, (34) 

ken  icy 

Proof. If {Vhi(x*):f~Y} are linearly dependent, then (32)-(34) are 
trivially satisfied by Yk = 0, k ~ I0", and some ~j = fij, ] ~ ], not all zero. 
Moreover, for every d ~ R  n, (35) is satisfied either by the above chosen 
multipliers or by yk = 0, tzj = -fit. 

If {Vhi(x*):]cJ} are linearly independent, then the assumptions of 
Theorem 3.1 are satisfied, in which case one can dualize its necessary 
condition in a manner similar to that used in proving Theorem 2.1. We omit 
the details. [] 

It may happen that, for every critical direction d, Joe., a direction d 
satisfying (18) and (19), the corresponding multiplier of the objective 
function y0 = yo(d) is equal to zero, in which event the necessary conditions 
hold regardless of the objective function. This may happen for example, if x* 
is an isolated feasible point. To exclude such possibilities, an additional 
assumption is needed. Thus, we shall say that the constraints of Problem 
(NLP) satisfy a constraint qualification if, for at least one critical direction d, 
the multiplier yo(d) is strictly positive. All the first-order constraint 
qualifications and second-order constraint qualifications (see, e.g., Ref. 4, 
Ref. 6, and Ref. 10), used to obtain the customary Kuhn-Tucker  type 
necessary conditions, fall into the category of our definition, which is 
broader. See Example 3.1 below. Note that a constraint qualification still 
does not guarantee the existence of fixed multipliers satisfying (32)-(35) for 
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every critical direction d. Conditions which do guarantee the latter will be 
termed strong constraint qualification. The above mentioned second-order 
constraint qualifications are strong. 

The  following Condition (CQ) is a natural extension of the so-called 
modified Arrow-Hurwi tz -Uzawa condition, introduced in Ref. 1; see also 
Ref. 10, p. 172: 

(CQ) The gradients {VhJ(x*) : /~J}  are linearly independent  and 
there exists a critical direction d satisfying (18), (19), and a vector z ~ R ~ 
such that 

vfk(x*)z + d'V2fk(x*)d < O, k E F*(d), 

Vh~(x*)z +d'V2hJ(x*)d=O, j~J, 

where 

F*(d) ~ {k ~ I*:  Vff(x*)d --- 0}. (36) 

Note that, if there exist v ~ R ~ satisfying 

Vff(x*)v<O, k~I*., 

VhJ(x*)v =0 ,  j~J, 

i.e., if the modified Arrow-Hurwi tz -Uzawa condition is satisfied, then (CQ) 
holds trivially with d = 0 and z = v. 

Proposition 3.1. Condition (CQ) is a constraint qualification. 

Proof.  We have to show that yo(d)> 0 for some critical direction. 
Assume the contrary, i.e,, Y0 -= 0. Thus, by (32)-(35), the linear system with 
unknowns {yk: k e F*(d)}, {/~: j s J}, 

Y~ ykVfk(x*)+ Y, l~iVhi(x*)=O, 
k~P*(d) j~J 

~, yk(d'V2ff(x*)d)+ ~, tz¢(d'V2hi(x*)d)>~O, 
kEF*(d) l~d 

(37) 

Yk ~ O, k ~ F*(d), 
(38) 

Yk = 1, 
k~F*(d) 

has a solution for every critical direction d. (Note that (38) reflects here 
condition (32), since the linear independence of {VhJ(x*): h ~ J} excludes, 
by (37), the possibility that Yk = 0, for all k ~ F*(d).) 
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Therefore, the linear program 

min Y yk(-d'V2fk(x*)d)+2uj(-d'V2hJ(x*)d),  
kcF*(d) ]eY  

subject to (37) and (38), 

has a nonpositive optimal value for every critical direction d. Consequently, 
the dual program 

max A, 

subject to Vfk(x*)z + 2~ < -d'V2ff(x*)d, k e r*(d), 

Vhi(x*)z = -d'V2hi(x*)d, ] e J, 

has also a nonpositive optimal value ,~ *~< 0 for every critical direction d, 
showing that no such d exists for which some z ~ R  ~ satisfies condition 
(CQ). 

Our next result states essentially that the following condition [Condi- 
tion (SCQ)]: 

(SCQ) {Vhi(x*): ] ~ J}, {Vff(x*): k c I*} are linearly independent 

is a strong constraint qualification. However, we will write it formally, 
because it is rather a well-worn result encountered in most textbooks on 
nonlinear programming (e.g., Refs. 4, 7, 8, 9). The proof of this result is quite 
involved in the above mentioned references; but, with Theorem 3.1 at hand, 
it is almost trivial. 

Theorem 3.3, Under the assumptions of Theorem 3.2 and the addi- 
tional assumption (SCQ), a necessary condition for a feasible point x* to be a 
local minimizer of Problem (NLP) is that there exists multipliers 

yk>~O, kel '*,  # j~R ,  ] e L  (39) 

such that 

VF(x)*+ Z ykVff(x*)+ Z mVhJ(x*)=0, (40) 
k c I *  ] c l  

k c I *  i c y  

for every d satisfying 

Vfk(x*)d<~O, k e i * ,  
(42) 

VhJ(x*)d = O, j e J. 
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Proof. Since x* is a local minimum, it satisfies the necessary condi- 
tions of Theorem 3.2. However, the additional assumption (SCQ) excludes 
the possibility that y0 -- 0, for otherwise (32), (33) contradict (SCQ). Thus, 
y0>0,  hence can be taken equal to one (by the homogeneity of the 
conditions), and (32), (35) reduces to (40), (41). Moreover, (40) can have 
only one solution (again by the linear independence assumption), hence the 
multipliers are fixed. Finally, multiplying (40) by d, using (19) and (34), we 
see that 

Vf°(x*)d = O, 

which justifies the absence of this relation in (42) [see (18), (19)]. 7q 

The following example illustrates a situation in which Condition (CQ) is 
satisfied, but no strong constraint qualifications hold. 

Example 3.1. Consider the problem given in Example 2.1. It was 
already shown there that, at the optimal point x* = (0, 0, 0), Kuhn-Tucker 
type conditions cannot hold, since no fixed multipliers exist. However, for 
the multipliers found there, y0(d)~0;  indeed, at x* Condition (CQ) is 
satisfied, with d = (-1,  1, 1) and arbitrary z ~ R. 

Theorem 3.2 holds in fact under strong constraint qualifications which 
are weaker than Condition (SCQ); see, e.g., Ref. 12. At any rate, Theorem 
3.1 is a convenient tool to derive second-order Kuhn-Tucker type results, 
under these qualifications, in a similar way to the derivation of the first-order 
Kuhn-Tucker conditions through the use of the Fritz John conditions. See, 
e.g., Ref. 10. 

Remark 3.1. In most textbooks (e.g,, Refs. 4, 6, 7, 9), a result weaker 
than Theorem 3.3 is cited. Namely, the set of critical directions d satisfying 
(42) is replaced by the smaller set of tangent directions d satisfying 

Vf f ( x* )d  = O, k ~ I* 
(43) 

VhJ(x*)d=O, j~J. 
The source of this weaker result can be attributed to the traditional way of 
treating the active inequality constraints as equality constraints. The follow- 
ing example shows that replacing (42) by (43) indeed weakens the necessary 
conditions. 

Example 3.2. Consider the problem 

min ff  = -x~ - x l - x 2 ,  

subject to f2 = exp( -x l )+x2+ 1<~0, 

f~ = - x ~  + x~ <~ o. 
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The point x* = (0, 0) is not optimal: x(E) = (e, -e ) ,  for 0-<-< e < 1, is a t:etter 
point. Accordingly, the necessary conditions of Theorem 3.3 are not 
satisfied here, since they require that 

-3d2x/> 0, (44) 

for every dl, d2 such that 

d l +  d2 ~ 0, - d l  ~< 0, 

which is clearly impossible. However, if (43) is used instead of (42), then (44) 
has to hold only for dl, d2, such that 

d l +  d2 = 0, - d l =  0, 

a valid statement. 

4. Sufficient Conditions 

In this section, we derive sufficient conditions for a feasible point x* of 
Problem (NLP) to be an isolated local minimizer. 

First, we derive the dual sufficient condition given in Table 1. 

Theorem 4,1. Dual  Sufficient Conditions. Consider Problem (NLP) 
with twice continuously differentiable functions {ff:  {0} w I}, {hi: ] E J}, A 
sufficient condition for a feasible point x* to be an isolated minimizer of 
Problem (NLP) is that, corresponding to every nonzero critical direction d, 
there exist multipliers 

yk i> 0, k ~ I~, pq ~ R, ] E J, not all zero, 

such that (33) and (34) are satisfied and 

d'[ Z y VW(x*)+ Z (45) 
k~N i e l  

Proof. Suppose that x* is not an isolated local minimizer. Then, there 
exists a sequence of feasible points {x~}, x,  --~ x*, such that 

f°(x=) <F(x*). 
Specifically, {x=) can be chosen in the form 

x~ = x* + t~dn, 

where {t~} is a sequence of positive scalars converging to zero and {d~} is a 
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sequence of normalized direction vectors, 

IId.[I = 1. 

For every k e Io*, we have 

hence, by Taylor expansion, for some 0 ~< ~ <~ 1, 
k ~ 1 2 t 2 k 0 >~fk(x* + t,d~)--fk(x*) = tnVf ( x ) d ,  +gt ,d,V f (x + tf~t~dn)d,, 

so that 

O>~Vfk(x*)d.+½t.d'~V2fk(x*+~t.d.)d., k e I * .  (46) 

Similarly, for the equality constraints, 

O=VhJ(x.)d.  1 , 2 i  . ] +~t.d.V h (x +~?.t.d.)d., f e z  (47) 

for some 0<~ ~7/. <~ 1, ] e J. Let {t., d.}K be a convergent subsequence of 
(t., d.) whose limit is thus of the form (0, d), where 

IldlL = 1.  

It follows then, from (46) and (47), that 

Vfk(x*)d<~O, k e l * ,  Vhi(x*)d=O, ]6J;  

i.e., d satisfies (18) and (19). Therefore, by the assumptions of the theorem, 
there exists multipliers {)Tk}, {fii} satisfying, together with d, (32), (33), (45). 
Next, multiplying (46) by fk, (47) by fii, and summing for all k e Io* and ] e J, 
one obtains 

:~_1 , [ - 2 k ~ k ] 0 2 .ykV f (x +~.t .d.)+ Y~ ~jV2hJ(x*+n~t.d.)]d.. (48) 
i cy  

Dividing by ½t. and letting {t., d.}K approach its limit, we get from (48) a 
contradiction to the fact that {)Tk} , {/~/}, d satisfy (45). [] 

Remark 4.1. If one restricts the multipliers {Yk}, {tZi} to be fixed (i.e., 
to be the same for every critical direction), then Theorem 4.1 reduces to a 
result due to Penissi (Ref. 5). If one further restricts yo to be positive, then 
Theorem 4.1 reduces to the widely used sufficient conditions of Fiacco and 
McCormick (Ref. 4, Theorem 4). Our proof of Theorem 4.1 is quite similar 
to the proof of Theorem 4 in Ref. 4; nevertheless, Theorem 4.1 is a strictly 
better sufficient condition. This is illustrated by the following example. 

Example 4.1. Consider again the problem given in Example 2.1. It 
was already shown there that no fixed multipliers satisfy even the weak 
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inequality (45). Thus, Penissi's result, as well as the result of Fiacco and 
McCormick, fail to extablish the optimality of x* = (0, 0, 0). In contrast, the 
sufficient conditions in Theorem 4.1 are satisfied by the multipliers 

(Yo, Yl, Y2) = 

(1, 1, 0), if d l = 0 ,  

(1, 0, 1), if d 2 = 0 ,  

(0 ,1 ,1) ,  if d3=0 ,  

(1, 0, 0), if dldz>O, 
(0, 1, 0), if dld3>O, 
(0, 0, 1), if d2d3 >0. 

Theorem 4.1 can be stated in an equivalent primal form given below. 
We note that primal forms of the above-mentioned classical sufficient 
conditions do not exist. 

Theorem 4.2. Primal Sufficient Conditions. Under the assumption of 
Theorem 4.1, a feasible poin t x* of Problem (NLP) is an isolated local 
minimizer if, for every critical direction d, there is no z ~ R",  (z, d) # 0, such 
that 

Vfk(x*)z +d'V2fk(x*)d ~O, kcA*(d) ,  (49) 

Vhi(x*)z + d'V2hi(x*)d = O, f ~ J, (50) 

where as before 

A*(d) & {k: 7 f f  (x*)d = 0}. 

Proof.  If d = 0, then the inconsistency of the system (49), (50) is a 
trivial sufficient condition. Thus, assume that d # 0. Consider the matrices A 
and B, given by their rows 

A={Vfk(x*): k 6 A*(d)}, B=(Vhi (x*) : j~J} ,  

and consider the vectors a and b given by their components. 

a ={-d'72ff(x*)d: k ~ A*(d)}, b={-d'V2hi(x*)d.:j~y}.  

With these notations, the conditions of the theorem can be restated as 
follows: for every critical d, the system 

A z  ~ a, Bz = b 

has no solution. By a well-known alternative theorem (e.g., Ref. I3, 
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Theorem 1) the latter is equivalent to the consistency of the system 

yA + tzB =0,  

a 'y  +b'/~ > 0 ,  

y~>O, (y, t z )#o .  

Therefore, there exists {37k: k ~ A*(d)}; {t2~:/" ~ J} satisfying 

37k >I 0, k ~ A*(d), (37,/2) # 0, 

Z 37kVfk(x*) + E /~jVhi(x*) =0 ,  
k ~ A * ( d )  i~Y  

E ;k ( -d 'V2 fk (x*)d )  + E I~i(-d'VZhi(x*)d) <0 .  
k ~ A * ( d )  iE., r 

Define 

Then 

37k = 0, fo r  k ~ I~, k~ A*(d). 

{37k: k ~ I*o }, {fii, f E J} 

satisfy the sufficient conditions of Theorem 4.1. [] 
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